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ABSTRACT
The triangular ratio metric is studied in a domain G � Rn, n ≥ 2.
Several sharp bounds are proven for this metric, especially in the
case where the domain is the unit disk of the complex plane. The
results are applied to study the Hölder continuity of quasiconformal
mappings.
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1. Introduction

In geometric function theory, metrics are often used to define new types of geometries
of subdomains of the Euclidean, Hilbert, Banach and other metric spaces [1–4]. One can
introduce ametric topology and build new types of geometries of a domainG ⊂ Rn, n ≥ 2,
based on metrics. Since the local behaviour of functions defined on G is an important area
of study, it is natural to require that, given a point in G, a metric recognises points close to
it from the boundary ∂G.

Thus, certain constraints on metrics are necessary. A natural requirement is that the
distance defined by a metric for given two points x, y ∈ G takes into account both how far
the points are from each other and also their location with respect to the boundary. Indeed,
we require that the closures of the balls defined by themetrics do not intersect the boundary
∂G of the domain. We call these types of metrics intrinsic metrics. A generic example of an
intrinsic metric is the hyperbolic metric [5] of a planar domain or its generalisation, the
quasihyperbolic metric [6] defined in all proper subdomains of G � Rn, n ≥ 2.

In the recent years, new kinds of intrinsic geometries have been introduced by numer-
ous authors, see Ref. [7, pp. 18–19]. Papadopoulos lists in Ref. [8, pp. 42–48] 12 metrics
recurrent in function theory. Because there are differences how these metrics catch certain
intricate features of functions, using several metrics is often imperative. We might fur-
ther specify the properties of the metrics by requiring that the intrinsic metric should be
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compatible with the function classes studied. For instance, some kind of quasi-invariance
property is often valuable. Recall that the hyperbolic metric of a planar domain G is
invariant under conformal automorphisms of G.

In 2002, Hästö [9] introduced the triangular ratio metric, defined in a domain G � Rn

as the function sG : G × G → [0, 1]

sG(x, y) = |x − y|
infz∈∂G(|x − z| + |z − y|) .

This metric was studied recently in Refs. [10–12], and our goal here is to continue
this investigation. We introduce new methods for estimating the triangular ratio metric
in terms of several other metrics and establish several results with sharp constants.

In order to compute the value of the triangular ratio metric between points x and y in a
domainG, we must find a point z on the boundary ofG that gives the infimum for the sum
|x − z| + |z − y|. This is a very simple task if the domain is, for instance, a half-plane or a
polygon, but solving the triangular ratio distance in the unit disk is a complicated problem
with a very long history (see Ref. [11]). However, there are two special cases where this
problem becomes trivial: if the points x and y in the unit disk are collinear with the origin
or at the same distance from the origin, there are explicit formulas for the triangular ratio
metric.

Since the points x and y can be always rotated around their midpoint to end up into
one of these two special cases, we can estimate the value of the triangular ratio metric,
regardless of how the original points are located in the unit disk. This rotation can be done
either by using Euclidean or hyperbolic geometry, and the main result of this article is
to prove that both these ways give lower and upper limits for the value of the triangular
ratio metric. Note that while we study the midpoint rotation only in the two-dimensional
disk, our results can be directly extended into the case Bn, n ≥ 3, for the point z giving the
infimum is always on the same two-dimensional disk as x, y and the origin.

The structure of this article is as follows. First, we show a few simple ways to find bounds
for the triangular ratio metric in Section 3.We define the Euclidean midpoint rotation and
prove the inequalities related to it in Section 4 and then do the same for the hyperbolic
midpoint rotation in Section 5. Finally, in Section 6, we explain how finding better bounds
for the triangular ratio metric can be useful for studying K-quasiconformal mappings in
the unit disk.

2. Preliminaries

Let G be some non-empty, open, proper and connected subset of Rn. For all x ∈ G, dG(x)
is the Euclidean distance d(x, ∂G) = inf{|x − z| | z ∈ ∂G}. Other than the triangular ratio
metric defined earlier, we will need the following hyperbolic type metrics:

The j∗G-metric j∗G : G × G → [0, 1],

j∗G(x, y) = |x − y|
|x − y| + 2min{dG(x), dG(y)} ,

the point pair function pG : G × G → [0, 1],

pG(x, y) = |x − y|√|x − y|2 + 4dG(x)dG(y)
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and the Barrlund metric bG,p : G × G → [0,∞),

bG,p(x, y) = sup
z∈∂G

|x − y|
(|x − z|p + |z − y|p)1/p .

Note that the function pG is not a metric in all domains [10, Remark 3.1, p. 689].
The hyperbolic metric is defined as

chρHn(x, y) = 1 + |x − y|2
2dHn(x)dHn(y)

, x, y ∈ Hn,

sh2
ρBn(x, y)

2
= |x − y|2
(1 − |x|2)(1 − |y|2) , x, y ∈ Bn,

in the upper half-plane Hn and in the Poincaré unit ball Bn, respectively [7, (4.8), p. 52;
(4.14), p. 55]. In the two-dimensional unit disk

th
ρB2(x, y)

2
= th

(
1
2
log

( |1 − xy| + |x − y|
|1 − xy| − |x − y|

))
=
∣∣∣∣ x − y
1 − xy

∣∣∣∣ = |x − y|
A[x, y]

,

where y is the complex conjugate of y and A[x, y] = √|x − y|2 + (1 − |x|2)(1 − |y|2) is
the Ahlfors bracket [7, (3.17) p. 39]. The hyperbolic segment between points x and y is
denoted by J[x, y], while Euclidean lines, line segments, balls and spheres are written in
forms L(x, y), [x, y],Bn(x, r) and Sn−1(x, r), respectively, just like in Ref. [7, pp. vii–xi]. Note
that if the centre x or the radius r is not specified in the notations Bn(x, r) and Sn−1(x, r), it
means that x = 0 and r = 1. The hyperbolic ball is denoted by Bnρ(q,R), as in the following
lemma.

Lemma 2.1 ([7, (4.20) p. 56]): The equality Bnρ(q,R) = Bn(j, h) holds, if

j = q(1 − t2)
1 − |q|2t2 , h = (1 − |q|2)t

1 − |q|2t2 and t = th
(
R
2

)
.

For the results of Section 5, the formula for the hyperbolic midpoint is needed.

Theorem 2.2 ([13, Theorem 1.4, p. 3]): For all x, y ∈ B2, the hyperbolic midpoint q of
J[x, y] with ρB2(x, q) = ρB2(q, y) = ρB2(x, y)/2 is given by

q = y(1 − |x|2)+ x(1 − |y|2)
1 − |x|2|y|2 + A[x, y]

√
(1 − |x|2)(1 − |y|2) .

Furthermore, the next results will be useful when studying the triangular ratio metric
in the unit disk.

Theorem 2.3 ([7, p. 460]): For all x, y ∈ Bn,

th
ρBn(x, y)

4
≤ j∗

Bn(x, y) ≤ sBn(x, y) ≤ pBn(x, y) ≤ th
ρBn(x, y)

2
≤ 2th

ρBn(x, y)
4

.

Theorem 2.4 ([11, p. 138]): For all x, y ∈ Bn, the radius drawn to the point z giving the
infimum infz∈Sn−1(|x − z| + |z − y|) bisects the angle �XZY.
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Lemma 2.5 ([7, 11.2.1(1), p. 205]): For all x, y ∈ Bn,

sBn(x, y) ≤ |x − y|
2 − |x + y| ,

where the equality holds if the points x, y are collinear with the origin.

Theorem 2.6 ([14, Theorem 3.1, p. 276]): If x = h + ki ∈ B2 with h, k>0, then

sB2(x, x) = |x| if
∣∣∣∣x − 1

2

∣∣∣∣ > 1
2
,

sB2(x, x) = k√
(1 − h)2 + k2

≤ |x|otherwise.

Remark 2.7: If x, y ∈ Bn such that |x| = |y| and there is only one point z ∈ S giving the
infimum infz∈Sn−1(|x − z| + |z − y|), then it can be verified with Theorem 2.6 that z =
(x + y)/|x + y|.

3. Bounds for triangular ratio metric

In this section, we will introduce a few different upper and lower bounds for the triangu-
lar ratio metric in the unit disk B2, using the Barrlund metric and a special lower limit
function. There are numerous similar results already in the literature, but we complement
them and prove that our inequalities are sharp by showing that they have the best possible
constant. First, we introduce the following inequality:

Lemma 3.1: For all y ∈ G, the inequality

sG(x, y) ≤ |x − y|
dG(x)+

√
|x − y|2 + dG(x)2 − 2dG(x)

√|x − y|2 − dG(y)2

holds, if the domain G is starlike with respect to x ∈ G and dG(x)+ dG(y) ≤ |x − y|.

Proof: Let G be starlike with respect to x ∈ G and consider an arbitrary point y ∈ G.
Clearly, Bn(x, dG(x)),Bn(y, dG(y)) ⊂ G. It also follows from the starlikeness of G that the
convex hull ∪u∈Bn(y,dG(y))[x, u] must belong to G. Fix u, v ∈ Sn−1(y, dG(y)), u 
= v, on
the same plane with the points x, y so that the lines L(x, u) and L(y, v) are tangents of
Sn−1(y, dG(y)), and fix z1 ∈ Sn−1(x, dG(x)) ∩ [x, u].

By the starlikeness of G, ∪s∈Bn(y,dG(y))[x, s] ⊂ G, so it follows that z1 fulfils

|x − z1| + |z1 − y| ≤ inf
z∈∂G

(|x − z| + |z − y|) ⇔ sG(x, y) ≤ |x − y|
|x − z1| + |z1 − y| .

Here, |x − z1| = dG(x) and, with the information that |u − y| = |y − v| = dG(y) and
�XUY = �YVX = π/2, we can conclude that

|z1 − y| =
√

|x − y|2 + dG(x)2 − 2dG(x)
√

|x − y|2 − dG(y)2.

Thus, the lemma follows. �
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Remark 3.2: The same method as in the proof of Lemma 3.1 can be also applied into the
case whereG is convex. In that case, J = ∪s∈Bn(x,dG(x)), t∈Bn(y,dG(y))[s, t] ⊂ G for all x, y ∈ G,
so

sG(x, y) ≤ |x − y|
|x − z1| + |z1 − y| ,

where z1 is chosen from ∂J so that |x − z1| + |z1 − y| is at minimum. By finding the
value of this sum, we end up with the result sG(x, y) ≤ pG(x, y), which holds by Ref. [7,
Lemma 11.6(1), p. 197].

Let us now focus on the Barrlund metric.

Lemma 3.3 ([15, Theorem 3.6, p. 7]): For all x, y ∈ G � Rn,

sG(x, y) ≤ bG,p(x, y) ≤ 21−1/psG(x, y).

Theorem 3.4 ([15, Theorem 3.15, p. 11]): For all x, y ∈ B2,

bB2,2(x, y) = |x − y|√
2 + |x|2 + |y|2 − 2|x + y| .

Lemma 3.5: For all x, y ∈ B2,

1√
2
bB2,2(x, y) ≤ sB2(x, y) ≤ bB2,2(x, y).

Furthermore, this inequality is sharp.

Proof: The inequality follows from Lemma 3.3. Let x = 0 and y = k with 0< k<1. By
Lemma 2.5 and Theorem 3.4,

sB2(x, y) = k
2 − k

and bB2,2(x, y) = k√
2 + k2 − 2k

,

so we will have the following limit values

lim
k→0+

sB2(x, y)
bB2,2(x, y)

= lim
k→0+

(√
2 + k2 − 2k
2 − k

)
= 1√

2
and lim

k→1−
sB2(x, y)
bB2,2(x, y)

= 1.

Thus, the sharpness follows. �

Let us next study the connection between the Barrlundmetric and two other hyperbolic
type metrics that can be used to bound the value of the triangular ratio metric in the unit
disk, see Theorem 2.3.

Theorem 3.6: For all x, y ∈ B2, the sharp inequality

1
2
bB2,2(x, y) ≤ j∗

B2(x, y) ≤ bB2,2(x, y)

holds.
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Proof: The inequality follows fromLemma 3.5, Theorem2.3 andRef. [12, Theorem2.9(1),
p. 1129]. By Theorem 3.4,

j∗
B2(x, y)

bB2,2(x, y)
=
√
2 + |x|2 + |y|2 − 2|x + y|
|x − y| + 2 − |x| − |y| .

For x = 0 and y = k with 0< k<1,

lim
k→1−

j∗
B2(x, y)

bB2,2(x, y)
= lim

k→1−

(√
2 + k2 − 2k

2

)
= 1

2
,

and for x = −k and y = k with 0< k<1,

lim
k→1−

j∗
B2(x, y)

bB2,2(x, y)
= lim

k→1−

(√
1 + k2

2

)
= 1.

Thus, the sharpness follows. �

Theorem 3.7: For all x, y ∈ B2, the sharp inequality

1√
2
bB2,2(x, y) ≤ pB2(x, y) ≤

√
10 + √

2
4

bB2,2(x, y)

holds.

Proof: Consider now the quotient

pB2(x, y)
bB2,2(x, y)

=
√

2 + |x|2 + |y|2 − 2|x + y|
|x − y|2 + 4(1 − |x|)(1 − |y|) . (1)

By Lemma 3.5 and Ref. [7, 11.16(1), p. 203], bB2,2(x, y)/
√
2 ≤ sB2(x, y) ≤ pB2(x, y) holds

for all x, y ∈ B2. This inequality is sharp, because, for x = 0 and y = k,

lim
k→0+

pB2(x, y)
bB2,2(x, y)

= lim
k→0+

(√
k2 + 2k + 2
2 − k

)
= 1√

2
.

Without loss of generality, fix x = h and y = jeμi with 0 ≤ h ≤ j < 1 and 0 < μ < 2π .
The quotient (1) is now

pB2(x, y)
bB2,2(x, y)

=
√

2 + h2 + j2 − 2
√
h2 + j2 + 2hj cos(μ)

h2 + j2 − 2hj cos(μ)+ 4(1 − h)(1 − j)
.

This is decreasing with respect to cos(μ), so we can assume that μ = π and cos(μ) = −1,
when looking for the maximum of this quotient. It follows that

pB2(x, y)
bB2,2(x, y)

=
√

(1 + h)2 + (1 − j)2

(h + j)2 + 4(1 − h)(1 − j)
=
√

(1 + h)2 + (1 − h − q)2

(2h + q)2 + 4(1 − h)(1 − h − q)
,
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where q = j − h ≥ 0. The quotient above is clearly decreasing with respect to q. Thus, let
us fix j = h. It follows that

pB2(x, y)
bB2,2(x, y)

=
√

2 + 2h2

8h2 − 8h + 4
=
√

1 + h2

4h2 − 4h + 2
≡
√
f (h),

where f : [0, 1) → R, f (h) = (1 + h2)/(4h2 − 4h + 2). By differentiation, for 0 ≤ h < 1,

f ′(h) = ∂

∂h

(
1 + h2

4h2 − 4h + 2

)
= −(h2 + h − 1)
(2h2 − 2h + 1)2

= 0 ⇔ h =
√
5 − 1
2

.

Since f (0.1) > 1 and f (0.9) < 0, the quotient (1) has a maximum
√
f ((

√
5 − 1)/2) =

(
√
10 + √

2)/4 and the other part of the theorem follows. �

Finally, we will introduce one special function defined in the punctured unit disk.

Definition 3.8: For x, y ∈ B2\{0}, define

low(x, y) = |x − y|
min{|x − y∗|, |x∗ − y|} ,

where x∗ = x/|x|2 and y∗ = y/|y|2.
Remark 3.9: The low-function is not a metric on the punctured unit disk: by choosing
points x = 0.3, y = −0.1 and z = 0.1, we will have

0.117 ≈ low(x, y) > low(x, z)+ low(z, y) ≈ 0.0817,

so the triangle inequality does not hold.
Furthermore, because A[x, y] = |x||y − x∗| for x, y ∈ Bn \ {0}, it follows that

th
ρB2(x, y)

2
= |x − y|

|x||y − x∗| ≥ low(x, y), (2)

see Ref. [16, 7.44(20)]. Note also that, by Ref. [16, 7.42(1)], the left-hand side of (2) defines
a metric.

This low-function is a suitable lower bound for the triangular ratio metric, as the next
theorem states.

Lemma 3.10: For all x, y ∈ B2\{0}, the inequality sB2(x, y) ≥ low(x, y) holds.

Proof: Suppose that |x − y∗| ≤ |x∗ − y| and fix z1 ∈ [x, y∗] ∩ S1. Clearly,

d(y, S1) < d(y∗, S1) ⇔ 1 − |y| < |y∗| − 1 = 1
|y| − 1

⇔ |y| − 2 + 1
|y| = 1

|y| (|y| − 1)2 > 0.

It follows from this that

sB2(x, y) ≥ |x − y|
|x − z1| + |z1 − y| ≥ |x − y|

|x − z1| + |z1 − y∗| = |x − y|
|x − y∗| = low(x, y). �
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As a lower bound for sB2(x, y), the low-function is essentially sharp, when
max{|x|, |y|} → 1. However, the low-function does not give any useful upper limits for
the triangular ratio metric, unless we limit from below the absolute value of the points
inspected. This can be seen in our next theorem.

Theorem 3.11: For all x, y ∈ B2\{0}, the triangular ratio metric and its lower bound fulfil

sup
{
sB2(x, y)
low(x, y)

|max{|x|, |y|} ≥ r
}

≤ 1 + r
2r

,

where the equality holds ifmax{|x|, |y|} = r.

Proof: Consider the quotient

sB2(x, y)
low(x, y)

= min{|x − y∗|, |x∗ − y|}
infz∈S1(|x − z| + |z − y|) . (3)

Fix x, y ∈ B2 such that 0 < |x| ≤ |y| and choose z ∈ S1 so that it gives the infimum in the
denominator of the quotient (3). Let k0 = �ZOX and k1 = �ZOY , where the point o is the
origin. Note that, by Theorem 2.4,�XZO = �OZY , so it follows that 0 ≤ k1 ≤ k0 ≤ π/2.
We can write that

inf
z∈S1

(|x − z| + |z − y|) =
√

|x|2 + 1 − 2|x| cos(k0)+
√

|y|2 + 1 − 2|y| cos(k1).

Furthermore,

|x − y∗| =
√

|x|2 + 1
|y|2 − 2

|x|
|y| cos(k0 + k1),

|x∗ − y| =
√

|y|2 + 1
|x|2 − 2

|y|
|x| cos(k0 + k1).

Now, we can find an upper bound for the quotient (3):

sB2(x, y)
low(x, y)

≤ |x − y∗|
infz∈S1(|x − z| + |z − y|)

≤ sup
0≤k1≤k0≤π/2

√|x|2 + 1/|y|2 − 2(|x|/|y|) cos(k0 + k1)√
|x|2 + 1 − 2|x| cos(k0)+√|y|2 + 1 − 2|y| cos(k1)

=
(

inf
0≤k1≤k0≤π/2

√
|x|2 + 1 − 2|x| cos(k0)+√|y|2 + 1 − 2|y| cos(k1)√|x|2 + 1/|y|2 − 2(|x|/|y|) cos(k0 + k1)

)−1

≤
(

inf
0≤k1≤k0≤π/2

√
|x|2 + 1 − 2|x| cos(k0)

|x|2 + 1/|y|2 − 2(|x|/|y|) cos(k0 + k1)
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+ inf
0≤k1≤k0≤π/2

√
|y|2 + 1 − 2|y| cos(k1)

|x|2 + 1/|y|2 − 2(|x|/|y|) cos(k0 + k1)

)−1

=
(√

|x|2 + 1 − 2|x|
|x|2 + 1/|y|2 − 2(|x|/|y|) +

√
|y|2 + 1 − 2|y|

|x|2 + 1/|y|2 − 2(|x|/|y|)

)−1

=
(

1 − |x|
1/|y| − |x| + 1 − |y|

1/|y| − |x|
)−1

= 1/|y| − |x|
2 − |x| − |y| . (4)

Let us yet find another upper bound for the quotient (4). It can be shown by differentiation
that the function f : (0, 1) → R,

f (|x|) = 1/|y| − |x|
2 − |x| − |y|

is increasing. It follows from this that

|x| ≤ |y| ⇔ f (|x|) ≤ f (|y|) ⇔ 1/|y| − |x|
2 − |x| − |y| ≤ 1/|y| − |y|

2 − |y| − |y| = 1 + |y|
2|y| .

Thus, for all x, y ∈ B2 such that 0 < |x| ≤ |y|, the quotient (3) fulfils the inequality
sB2(x, y)
low(x, y)

≤ 1/|y| − |x|
2 − |x| − |y| ≤ 1 + |y|

2|y| . (5)

Fix now x = 1/2 and y = 1/2 + j with 0 < j < 1/2. The quotient (3) is now

sB2(x, y)
low(x, y)

= 3 + 2j
(2 + 4j)(1 − j)

= 1 + |y|
2|y|(1 − j)

= 1
1 − j

· 1 + |y|
2|y| ,

and it has a limit value

lim
j→0+

sB2(x, y)
low(x, y)

= 1 + |y|
2|y| .

Thus, the inequality (5) is sharp and this result proves that

sup
sB2(x, y)
low(x, y)

= 1 + max{|x|, |y|}
2max{|x|, |y|} .

Since the quotient (1 + k)/(2k) is decreasing for k ∈ (0, 1), the theorem follows. �

The low-function yields a lower limit also for other hyperbolic type metrics.

Lemma 3.12: For all x, y ∈ B2\{0}, the following inequalities hold and are sharp:

1. low(x, y) ≤ √
2j∗

B2(x, y),

2. low(x, y) ≤ pB2(x, y),

3. low(x, y) ≤ bB2,2(x, y).
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Furthermore, there is no c>0 such that low(x, y) ≥ c · d(x, y) for all x, y ∈ B2\{0}, where
d ∈ {j∗

B2 , pB2 , bB2,2}.

Proof: The inequalities follow from Theorem 2.3, Lemmas 3.5 and 3.10, and Ref. [12,
Theorem 2.9(1), p. 1129]. Let 0 < k < 1. Since

lim
k→1−

low(k, ke2(1−k)i)

j∗
B2(k, ke2(1−k)i)

= lim
k→1−

(
2k(k sin(1 − k)+ 1 − k)√
k4 + 1 − 2k2 cos(2(1 − k))

)
= √

2,

lim
k→1−

low(k,−k)
pB2(k,−k)

= lim
k→1−

(
2k

√
2k2 − 2k + 1
k2 + 1

)
= 1,

lim
k→1−

low(k,−k)
bB2,2(k,−k)

= lim
k→1−

( √
2k√

k2 + 1

)
= 1,

the inequalities are sharp. The latter part of the lemma follows from the fact that the limit
values above are all 0 if k → 0− instead. �

4. Euclideanmidpoint rotation

In this section, we introduce the Euclidean midpoint rotation. Finding the value of the
triangular ratio distance for two points in the unit disk is a trivial problem, if the points
are collinear with the origin or at same distance from it, see Lemma 2.5 and Theorem 2.6.
Since any two points can always be rotated around their midpoint into one of these two
positions, this transformation gives us a simple way to estimate the value of the triangular
ratio metric of the original points.

Definition 4.1: Euclidean midpoint rotation. Choose distinct points x, y ∈ B2. Let k =
(x + y)/2 and r = |x − k| = |y − k|. Let x0, y0 ∈ S1(k, r), x0 
= y0, so that |x0| = |y0| and
the points x0, k, y0 are collinear. Fix then x1, y1 ∈ S1(k, r) so that x1, k, y1 are collinear,
|x1| = |k| + r and |y1| = |k| − r. Note that x0, y0, y1 ∈ B2 always but x1 is not necessarily
in B2. See Figure 1.

For all x, y ∈ B2, x 
= y, such that x1 ∈ B2, the inequality

sB2(x0, y0) ≤ sB2(x, y) ≤ sB2(x1, y1)

holds, as we will prove in Theorems 4.11 and 4.12. If x1 /∈ B2, sB2(x1, y1) is not defined but
the first part of this inequality holds. In order to prove this result, let us next introduce a
few results needed to find the value of sG-diameter of a closed disk in some domain G.

Proposition 4.2: For a fixed point x ∈ G and a fixed direction of −→xy, the value of sG(x, y) is
increasing with respect to |x − y|.
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Figure 1. Euclidean midpoint rotation.

Proof: Let x, y ∈ G and t ∈ [x, y] ∩ G. Choose z ∈ ∂G so that

sG(x, t) = |x − t|
|x − z| + |z − t| .

Because the function f : (0,∞) → R, f (μ) = (u + μ)/(v + μ) with constants 0 < u ≤ v
is increasing,

sG(x, t) ≤ |x − t| + |t − y|
|x − z| + |z − t| + |t − y| = |x − y|

|x − z| + |z − t| + |t − y| ≤ sG(x, y).

Thus, the result follows. �

Proposition 4.3: The function f : [0,π/2] → R,

f (μ) =
√
u − v cos(μ)+

√
u + v cos(μ),

where u, v>0 are constants, is increasing on the interval μ ∈ [0,π/2].

Proof: Let s = cos(μ), so that the function f can be written as g : [0, 1] → R, g(s) =√
u − vs + √

u + vs. By differentiation,

g′(s) = v
2

(
1√

u + vs
− 1√

u − vs

)
≤ 0,

and it follows that the function g is decreasing on the interval s ∈ [0, 1]. Because s = cos(μ)
is decreasing, too, with respect to μ, the function f is increasing. �
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Theorem 4.4: Fix j, r, k, z ∈ R such that j ≤ k < j + r < z. Choose x, y ∈ S1(j, r) so that
�ZKX = μ with 0 ≤ μ ≤ π/2 and k ∈ [x, y]. Then the quotient

|x − y|
|x − z| + |z − y| (6)

is decreasing with respect to μ.

Proof: Suppose without loss of generality that j = 0 and r = 1. First, we will consider the
special case where k = 0. From the condition k ∈ [x, y], it follows that x, y are the end-
points of a diameter of S1 and therefore |x − y| = 2 for all angles μ. Since |x| = |y| = 1
and z = 1+ d, we obtain by the law of cosines

|x − z| =
√
1 + (1 + d)2 − 2(1 + d) cos(μ),

|z − y| =
√
1 + (1 + d)2 + 2(1 + d) cos(μ).

The sum |x − z| + |z − y| can be described with the function f of Proposition 4.3 if
the constants u, v are replaced with 1 + (1 + d)2 > 0 and 2(1 + d) > 0, respectively. By
Proposition 4.3, this function f is increasing with respect to μ ∈ [0,π/2]. Since the quo-
tient (6) can be clearly written as 2/f (μ), it follows that it must be decreasing with respect
to μ.

Suppose now that S1(j, r) is still the unit circle S1, but let 0< k<1. The equation of the
line L(x, y) can be written as

t + xyt = x + y (7)

with t ∈ C as variable. Here, x can be written as eθ i with 0 ≤ θ < π/2. Furthermore, the
line L(x, y)must contain k and, by substituting t = k in (7), we will have

y = x − k
kx − 1

= eθ i − k
keθ i − 1

.

Consider now a function h : [0, 2π) → R,

h(θ) = |eθ i − (eθ i − k)/(keθ i − 1)|
|eθ i − z| + |z − (eθ i − k)/(keθ i − 1)| ,

which clearly depicts the values of the quotient (6). For all θ ∈ [0,π/2], by symmetry,

y = eϕi = eθ i − k
keθ i − 1

⇒ h(θ) = h(−ϕ). (8)

The function h fulfils h(0) = h(π) = 1/z, which is clearly its maximum value. If θ = 0,
then so is μ, so the maximum of the quotient (6) is at μ = 0. By Rolle’s theorem, there is
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a critical point θ̃ such that f ′(θ̃) = 0. By the property (8), θ̃ is the solution of

eθ i = e−θ i − k
ke−θ i − 1

.

Thus,

eθ i + e−θ i

2
= k ⇒ Re(eθ ) = k ⇒ μ = π

2
.

Consequently, the quotient (6) attains its minimum value at μ = π/2. Because there are
no other points where the derivative h′ is 0 at the open interval 0 < θ < π/2 than the one
found above, the quotient is monotonic on the interval μ ∈ [0,π/2]. To be more specific,
the quotient must be decreasing because its maximum is at μ = 0 and minimum at μ =
π/2.

Thus, we have proved that the quotient (6) is decreasing with respect to μ, regardless of
if k = j or k> j. �

Theorem 4.5: Fix Sn−1(j, r) ⊂ Rn and z ∈ Rn so that d = |z − j| − r > 0. Then,

sup
x,y∈Sn−1(j,r)

|x − y|
|x − z| + |z − y| = r

r + d
.

Proof: Suppose without loss of generality that n = 2, j = 0, r = 1 and z = d + 1 ∈
(1,∞). By symmetry, we can assume that the points x, y ∈ S1 fulfil 0 ≤ arg(x) ≤ π/2 and
arg(x) < arg(y) < 2π . We will next prove the theorem by inspecting the quotient (6) in a
few different cases separately.

Consider first the case where arg(x) = 0. Now, x = 1 and y = eϕi for some 0 < ϕ < 2π .
It follows that

|x − y|
|x − z| + |z − y| = |1 − eϕi|

d + |1 + d − eϕi| =
(

d
|1 − eϕi| + |1 + d − eϕi|

|1 − eϕi|
)−1

.

Since both of the quotients d/|1 − eϕi| and |1 + d − eϕi|/|1 − eϕi| obtain clearly their
minimum with ϕ = π , the quotient (6) is at maximum within limitation x = 1 when
y = −1.

Suppose then that arg(x) = θ 
= 0 and arg(y) ≤ π . Now, we can rotate the points x, y by
the angle θ clockwise about the origin. This transformation does not affect the distance |x −
y| but decreases distances |x − z| and |z − y|, so it increases the value of the quotient (6).
Since xmaps into 1 in the rotation, this transformation leads to the first case studied above.

Finally, consider the case where arg(x) 
= 0 and π < arg(y) < 2π . Now, (x, y) ∩
(−1, 1) 
= ∅, so we can choose a point k ∈ (x, y) ∩ (−1, 1). If −1 < k < 0, we can always
reflect the points x, y over the imaginary axis so that the quotient (6) increases. Thus, we
can suppose that 0 ≤ k < 1. By Theorem 4.4, the quotient is decreasing with respect to
�ZKX = μ ∈ [0,π/2], so its maximum is at μ = 0. It follows that x = 1 and y = −1.

Thus, the quotient (6) obtains its highest value with x = 1 and y = −1. In the general
case x, y ∈ S1(j, r), thismeans that x = j+ r and y = j−r. Since the value of the quotient (6)
is now r/(r + d), the result follows. �
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Corollary 4.6: The sG-diameter of a closed ball J = Bn(k, r) in a domain G � Rn is sG(J) =
r/(r + d), where d = d(J, ∂G).

Proof: Clearly,

sG(J) = sup
x,y∈J

sG(x, y) = sup
x,y∈J

(
sup
z∈∂G

|x − y|
|x − z| + |z − y|

)

= sup
z∈∂G

(
sup
x,y∈J

|x − y|
|x − z| + |z − y|

)
= sup

z∈∂G

(
sup
x,y∈J

sRn\{z}(x, y)

)

= sup
z∈∂G

sRn\{z}(J).

Trivially, sRn\{z}(J) is at maximum when the distance d(z, J) is at minimum. Thus,

sG(J) = sup
x,y∈J

|x − y|
|x − z| + |z − y| , (9)

where z ∈ ∂G such that d = d(z, J) = d(J, ∂G). It follows from Proposition 4.2 that for all
distinct x, y ∈ J, we can choose s, t ∈ ∂J, s 
= t, such that [s, t] = L(x, y) ∩ J and sG(s, t) ≥
sG(x, y). Thus, the points x, y giving the supremum in (9) must belong to Sn−1(k, r). By
Theorem 4.5, it follows from this that

sG(J) = sup
x,y∈Sn−1(k,r)

|x − y|
|x − z| + |z − y| = r

r + d
. �

Corollary 4.7: The sBn-diameter of a ball J = Bn(k, r) ⊂ Bn is sBn(J) = r/(1 − |k|).

Proof: Follows directly from Corollary 4.6. �

Corollary 4.8: For all x, y ∈ Bn such that |y| ≤ |x|, the inequality sBn(x, y) ≤ |x| holds.

Proof: Since y ∈ J = Bn(|x|), sBn(x, y) ≤ sBn(J) and, by Corollary 4.7, sBn(J) = |x|. �

Consider yet the following situation.

Lemma 4.9: For all points x ∈ B2\{0} and y ∈ B2(|x|) non-collinear with the origin,

sB2(x, y) < sB2(x, y′), where y′ = xe2ψ i and ψ = arcsin
( |x − y|

2|x|
)
.

Proof: Since |y′| = |xe2ψ i| = |x| and |x − y′| = |x||1 − e2ψ i| = 2|x| sin(ψ) = |x − y|, the
point y′ is chosen from S1(|x|) ∩ S1(x, |x − y|). By symmetry, we can assume that y′ is the
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intersection point closer to y. Fix z so that it gives the infimum infz∈S1(|x − z| + |z − y|).
If μ′ = �ZXY ′, then μ = �ZXY = μ′ + �Y ′XY > μ′. Clearly, by the law of cosines

sB2(x, y)

= |x − y|
|x − z| + |z − y| = |x − y|

|x − z| +√|x − y|2 + |x − z|2 − 2|x − y||x − z| cos(μ)

<
|x − y|

|x − z| +√|x − y|2 + |x − z|2 − 2|x − y||x − z| cos(μ′)
= |x − y′|

|x − z| + |z − y′|
≤ sB2(x, y′),

so the lemma follows. �

Let us now focus on the results related to the Euclidean midpoint rotation.

Proposition 4.10: Consider two triangles �YXZ and �Y0X0Z0 with obtuse angles �YXZ
and�Y0X0Z0. Let k and k0 be the midpoints of sides XY and X0Y0, respectively. Suppose that
|x − y| = |x0 − y0|, |k − z| ≤ |k0 − z0| and �ZKX ≤ �Z0K0X0. Then,

|x − z| + |z − y| ≤ |x0 − z0| + |z0 − y0|.

Proof: Let r = |x − k| = |x0 − k0|, m = |k − z|, m0 = |k0 − z0|, μ = �ZKX and μ0 =
�Z0K0X0, see Figure 2. By the law of cosines

|x − z| + |z − y| =
√
r2 + m2 − 2rm cos(μ)+

√
r2 + m2 + 2rm cos(μ),

|x0 − z0| + |z0 − y0| =
√
r2 + m2

0 − 2rm0 cos(μ0)+
√
r2 + m2

0 + 2rm0 cos(μ0).

Furthermore, by Proposition 4.3, the function f : [0,π/2] → R,

f (μ) =
√
u − v cos(μ)+

√
u + v cos(μ),

where u, v>0, is increasing with respect to μ ∈ [0,π/2]. Note that here μ,μ0 ∈ [0,π/
2] because the triangles already have obtuse angles �YXZ and �Y0X0Z0. Thus, it follows
from μ ≤ μ0 andm ≤ m0 that

|x − z| + |z − y| =
√
r2 + m2 − 2rm cos(μ)+

√
r2 + m2 + 2rm cos(μ)

≤
√
r2 + m2 − 2rm cos(μ0)+

√
r2 + m2 + 2rm cos(μ0)

≤
√
r2 + m2

0 − 2rm0 cos(μ0)+
√
r2 + m2

0 + 2rm0 cos(μ0)

= |x0 − z0| + |z0 − y0|.
�

Theorem 4.11: For all x, y ∈ B2,

sB2(x, y) ≥ sB2(x0, y0) ≥ |x − y|√|x − y|2 + (2 − |x + y|)2 .
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Figure 2. The triangles�YXZ and�Y0X0Z0 of Proposition 4.10.

Proof: Fix k = (x + y)/2 and r = |x − k|. Suppose that k 
= 0, for otherwise sB2(x, y) =
sB2(x0, y0) holds trivially. Without loss of generality, let 0< k<1 and �XKZ = ν ∈ [0,π/
2]. Now,�YKZ = π + ν, x0 = k + ri and y0 = k − ri. There are two possible cases; either
the infimum infz0∈S1(|x0 − z0| + |z0 − y0|) is given by one point z0 ∈ S1 or there are two
possible points z0 ∈ S1.

Suppose first that the infimum infz0∈S1(|x0 − z0| + |z0 − y0|) is given by only one point.
By Remark 2.7, this point must be z0 = 1. Fix u = r2 + (1 − k)2 and v = 2r(1 − k) and
consider the function f of Proposition 4.3 for a variable ν. Now, we will have

inf
z∈S1

(|x − z| + |z − y|) ≤ |x − 1| + |1 − y| = f (ν) ≤ f (π/2) = |x0 − 1| + |1 − y0|

= inf
z0∈S1

(|x0 − z| + |z − y0|),

from which the inequality sB2(x, y) ≥ sB2(x0, y0) follows.
Consider yet the case where there are two points giving the infimum infz0∈S1(|x0 −

z0| + |z0 − y0|). By symmetry, we can fix z0 so that 0 < arg(z0) ≤ π/2. Now, the infimum
infz∈S1(|x − z| + |z − y|) is given by some point z such that 0 ≤ arg(z) ≤ arg(z0). If x, y
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are collinear with the origin, by Lemma 2.5 and Corollary 4.7,

sB2(x, y) = |x − y|
2 − |x + y| = r

1 − k
= sB2(Bn(k, r)) ≥ sB2(x0, y0).

If x, y, 0 are non-collinear instead, the triangles �YXZ and �Y0X0Z0 exists. The sides
XY and X0Y0 are both the length of 2r and have a common midpoint k. It follows
from Theorem 2.4 and the inequality 0 < arg(z) ≤ arg(z0) ≤ π/2 that angles �YXZ and
�Y0X0Z0 are obtuse, |k − z| ≤ |k − z0| and �ZKX ≤ �Z0KX0. By Proposition 4.10,

|x − z| + |z − y| ≤ |x0 − z0| + |z0 − y0|,
so the inequality sB2(x, y) ≥ sB2(x0, y0) follows.

Thus, sB2(x, y) ≥ sB2(x0, y0) holds in every cases and, by Theorem 2.6,

sB2(x0, y0) ≥ r√
r2 + (1 − k)2

= |x − y|√|x − y|2 + (2 − |x + y|)2 ,

which proves the latter part of the theorem. �

Theorem 4.12: Let x, y ∈ B2 with k = (x + y)/2 and r = |x − k|. If r+ k<1,

sB2(x, y) ≤ sB2(x1, y1) = |x − y|
2 − |x + y| < 1.

Proof: If r+ k<1, then x1, y1 ∈ B2 and, by Lemma 2.5,

sBn(x, y) ≤ |x − y|
2 − |x + y| = |x1 − y1|

2 − |x1 + y1| = sB2(x1, y1). �

5. Hyperbolic midpoint rotation

In this section, we consider the hyperbolic midpoint rotation. The idea behind it is the
same as the one of the Euclidean midpoint rotation, for our aim is still to rotate the points
around their midpoint in order to estimate their triangular ratio distance. However, now
the rotation is done by using the hyperbolic geometry of the unit circle instead of the
simpler Euclidean method.

Definition 5.1: Hyperbolic midpoint rotation. Choose distinct points x, y ∈ B2. Let q be
their hyperbolic midpoint and R = ρB2(x, q) = ρB2(y, q). Let x2, y2 ∈ S1ρ(q,R) so that
|x2| = |y2| but x2 
= y2. Fix then x3, y3 ∈ S1ρ(q,R) so that x3, y3 are collinear with the origin
and |y1| < |q| < |x1|. See Figure 3.

The main result of this section is the inequality

sB2(x2, y2) ≤ sB2(x, y) ≤ sB2(x3, y3).

This inequality is well-defined for all distinct x, y ∈ B2 because the values of sB2(x2, y2) and
sB2(x3, y3) are always defined. The first part of this inequality is proved in Theorem 5.11
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Figure 3. Hyperbolic midpoint rotation

and the latter part in Theorem 5.12, and the formula for the value of sB2(x2, y2) is in
Theorem 5.3. Note that, according to numerical tests, the hyperbolic midpoint rotation
gives better estimates for sB2(x, y) than the Euclidean midpoint rotation or the point pair
function, see Conjecture 5.13.

Lemma 5.2: Choose x, y ∈ B2 so that their hyperbolic midpoint is 0<q<1. Let t = th(R/
2) = th(ρB2(x, y)/4). Then,

x2 = q(1 + t2)
1 + q2t2

+ t(1 − q2)
1 + q2t2

i and y2 = x2.

Proof: By Lemma 2.1, S1ρ(q,R) = S1(j, h) with

j = q(1 − t2)
1 − q2t2

and h = (1 − q2)t
1 − q2t2

.

To find x2 and y2, we need to find the intersection points of S1(j, h) and S1(c, d), where
S1(c, d) ⊥ S1 and c>1. Now, c2 = (q + d)2 = 1 + d2, from which it follows that

d = 1 − q2

2q
and c = 1 + q2

2q
.



COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 19

Clearly, x2 = y2 since both j, c ∈ R. Let x2 = u + ri and y2 = u − ri. Now, h2 = r2 + (u −
j)2 and d2 = r2 + (c − u)2. Thus,

h2 − (u − j)2 = d2 − (c − u)2 ⇔ h2 − u2 + 2ju − j2 = d2 − c2 + 2cu − u2 ⇔

u = h2 − j2 − d2 + c2

2(c − j)
.

Since

h2 − j2 = (1 − q2)2t2

(1 − q2t2)2
− q2(1 − t2)2

(1 − q2t2)2
= (t2 − q2)(1 − q2t2)

(1 − q2t2)2
= t2 − q2

1 − q2t2
,

−d2 + c2 = − (1 − q2)2

4q2
+ (1 + q2)2

4q2
= 4q2

4q2
= 1,

h2 − j2 − d2 + c2 = t2 − q2

1 − q2t2
+ 1 = (1 + t2)(1 − q2)

1 − q2t2
,

2(c − j) = 2
(
1 + q2

2q
− q(1 − t2)

1 − q2t2

)
= (1 + q2)(1 − q2t2)− 2q2(1 − t2)

q(1 − q2t2)

= (1 − q2)(1 + q2t2)
q(1 − q2t2)

,

we will have

u = h2 − j2 − d2 + c2

2(c − j)
= q(1 + t2)(1 − q2)(1 − q2t2)
(1 − q2)(1 − q2t2)(1 + q2t2)

= q(1 + t2)
1 + q2t2

.

From the equality h2 = r2 + (u − j)2, it follows that

r =
√
h2 − (u − j)2 =

√
(1 − q2)2t2

(1 − q2t2)2
−
(
q(1 + t2)
1 + q2t2

− q(1 − t2)
1 − q2t2

)2

=
√
(1 − q2)2t2

(1 − q2t2)2
−
(
q(1 + t2)(1 − q2t2)− q(1 − t2)(1 + q2t2)

1 − q4t4

)2

=
√
(1 − q2)2t2

(1 − q2t2)2
−
(
2qt2(1 − q2)
1 − q4t4

)2
=
√
(1 − q2)2t2(1 + q2t2)2

(1 − q4t4)2
− 4q2t4(1 − q2)2

(1 − q4t4)2

=
√
t2(1 − q2)2(1 − q2t2)2

(1 − q4t4)2
=
√
t2(1 − q2)2

(1 + q2t2)2
= t(1 − q2)

1 + q2t2
.

�
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Theorem 5.3: For all x, y ∈ B2 with a hyperbolic midpoint q ∈ B2\{0} and t =
th(ρB2(x, y)/4),

sB2(x2, y2) =
√

|q|2 + t2

1 + |q|2t2 if |q| < t2,

sB2(x2, y2) = t(1 + |q|)√
(1 + t2)(1 + |q|2t2) ≤

√
|q|2 + t2

1 + |q|2t2 otherwise.

Proof: Suppose without loss of generality that 0<q<1, x2 = u + ri and y2 = x2. From
Lemma 5.2, it follows that

|x2| =
√
u2 + r2 =

√
q2(1 + t2)2

(1 + q2t2)2
+ t2(1 − q2)2

(1 + q2t2)2
=
√
(q2 + t2)(1 + q2t2)

(1 + q2t2)2

=
√

q2 + t2

1 + q2t2
,

|x2 − 1
2
| =

∣∣∣∣u + ri − 1
2

∣∣∣∣ > 1
2

⇔
(
u − 1

2

)2
+ r2 >

1
4

⇔ u2 + r2 > u ⇔

q2(1 + t2)2

(1 + q2t2)2
+ t2(1 − q2)2

(1 + q2t2)2
>

q(1 + t2)
1 + q2t2

⇔

q2(1 + t2)2 + t2(1 − q2)2 = (t2 + q2)(1 + q2t2) > q(1 + t2)(1 + q2t2) ⇔
t2 + q2 > q(1 + t2) ⇔ q(1 − q) < t2(1 − q) ⇔ q < t2

and

(1 − u)2 + r2 =
(
1 − q(1 + t2)

1 + q2t2

)2

+ t2(1 − q2)2

(1 + q2t2)2
= (1 − q)2(1 + t2)(1 + q2t2)

(1 + q2t2)2

= (1 − q)2(1 + t2)
1 + q2t2

⇒

r√
(1 − u)2 + r2

= t(1 − q2)
√
1 + q2t2

(1 − q)(1 + q2t2)
√
1 + t2

= t(1 + q)√
(1 + t2)(1 + q2t2)

.

The result follows now from Theorem 2.6. �

Theorem 5.4 ([17, Proposition 3.1, p. 447]): The hyperbolic midpoint of J[0, b] is [0, b] ∩
J[c, d] for all c, d ∈ S1 such that b ∈ L(c, d) and c, d are non-collinear with the origin.

Theorem 5.5: If hyperbolic segments J[ui, vi] ⊂ B2, i = 1, . . . , n, are of the same hyperbolic
length and have a common hyperbolic midpoint q, all their Euclidean counterparts [ui, vi]
intersect at the same point.
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Figure 4. Hyperbolic circle S1ρ(q, R)with the points j, q, k of Theorem 5.5.

Proof: Choose distinct points u1, v1 ∈ B2 that are non-collinear with the origin. Let q
be their hyperbolic midpoint, R = ρB2(u1, v1) and k = L(0, q) ∩ L(u1, v1). Fix j, h as in
Lemma 2.1. Now, u1, v1 ∈ S1(j, h), J[u1, v1] ⊥ S1(j, h) and u1, v1, j are non-collinear. It fol-
lows from Theorem 5.4 that the hyperbolic midpoint of J[j, k] is [j, k] ∩ J[u1, v1]. Since 0,
j, q are collinear and k ∈ L(0, q), [j, k] ∩ J[u1, v1] = L(0, q) ∩ J[u1, v1] = q. Thus, q is the
hyperbolic midpoint of J[j, k]. It follows that k only depends on q and j, so the intersection
point L(0, q) ∩ L(ui, vi)must be the same for all indexes i, as can be seen in Figure 4. If ui, vi
are collinear with the origin for some index i, then k ∈ [ui, vi] trivially. Thus, the theorem
follows.

�

Corollary 5.6: For all x, y ∈ B2, there is a point

k = L(x, y) ∩ L(x2, y2) ∩ L(x3, y3).

Proof: Follows from Theorem 5.5. �

Theorem 5.7: For all x, y ∈ B2 that are non-collinear with the origin and have a hyperbolic
midpoint q, the distance |x − y| is decreasing with respect to the smaller angle between L(x, y)
and L(0, q).

Proof: Consider a hyperbolic circle S1ρ(q,R), where R = ρB2(x, q), and let S1(j, h) be
the corresponding Euclidean circle. By Lemma 2.1, we see that the points 0, j, q are
collinear. Fix k as in Corollary 5.6 and let u = |j − k|. Denote θ = �(L(x, y), L(0, q)) =
�(L(x, y), L(j, k)) ∈ [0,π/2]. Clearly, the distance u does not depend on the angle θ . It
follows that |x − y| = 2

√
h2 − u2 sin2(θ) is decreasing with respect to θ . �



22 O. RAINIO ANDM. VUORINEN

Corollary 5.8: For all x, y ∈ B2, |x2 − y2| ≤ |x − y| ≤ |x3 − y3|.

Proof: Follows from Theorem 5.7. �

Corollary 5.9: For all x, y ∈ B2,

|x − y| ≤ 2(1 − |q|2)t
1 − |q|2t2 ≤ 2th(ρB2(x, y)/4),

where q is the hyperbolic midpoint of J[x, y], and t = th(ρB2(x, y)/4).

Proof: By fixing h as in Lemma 2.1, we will have

|x3 − y3| = 2h = 2(1 − |q|2)t
1 − |q|2t2 ≤ 2t = 2th(ρB2(x, y)/4),

so the result follows from Corollary 5.8. �

Remark 5.10: The inequality |x − y| ≤ 2th(ρB2(x, y)/4) can be also found in
Ref. [7, (4.25), p. 57].

Theorem 5.11: For all x, y ∈ B2, sB2(x, y) ≥ sB2(x2, y2).

Proof: Let q be the hyperbolic midpoint of J[x, y] and R = ρB2(x, q). If q = 0, sB2(x, y) =
sB2(x2, y2) holds trivially. Thus, choose x, y ∈ B2 so that 0<q<1. Now, either the infimum
infz2∈S1(|x2 − z2| + |z2 − y2|) is given by one point z2 ∈ S1 or two points on S1.

If there is only one point giving the infimum infz2∈S1(|x2 − z2| + |z2 − y2|), it must be
z2 = 1. by Remark 2.7 like in Lemma 2.1, and fix k as in Corollary 5.6. By symmetry, we can
assume that �1KX = μ ∈ [0,π/2]. Note that, if μ = π/2, then x = x2 and y = y2. Now,
it follows from Theorem 4.4 that

sB2(x, y) ≥ |x − y|
|x − 1| + |1 − y| ≥ |x2 − y2|

|x2 − 1| + |1 − y2| = sB2(x2, y2).

Suppose now that there are two possible points z2 ∈ S1 for infz2∈S1(|x2 − z2| + |z2 −
y2|). By symmetry, let Im(x2) > 0 and 0 ≤ arg(x) ≤ arg(x2). Fix z2 so that Im(z2) > 0 and
�OZ2X2 = �Y2Z2O, where o is the origin. ByTheorem2.4, this point z2 gives the infimum
infz2∈S1(|x2 − z2| + |z2 − y2|). Denote yetψ = �Y2X2Z2, which is clearly an obtuse angle.

By Corollary 5.8, we can fix y′ ∈ [x, y] so that |x − y′| = |x2 − y2|. Let z ∈ S1 with
Im(z) < Im(x) so that �Y ′XZ = ψ . Clearly, |x − z| ≤ |x2 − y2|. By Proposition 4.2, it
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follows that

sB2(x, y) ≥ sB2(x, y′) ≥ |x − y′|
|x − z| + |z − y′|

= |x − y′|
|x − z| +√|x − y′|2 + |x − z|2 − 2|x − y′||x − z| cos(ψ)

≥ |x2 − y2|
|x2 − z2| +√|x2 − y2|2 + |x2 − z2|2 − 2|x2 − y2||x2 − z2| cos(ψ)

= |x2 − y2|
|x2 − z2| + |z2 − y2| = sB2(x2, y2).

�

Theorem 5.12: For all x, y ∈ B2,

sB2(x, y) ≤ sB2(x3, y3) = (1 + |q|)t
1 + |q|t2 ,

where q is the hyperbolic midpoint of J[x, y], and t = th(ρB2(x, y)/4).

Proof: Let q be the hyperbolic midpoint of J[x, y]. Fix then R = ρB2(x, q) and j, h, t as in
Lemma 2.1. Now, B2(j, h) = B2ρ(q,R) and t = th(ρB2(x, y)/4). By Corollary 4.7,

sB2(x, y) ≤ sB2(B2ρ(q,R)) = sB2(B2(j, h)) = h
1 − |j| = (1 − |q|2)t

1 − |q|2t2 − |q|(1 − t2)

= (1 − |q|2)t
1 − |q| + |q|t2 − |q|2t2 = (1 − |q|)(1 + |q|)t

(1 − |q|)(1 + |q|t2) = (1 + |q|)t
1 + |q|t2 .

Since |j| = |x3 + y3|/2 and h = |x3 − y3|/2, by Lemma 2.5,

sB2(x3, y3) = |x3 − y3|
2 − |x3 + y3| = h

1 − |j| ,

so the theorem follows. �

According to numerous computer tests, the following result holds.

Conjecture 5.13: For all x, y ∈ B2,

1. sB2(x2, y2) ≥ sB2(x0, y0),

2. sB2(x3, y3) ≤ sB2(x1, y1),

3. sB2(x3, y3) ≤ pB2(x, y),

where the points xi, yi, i = 0, . . . , 3, are as in Definitions 4.1 and 5.1.

Thus, by this conjecture, the hyperbolic midpoint rotation gives sharper estimations for
sB2(x, y) than the Euclidean midpoint rotation or the point pair function.
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6. Hölder continuity

In this section, we show how finding better upper bounds for the triangular ratio met-
ric in the unit disk is useful when studying quasiconformal mappings. The behaviour of
the distance between two points x, y ∈ Bn under a K-quasiconformal homeomorphism
f : Bn → Bn = f (Bn) has been studied earlier in numerous works, for instance, see Ref.
[7, Theorem 16.14, p. 304]. Our next theorem illustrates how finding a good upper limit for
the value of the triangular ratio metric can give new information regarding this question.

Theorem 6.1: If f : B2 → B2 = f (B2) is a K-quasiconformal map, the inequality

|f (x)− f (y)| ≤ 23−1/K
(

sB2(x, y)
1 + sB2(x, y)2

)1/K

holds for all x, y ∈ B2.

Proof: Define a homeomorphismϕK : [0, 1] → [0, 1] as inRef. [7, (9.13), p. 167] forK>0.
By Refs. [7, Theorem 9.32(1), p. 167] and [7, (9.6), p. 158],

ϕK(r) ≤ 41−1/Kr1/K = 41−1/(2K)
( r
2

)1/K
, (10)

where 0 ≤ r ≤ 1 and K ≥ 1. Let f be as above, x, y ∈ B2 and t = th(ρB2(x, y)/4). By
Theorem 2.3, Schwarz lemma (see Ref. [7, Theorem 16.2, p. 300]) and the inequality (10),

sB2(f (x), f (y)) ≤ th
ρB2(f (x), f (y))

2
≤ ϕK

(
th
ρB2(x, y)

2

)
= ϕK

(
2t

1 + t2

)

≤ 41−1/(2K)
(

t
1 + t2

)1/K
≤ 41−1/(2K)

(
sB2(x, y)

1 + sB2(x, y)2

)1/K
.

By Ref. [7, Lemma 11.12, p. 201; Proposition 11.15, p. 202], it follows from the inequality
above that

|f (x)− f (y)| ≤ 2sB2(f (x), f (y)) ≤ 23−1/K
(

sB2(x, y)
1 + sB2(x, y)2

)1/K
,

which proves the theorem. �

Thus, as we see from Theorem 6.1, finding a suitable upper bound for the value of
sB2(x, y) can help us estimating the distance of the points x, y under the K-quasiconformal
mapping f.

Corollary 6.2: If f is as in Theorem 6.1, the inequality

|f (x)− f (y)| ≤ 23−2/K

(√|x − y|2 + 4(1 − |x|)(1 − |y|)|x − y|
|x − y|2 + 2(1 − |x|)(1 − |y|)

)1/K

holds for all x, y ∈ B2.
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Proof: It follows from Theorems 6.1 and 2.3 that

|f (x)− f (y)| ≤ 23−1/K
(

sB2(x, y)
1 + sB2(x, y)2

)1/K
≤ 23−1/K

(
pB2(x, y)

1 + pB2(x, y)2

)1/K

= 23−1/K

(√|x − y|2 + 4(1 − |x|)(1 − |y|)|x − y|
2|x − y|2 + 4(1 − |x|)(1 − |y|)

)1/K

= 23−2/K

(√|x − y|2 + 4(1 − |x|)(1 − |y|)|x − y|
|x − y|2 + 2(1 − |x|)(1 − |y|)

)1/K

.

�

Corollary 6.3: If f is as in Theorem 6.1, the inequality

|f (x)− f (y)| ≤ 23−2/K
(

(2 − |x + y|)|x − y|
2 − 2|x + y| + |x|2 + |y|2

)1/K

holds for all x, y ∈ B2.

Proof: Follows from Theorem 6.1 and Lemma 2.5 and the fact that |x + y|2 + |x − y|2 =
2|x|2 + 2|y|2. �

Corollary 6.4: If f is as in Theorem 6.1, all x, y ∈ B2 fulfil

|f (x)− f (y)| ≤ 23−1/K
(

(1 + |q|)(1 + |q|t2)t
(1 + |q|t2)2 + (1 + |q|)2t2

)1/K

,

where q is the hyperbolic midpoint of J[x, y], and t = th(ρB2(x, y)/4).

Proof: Follows from Theorems 6.1 and 5.12. �

Remark 6.5: Neither of Corollaries 6.3 and 6.2 is better than the other for all points
x, y ∈ B2. For x = 0.3 and y = 0.3i, the limit in Corollary 6.3 is sharper than the one
in Corollary 6.2 and for x = 0.9 and y = 0.9i, the opposite holds. However, according to
numerical tests related to Conjecture 5.13, the result in Corollary 6.4 is always better than
the ones in Corollaries 6.3 and 6.2.

By restricting how the point pair x, y is chosen fromB2, we can find yet better estimates.

Corollary 6.6: If f is as in Theorem 6.1, the inequality

|f (x)− f (y)| ≤ 23−2/K
( |x − y|

1 − r

)1/K

holds for all x, y ∈ B2 such that |x + y|/2 ≤ r.
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Proof: Now,

2 − |x + y|
2 − 2|x + y| + |x|2 + |y|2 ≤ 2 − |x + y|

2 − 2|x + y| + |x + y|2/2 = 1
1 − |x + y|/2 ≤ 1

1 − r
,

so the result follows from Corollary 6.3. �

Corollary 6.7: For all x, y ∈ B2 such that |x + y| ≤ 1,

|f (x)− f (y)| ≤ 23−1/K |x − y|1/K ,

where f is as in Theorem 6.1.

Proof: Follows from Corollary 6.6. �

Remark 6.8: The proof of Theorem 6.1 is based on the Schwarz lemma of quasiregu-
lar mappings [7, Thm 16.2, p. 300] and therefore the results of this section hold also for
quasiregular mappings with minor modifications.
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