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Abstract. In independent component analysis we assume that the ob-
served vector is a linear transformation of a latent vector of independent
components, our objective being the estimation of the latter. Deflation-
based FastICA estimates the components one-by-one by repeatedly max-
imizing the expected value of some function measuring non-Gaussianity,
the derivative of which is called the non-linearity. Under some weak as-
sumptions, the asymptotically optimal non-linearity for extracting sources
with a specific density is given by the location score function of the den-
sity. In this paper we look into the consequences of this result from the
viewpoint of estimating Gaussian location and scale mixtures. As one
of our results we justify the common use of hyperbolic tangent, tanh,
as a non-linearity in blind clustering by showing that it is optimal for
estimating certain Gaussian mixtures. Finally, simulations are used to
show that the asymptotic optimality results hold in various settings also
for finite samples.

Keywords: Asymptotic optimality, hyperbolic tangent, independent com-
ponent analysis.

1 Introduction

In independent component analysis (ICA) one assumes that the observed k-
vectors xi, i = 1, . . . , n, are independent realizations of a random vector x which
is a linear transformation of an unobserved vector z of independent source sig-
nals. This corresponds to the model

x = µ+Ωz, (1)

where µ ∈ Rk, the mixing matrix Ω ∈ Rk×k is non-singular and the latent
vector z has mutually independent components satisfying the following two as-
sumptions: (i) The components of z are standardized in the sense that E(z) = 0
and Cov(z) = I, (ii) at most one of the components of z is Gaussian.

Assumption (i) fixes both the location µ and the scales of the columns ofΩ in
(1) and (ii) ensures that there are no orthogonally invariant column blocks in the
matrix Ω [7]. After these assumptions the signs and the order of the components
of z are still not fixed but this is usually satisfactory in applications.
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In ICA one wants to find an estimate for the inverse of the unmixing ma-
trix, Ω−1 =: W = (w1, . . . ,wk)T , after which, e.g. the first estimated inde-
pendent component is obtained as wT

1 x. In FastICA [8] this is done by first
standardizing the observed vector, x 7→ xst := Cov(x)−1/2(x − E(x)), which
leaves xst a rotation away from the vector z [1]. Then, for estimating this ro-
tation one chooses a non-linearity function g : R 7→ R for which we denote
g(x) := (g(x1), g(x2), . . . , g(xk))T . The estimation is formalized in the follow-
ing definition which, albeit a bit unorthodox way of defining FastICA, nicely
captures all variants of it.

Definition 1. Lp-FastICA finds an orthogonal matrix U satisfying

U = argmax
UUT=I

‖E (g(Uxst)) ‖p,

where ‖x‖p =
(∑k

i=1 |xi|p
) 1

p

is the Lp-norm, p ≥ 1.

Remark 1. L1-FastICA is equivalent to the symmetric FastICA [8] and L2-
FastICA is equivalent to the squared symmetric FastICA [11].

Remark 2. Also deflation-based FastICA [8] has a similar formulation using vec-
tor norms. Namely, it can be seen as a repeated application of L∞-FastICA,
where ‖x‖∞ = maxi(|xi|). In the first step we search for a single component
that maximizes |E(g(x))| and repeat the process (k− 1) times in the orthogonal
complement of the already found directions.

The estimating equations of deflation-based FastICA, see e.g. [14, 11], show
that the non-linearity g is in deflation-based FastICA invariant to its linear part
(hence its name) and also to scaling and sign-change of its argument. However,
the same does not hold for either symmetric or squared symmetric FastICA.

Lemma 1. Deflation-based FastICA is invariant under transformations g(x) 7→
ag(sx) + bx+ c, where a, b, c ∈ R, a 6= 0, s ∈ {−1, 1}, of the used non-linearity g.

Remark 3. The result of Lemma 1 holds also if one uses the alternative, modified
Newton-Raphson algorithm, see [7, 11].

If two non-linearities, g1 and g2, are equal up to the invariance specified in
Lemma 1 we denote it as g1 ≡ g2. In addition to this invariance, deflation-based
FastICA has also another interesting feature; given a component with a regular
enough density function, in a certain sense optimal non-linearity for extracting
it can be stated. This is formalized in the following lemma, the proof of which
can be found in [5, 10, 11].

Lemma 2. Let the random variable z1 in (1) have a twice continuously differ-
entiable density function f : R 7→ [0,∞). Then, assuming that z1 is in deflation-
based FastICA extracted first, the non-linearity g(x) = −f ′(x)/f(x) minimizes
the sum of asymptotic variances of the elements of ŵ1.
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In the following all uses of the word optimal are in the sense of Lemma 2.
For other criteria for choosing the non-linearity in deflation-based FastICA see
e.g. [2].

The result of Lemma 2 holds conditional on the component of interest being
the first to be extracted. This is trivially satisfied in the case the components of
z are identically distributed and in a more general case its extraction first can
be forced by choosing the starting value of the algorithm appropriately as done
for example in reloaded FastICA [13] and adaptive FastICA [10].

In standard FastICA mainly four non-linearity functions are used in prac-
tice. They are usually denoted skew, pow3, tanh and gauss and correspond to
the functions g(x) = x2, g(x) = x3, g(x) = tanh(x) and g(x) = x exp(−x2/2),
respectively [6]. The first two are based on the classical use of higher-order cu-
mulants in projection pursuit [4] and the last two provide robust approximations
for the negentropy [7], the most popular of the four being tanh.

While “robustness” issues are irrelevant when choosing the non-linearity as
FastICA will never be robust due to the whitening based on the covariance
matrix [14], it is still of interest to ask why some non-linearities seem to work
better than others in various situations. Reversing the thinking of Lemma 2 we
can then ask, given a non-linearity g, is it possibly optimal for any density f?
Solving of the trivial first-order differential equation in combination with Lemma
1 yields the following result.

Lemma 3. A differentiable and integrable function g : R → R is the optimal
non-linearity for independent components with densities f : R → R+ satisfying
f(x) ∝ exp(a

∫ sx

0
g(y)dy + bx2 + cx),

∫∞
−∞ xf(x)dx = 0 and

∫∞
−∞ x2f(x)dx = 1

for some a, b, c ∈ R, a 6= 0, s ∈ {−1, 1}.

An analogous result for deflation-based FastICA, symmetric FastICA and
EFICA [9] was given already in [16]. However, our version enjoys an extra degree
of freedom in its parameters as restricting to deflation-based FastICA only al-
lows, based on Lemma 1, the inclusion of the linear term cx in Lemma 3. The last
two conditions in Lemma 3 reflect our assumption (i) that the independent com-
ponents are standardized. Using Lemma 3 we see that pow3 is optimal for sources
with power exponential density, f(x) = 25/4

√
πΓ (1/4)−2exp(−2π2Γ (1/4)−4x4),

where Γ (·) is the Gamma function. The non-linearities skew and gauss are
optimal for densities satisfying respectively f(x) ∝ exp(ax3 + bx2 + cx) and
f(x) ∝ exp(a exp(−x2/2)+bx2+cx) and, to the authors’ knowledge, no common
probability distributions defined on the whole R have such densities. However,
an interesting remark can still be made. Namely, define sub-Gaussian (super-
Gaussian) densities as those f(x) = exp(−h(x)) for which h′(x)/x is increasing
(decreasing) in (0,∞) [15]. Then Lemma 2 says that if a non-linearity g(x) is
optimal for some density, then that density is sub-Gaussian (super-Gaussian) if
g(x)/x is increasing (decreasing) in (0,∞), verifying the heuristics of using pow3
for extracting sub-Gaussian sources and gauss for extracting super-Gaussian
sources [6]. Note however that the definitions of sub- and super-Gaussian densi-
ties in [6] are based on kurtosis values and not on density functions.
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Fig. 1. The optimal non-linearities g(x) for extracting L(π, λ)-distributed components
for various values of π and λ.

2 Optimal Non-linearities for Gaussian Mixtures

It is well-known that Gaussian mixture distributions are suitable for approxi-
mating other distributions, see e.g. [3] who show that elliptical distributions can
be seen as scale mixtures of Gaussian distributions. Motivated by this we will in
the following consider two special cases of Gaussian mixture distributions.

2.1 Gaussian Location Mixtures

Consider the following two-parameter mixture distribution family, L(π, λ).

πN (
λ1√

4 + λ1λ2
,

4

4 + λ1λ2
) + (1− π)N (

−λ2√
4 + λ1λ2

,
4

4 + λ1λ2
), (2)

where the mixing proportion π ∈ (0, 1), the location parameter λ ∈ (0,∞) and
for brevity we denote λ1 := λ/π and λ2 := λ/(1 − π). It is easily checked that
the random variable z1 ∼ L(π, λ) satisfies E(z1) = 0 and Var(z1) = 1 for any
permissible choices of the parameters and the family L(π, λ) then contains every
standardized two-group Gaussian location mixture distribution where the two
groups have the same variance. Applying then Lemma 2 to this family yields

Theorem 1. Let z1 ∼ L(π, λ) for some π ∈ (0, 1), λ ∈ (0,∞). Then the optimal
non-linearity for extracting z1 satisfies

g(x) ≡
(
π +

(
et(x) − 1

)−1)−1
,

where t(x) = (λ1 + λ2)(2x
√

4 + λ1λ2 − λ1 + λ2)/8.
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Fig. 2. The plot shows, for different values of a ∈ (0,∞), the densities of the symmetric
Gaussian location mixtures for which the non-linearity g(x) = tanh(ax) is optimal.

The resulting optimal non-linearity in Theorem 1 is quite complex and not
of any standard functional form. Its graph for some select choices of parame-
ters is depicted in Figure 1, all cases exhibiting a sigmoid-like shape. However,
considering the symmetric case, π = 1/2, simplifies the formulae greatly.

Corollary 1. Let z1 ∼ L(1/2, λ) for some λ ∈ (0,∞). Then the optimal non-
linearity for extracting z1 satisfies

g(x) ≡ tanh(λ
√

1 + λ2x).

Corollary 1 says that the widely-used hyperbolic tangent is actually optimal
for estimating symmetric two-group Gaussian location mixtures, justifying its
use in FastICA when we have expectations to find symmetric bimodal compo-
nents. A similar optimality result for tanh was given already in [16] but the
resulting family of distributions was not studied further and Corollary 1 now
goes to show that the family is for deflation-based FastICA actually L(1/2, λ).
As a non-linearity tanh is usually given in the form g(x) = tanh(ax) where
a ∈ (0,∞) is a tuning parameter and we have, using Corollary 1, plotted in Fig-
ure 2 the densities of the distributions for which g(x) = tanh(ax) is the optimal
non-linearity for various values of a. The plot implies that the more separated
the groups one wants to find, the higher the value of a should be. See Section 3
for simulations of this heuristic. Curiously, the standard case a = 1 is optimal
for components z1 ∼ L(1/2,

√
φ), where φ := (

√
5− 1)/2 is the golden ratio.

2.2 Gaussian Scale Mixtures

We next consider Gaussian scale mixtures via a two-parameter mixture distribu-
tion family, S(π, θ), that contains every standardized two-group Gaussian scale
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Fig. 3. The optimal non-linearities g(x) for extracting S(π, θ)-distributed components
for various values of π and θ.

mixture distribution where the two groups have the same expected value:

πN
(

0,
θ

π

)
+ (1− π)N

(
0,

1− θ
1− π

)
, (3)

where the mixing proportion π ∈ (0, 1) and the scale parameter θ ∈ (0, 1). Again
the random variable z1 ∼ S(π, θ) satisfies E(z1) = 0 and Var(z1) = 1 for all
combinations of the parameters, yielding the following result via Lemma 2.

Theorem 2. Let z1 ∼ S(π, θ) for some π, θ ∈ (0, 1). Then the optimal non-
linearity for extracting z1 satisfies

g(x) ≡ x

(
1 +

(
π

1− π

)3/2(
1− θ
θ

)1/2

et(x)

)−1
,

where t(x) = x2(θ − π)/(2θ(1− θ)).

Examples of the non-linearity in Theorem 2 are plotted in Figure 3. In order
to obtain a simpler formula with only one tuning parameter notice that choosing
θ = 1− π corresponds for extreme values of π to a heavy-tail model and in this
special case the result of Theorem 2 simplifies as follows.

Corollary 2. Let z1 ∼ S(π, 1 − π) for some π ∈ (0, 1). Then the optimal non-
linearity for extracting z1 satisfies

g(x) ≡ x

(
1 +

(
π

1− π

)2

et(x)

)−1
,

where t(x) = x2(1− 2π)/(2π(1− π)).
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Fig. 4. The plot shows, for different values of 1−π ∈ (0, 1), the densities of the Gaussian
scale mixtures for which the non-linearity tail is optimal.

In Figure 4 we have plotted for various values of 1− π the densities of those
Gaussian scale mixtures for which the non-linearity of Corollary 2 (referred to
hereafter as tail) is optimal. As distributions S(π, 1− π) with extreme values of
π are basically symmetric, heavy-tailed distributions a reasonable guess is that
the non-linearity tail is useful for extracting also other heavy-tailed symmetric
components. This will be investigated in the next section.

3 Simulations

3.1 The Choice of the Tuning Parameter in tanh(ax)

The simulations are divided into two parts: the investigation of the tuning pa-
rameter a in tanh(ax) and the testing of the non-linearity tail of Corollary 2.

For the first we used two different three-variate settings where all compo-
nents of z ∈ R3 were either L(0.5, 2)- or L(0.4, 2)-distributed and we used
deflation-based FastICA to estimate one of the components. We considered the
non-linearities, pow3, gauss, tanh(x), tanh(3x) and tanh(5x), of which the last
one should work the best in the first setting and the second setting investigates
how the non-linearities handle small deviations from the distribution they are
optimal for. skew is not included as it carries no information in symmetric set-
tings. The sample size is taken to be n = 1000, 2000, 4000, 8000, 16000, 32000
and the number of repetitions is 10000.

As all three i.i.d. components of z are equally likely to be estimated first, we
measured the success of the extraction by the criterion D2(ŵ1) = min{‖PJŵ1−
e1‖2}, where ŵ1 is the estimated first direction, e1 = (1, 0, 0)T and the minimum
is taken over all 3×3 permutation matrices P and 3×3 diagonal matrices J with
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Fig. 5. The results of the first simulation.

diagonal elements equal to ±1. Thus D2 = 0 means that we succeeded perfectly
in estimating one of the components. In the simulations we furthermore scaled
D2 by the sample size n, see the modified minimum distance index in [17].

The resulted mean criterion values are given in Figure 5 and show that
tanh(3x) and tanh(5x) performed the best in the symmetric setting, gauss and
tanh(x) not being that far behind. More interestingly, the same conclusions can
be drawn also in the asymmetric case. Only the overall level of the extraction is
a bit worse.

3.2 Estimating Scale Mixtures and Heavy-tailed Components

To evaluate the performance of tail we considered two three-variate settings
where the components of z were all either S(0.10, 0.90)- or t5-distributed (and
standardized), where t5 denotes a t-distribution with 5 degrees of freedom. The
sample sizes, the number of repetitions and the criterion function were the
same as in the previous simulation and we used six non-linearities, pow3, gauss,
tanh(x), tail with π = 0.1, tail with π = 0.3 and rat3 with b = 4, see below.
The third-to-last non-linearity should be superior in the first setting and with
the second setting we experiment whether tail works for other heavy-tailed dis-
tributions also. The non-linearity rat3, g(x) = x/(1+b|x|)2, was proposed in [16]
to estimate heavy-tailed sources and there b = 4 was suggested as a balanced
choice for the tuning parameter.

The results in Figure 6 again show that in the first setting the asymptotically
optimal non-linearity, tail with π = 0.1, gives the best separation also for finite
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samples. In the “experimental” setting with the t5-distribution tanh(x) proved
most useful but also gauss and tail with π = 0.3 were quite successful.

4 Discussion

In FastICA the choice of the non-linearity, e.g. the popular tanh, is usually moti-
vated with heuristic claims and asymptotic arguments showing that a particular
non-linearity is optimal for some class of distributions. However, one is usually
not interested in a non-linearity that works well in only a few cases but instead
in a multitude of situations – and as also our simulations show, tanh performs
in general quite well, also with distributions for which it is not optimal. And
although there exists cases where tanh does not work at all [18, 11], this draw-
back should not be given too much weight; only a few non-linearities are so far
shown to work for any combination of sources, assuming that at most one of
them has an objective function value of zero, see e.g. [12, 17]. Such un-estimable
distributions can actually be crafted for any non-linearity [16].

The use of different non-linearities for different components in FastICA has
also been considered, see e.g. EFICA [9] and adaptive deflation-based FastICA
[10]. While EFICA tries to estimate the optimal non-linearities from the data,
adaptive deflation-based FastICA chooses them out of a set of candidates. It
seems thus reasonable to include in this set non-linearities which are known to
have optimality properties, such as the ones given in our Corollaries 1 and 2.
Acknowledgements. We would like to thank the anonymous referees for their
stimulating comments which enhanced the paper and provided us with existing
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