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ABSTRACT 

Immunotherapy using immune checkpoint inhibitors (ICIs) induces durable responses in many metastatic 

cancers. Metastatic uveal melanoma (mUM), typically occurring in the liver, is one of the most refractory 

tumours to ICIs and has dismal outcomes. Monosomy 3 (M3), polysomy 8q and BAP1 loss in primary 

uveal melanoma (pUM) are associated with poor prognoses. The presence of tumour infiltrating 

lymphocytes (TILs) within pUM and surrounding mUM - and some evidence of clinical responses to 

adoptive TIL transfer - strongly suggest that UM are indeed immunogenic despite their low mutational 

burden. The mechanisms that suppress TILs in pUM and mUM are unknown. We show that BAP1 loss is 

correlated with upregulation of several genes associated with suppressive immune responses, some of 

which build an immune suppressive axis, including HLA-DR, CD38, and CD74. Further, single-cell 

analysis of pUM by mass cytometry confirmed the expression of these and other markers revealing 

important functions of infiltrating immune cells in UM, most being a regulatory CD8+ T lymphocytes and 

tumour associated macrophages (TAMs). Transcriptomic analysis of hepatic mUM revealed similar 

immune profiles to pUM with BAP1 loss, including the expression of IDO1. At the protein level, we 

observed TAMs and TILs entrapped within peritumoral fibrotic areas surrounding mUM, with increased 

expression of IDO1, PD-L1 and β-catenin (CTNNB1), suggesting tumour-driven immune exclusion and 

hence the immunotherapy resistance. These findings aid the understanding of how the immune response 

is organised in BAP1- mUM, which will further enable functional validation of detected biomarkers and 

the development of focused immunotherapeutic approaches. 
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INTRODUCTION 

Uveal melanoma (UM) is the most common primary intraocular cancer in adults, accounting for 5% of all melanomas 

[1]. Treatment options for primary UM (pUM) include radiotherapy and surgery [2], and usually achieve excellent 

local tumour control. Despite this, about 50% of UM patients develop metastatic disease, mainly in the liver [1]. The 

average survival of patients with metastatic UM (mUM) is ~12 months, as there are currently no proven effective 

treatments [3]. Resection of isolated liver metastases may be attempted in selected cases, otherwise liver-directed 

therapy (e.g. percutaneous perfusion with melphalan) or systemic chemotherapy. Recently, following the striking 

benefits in metastatic skin melanoma, immunotherapy using immune check point inhibitors (ICIs) has been more 

widely used in cancer.   However, in marked contrast to cutaneous melanoma, mUM is almost universally refractory 

to ICIs, mostly against CTLA-4 and PD1/PDL-1, with responses to single agents in the range of 3–8%[3]. 

While UMs have been partly ascribed to a low mutational burden [4,5], evidence of specific TCR gene expression in 

TILs [6], promising responses to adoptive cell therapy using tumour infiltrating lymphocytes (TILs)[7], and 

encouraging results on targeting the melanocyte specific gp100 with the bispecific molecule tebentafusp (IMCgp100 

[8], all suggest a specific immune response and that mutational burden is not the sole reason for the lack of response 

to ICI.  

Monosomy 3 (M3) has long been known to be associated with increased risk of UM metastasis [9-11], and more 

recently it has become apparent that this is primarily due to inactivating mutations of the BAP1 gene, which has been 

reported to be a stronger prognosticator than M3 [12, 13]. The Cancer Genome Atlas (TCGA) study of 80 pUM 

demonstrated that patients with pUM at high metastatic risk, (i.e. with UM characterized by M3 and loss of function 

of the tumour suppressor gene BAP1 (Chr 3p21.1), could be further stratified, according to the presence of CD8+ T-

cell immune infiltrates, and an altered transcriptional immune profile [4]. The latter included elevated levels of HLA-

I molecules, which leads to Natural Killer (NK) cell suppression [14], TAM markers and expression of immune 

checkpoint regulators (ICRs), such as PD-L1, indoleamine 2,3-dioxygenase (IDO)-1 and T-cell Ig and ITIM domain 

(TIGIT) [4, 15].  

Interestingly, previous work showed that loss of BAP1 expression in turn affects the expression of genes that impact 

the immune response [16]. In this study, a comprehensive immune profiling of the 80 pUM from the TCGA-UM 
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study revealed that several immune-suppressive genes are significantly upregulated following BAP1 loss. We provide 

a novel and comprehensive understanding of UM immune evasion by profiling primary and metastatic UM at the 

transcriptomic and protein level using cutting-edge approaches, including mass-cytometry, NanoString and digital 

spatial profiling of human patient tissues.  Our findings suggest that UM cells, particularly those of BAP1 negative 

(BAP1-) UM, shape the immune profile at both primary and metastatic sites, harnessing the expression of particular 

pathways and molecules to drive regulatory functions of myeloid cells and lymphocytes, and thus 

immunosuppression and immunotherapy resistance in advanced UM. These findings provide new insight for the 

functional validation of detected biomarkers for the further development of novel adjuvant immunotherapeutic 

approaches. 

 

MATERIALS AND METHODS 

 

Human subjects 

This work was underpinned by the University of Liverpool (UoL) Ocular Oncology Biobank (OOB) and the 

Liverpool Bioinnovation Hub biobank. Project specific approvals for work with pUM and mUM samples were 

obtained (REC-18/LO/1027). Four fresh enucleated pUM were included in this study for the CyTOF analyses.  

TCGA analysis 

mRNA expression and clinical data of The Cancer Genome Atlas (TCGA) GDC TCGA Ocular Melanomas dataset 

(UVM) were downloaded from the Xena Functional Genomics Explorer of University of California Santa Cruz 

(https://xenabrowser.net/heatmap) [17]. To provide understanding of the biological pathways involved in pUM 

pathogenesis via the expression of different immune genes, the nCounter Pan Cancer Immune Profiling gene set of 

730 genes (NanoString Technologies, Seattle, WA, USA) was applied in the UCSC Cancer Genomics Browser to 

analyse the enrichment of immune genes sorted by BAP1 mRNA expression or Chromosome 3 copy number 

variations. Generated data were extracted in comma separated values (CVS) format and analysed in GraphPad Prism 

6 (GraphPad Software, Inc., San Diego, CA, USA) for correlation studies. Supervised clustering of immune genes of 

the TCGA RNA-seq data set was performed among those with significant Spearman’s correlation to BAP1 expression 
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or chromosome 3 copy number variation and sorted from the lowest rank (negative correlation) to the highest rank 

(positive correlation). The list of sorted genes was then uploaded in Xena Browser for generation of heatmaps. Each 

of these genes was individually analysed as a prognosticator marker in Kaplan–Meier curves at the Xena Browser 

along the TCGA-UM cohort. Those genes predicting significant survival differences (p<0.05) were selected for 

further immune network analysis using the nCounter immune category list (NanoString technologies) complemented 

by a custom-built Leukocyte functional immune response network collated by literature review (supplementary 

material, Table S1). Network plots were generated using the NodeXL-basic add-on to Excel. In brief, Immune genes 

were assigned to different immune categories in separated columns. In our analysis, we also considered the low- and 

high-variance state of these genes along the TCGA-UM cohort. This, in part, helped to define our hypothesis that the 

degree of variation in the expression of the genes associated with a particular network is indicative of the plasticity 

of that network [18]. Therefore, high variance is associated with increased plasticity (higher thickness of network 

lines) and low variance with diminished plasticity (lower thickness of network lines) in response to BAP1 expression 

changes. We calculated the expression variance (σ2) of genes across the TCGA pUM cohort to predict how BAP1 

loss impacts upon the expression of a particular gene by applying the following formula σ2=Σ(X-µ)2/N, where X 

represents the RNA-seq expression value of a particular gene, µ is the mean of the entire RNA expression for this 

particular gene in the cohort and N is the distribution number (TCGA-UM, N=80). Therefore, the higher the effect 

of BAP1 on the gene expression, the higher the σ2 of this particular gene in the cohort. In the network analysis, the 

highest variance value was limited to 5 units assuming CCL24 gene as reference for the highest variance (σ2=35.7). 

Sphere size represents the number of genes assigned to a given immune category (supplementary material, Table S2 

and S3). Box and whiskers analysis of specific genes according with different BAP1 expression levels was performed. 

RNA levels of BAP1 were defined as High (n=27), Mid (n=26) and Low (n=27) according with a Kaplan–Meier 

survival analysis of three groups in the TCGA-UM cohort generated in Xena Browser for BAP1 gene expression (P-

value = 0.004843 and Log-rank test statistics = 10.66). 

Immunohistochemistry 

FFPE pUM and mUM samples were sectioned at 4 µm thickness and underwent antigen retrieval using the Dako 

pretreatment module (Agilent Technologies UK Ltd, Stockport, MA, UK); slides were then incubated in a high-pH 
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bath containing Tris/EDTA buffer pH 9.0 (Dako EnVision™ FLEX, Agilent) at 96 °C for 20 min. IHC was performed 

using a Dako Autostainer PLUS machine, using the Dako Envision™ FLEX Kit (Agilent) according to the 

manufacturer's instructions. Slides were incubated with the following antibodies for 30 min: BAP1 (Cat. no. sc-

28383/C-4, dilution 1:200, Santa Cruz Biotechnology, Dallas, TX, USA), CD3 (Cat. no. IR503/polyclonal, ready to 

use, Dako Cytomation, CA, USA), CD4 (Cat. no. NCL-L-CD4/368; dilution 1:20, Leica Biosystems, Lincolnshire, 

IL, USA), CD8 (Cat. no. M7103/ C8/144B, dilution 1:200, Dako), CD163 (NCL-L-CD163/10D6, dilution 1:400, 

Leica Biosystems) and CD38 (NCL-L-CD38-290/SPC32, dilution 1:100, Leica Biosystems).  

The sections were counterstained with haematoxylin. Additional sections were treated with isotype controls at the 

same concentration as the primary antibodies. 

Mass cytometry antibodies and reagents 

All metal-chelated optimized antibodies and reagents were purchased from Fluidigm (San Francisco, CA, USA). Full 

information for antibodies and reagents used are provided in supplementary material, Table S4. The Maxpar Human 

Immune Monitoring Panel Kit was used as reference antibody panel to immune profile primary Uveal Melanoma 

tumours, which includes the immune markers recommended by the Human ImmunoPhenotyping Consortium (HIPC) 

[19], with some modifications. The antibodies used cover the phenotype and functions of different subpanels of B 

cells, T cells, monocytes, dendritic cells, and natural killer cells. The MaxPar Panel Designer browser (Fluidigm) was 

used to predict and avoid metal spillover among tagged metals of the following additional markers included in the 

customized panel: CD74, LAG-3, CD56, CD16, CTLA-4, CD11b, CD62L. The following markers were removed 

from the panel design in order to avoid spillover: CD194, TCRγδ, CD185, CD45RO, CD24, CD197, CD20. Final 

spillover results were considered low between channels and this is shown in supplementary material, Figure S1A, 

top. The final wheel-heatmap of customized antibody panel shows the function that determines the best antibody-tag 

combinations to minimize background among channels, which ultimately contains targets with low tolerance of signal 

overlap (yellow-green). 

Mass cytometry of pUM. 
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Four fresh histopathologically-phenotyped BAP1- pUM were manually minced prior to enzymatic digestion using 

collagenase A (Cat no. C9722, 2 mg/ml, Sigma Aldrich, St. Louis, Missouri, USA) and 40 units/ml DNase-I (Cat. 

no. 79254, Qiagen, MD, USA) in DMEM and incubated with agitation at 37 °C for 60 min in a thermal mixer (Thermo 

fisher, Waltham, MA, USA). Following incubation, digests were passed through a 70 µm filter to remove residual 

particulates. Cells were then pelleted (centrifugation at 1500 rpm for 5 min), washed in PBS, and viable cells were 

quantified using a Trypan Blue exclusion viability dye. Live cells were then washed twice with ice cold cell staining 

buffer (ic-CSB, Fluidigm) and total cell concentration determined using a Neubauer chamber. Up to 3 staining 

reactions of a maximum of 2.0 x106 cells per sample were analysed. All samples were then incubated with 50 µl of 

2% mouse serum in PBS with human TruStain FcX solution (Biolegend, San Diego, CA, USA) at 4 °C for 15 min. 

Samples were then processed for surface and intracellular staining with the panel described in supplementary 

material, Table S4 using the following protocol: 50 µl of a 2X surface antibody solution was made in ic-CSB (final 

antibody dilution 1:100) and left on ice for 30 mins. Cells were washed and fixed in 5 mM BS3 (Sigma) for 30 min 

followed by fixation using 1x Fix-I buffer according to the manufacturer’s protocol (Fluidigm), and permeabilized 

in ice cold methanol for 10 min. Cells were washed and incubated with internal antibody cocktail (final dilution 

1:100) for 30 min in ice. Then, cells were washed and resuspended in intercalator-Ir at 1:8000, and processed to be 

analysed using a Helios mass cytometer (Fluidigm).  

Analysis of human tumours mass cytometry datasets 

Data from mass cytometry were normalised to the EQ 4-element bead signal using normalization software version 2 

(Fluidigm). Live Ir+CD45+ cells were manually gated as previously described [20] (supplementary material, Figure 

S1A, bottom), and FCS files were downloaded for concatenated analysis using Cytosplore V.2.2.1 for further 

downstream analysis by Hierarchical Stochastic Neighbour Embedding (HSNE) using a coefficient of 4 [21], or 

individually processed for visualization of t-distributed stochastic neighbour embedding (viSNE) analysis in 

Cytobank. For accurate clustering and frequency calculations, a cut-off of 1000 events were considered for the final 

gate. Eventually, Irhi CD45+ tumour infiltrated cells are detected among singlets and exhibit specific tumour 

associated macrophages markers, but not lymphocytic markers, excluding the possibility of doublets. These cells may 
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often carry tumour derived DNA and melanin content given to phagocytosed tumour cells and are often observed in 

primary uveal melanoma tumours, classified as melanophages [22]. 

mRNA expression analysis using NanoString technology 

For RNA immune gene expression analysis, 4 pUM, 6 mUM and one normal liver (NL) formalin fixed paraffin 

embedded (FFPE) samples were used. Only the tumour areas were selected for RNA extraction, or the entire normal 

liver tissue. The RNeasy FFPE Kit (Qiagen, MD, USA) was used for tissue dissociation, RNA extraction and 

purification according to manufactures instructions (Qiagen) as described in supplementary material, Supplementary 

materials and methods.  

The NanoString nSolver 2.6 software was used for normalization of  expression counts using housekeeping genes 

following the manufacturer’s recommendations [23]. Data are displayed in expression count units of individual gene 

per patient compared with normal liver tissue, and internally normalized within each immune category (e.g. CTLs 

suppression, M2 macrophages regulation and Immune checkpoint regulators). A full range of immune categories is 

displayed in supplementary material, Table S1. 

Digital spatial profiling of mUM tissues 

Digital spatial profiling analysis of one BAP1- mUM case was performed by NanoString’s DSP technology platform 

to enable digital characterization of protein distributed on the surface of FFPE tissue sections using the Human 

Immune Oncology panel (NanoString Technologies). In brief, 4-6 µm thick FFPE mUM sections were stained for 

lymphocytes (CD3, red), macrophages (CD68, magenta), S100B (green) and DNA (Blue) in order to detect the 

regions of interest (ROIs). The following workflow was used: de-paraffinization of FFPE unstained sections, antigen 

retrieval, antibody staining, ROI selection, DSP technology processing, nCounter analysis system. Data analysis and 

quality control were processed and normalized using positive and negative anti-mouse and anti-rabbit hybridization 

control antibodies. S6 Ribosomal Protein and Histone 3 were used as reference proteins. Area normalization was 

applied between different ROI sizes varying from 100–650 μm diameter. Results are displayed as absolute expression 

counts normalized with negative IgG controls. 

Quantification and statistical analysis 

This article is protected by copyright. All rights reserved.



  

All data were analysed using GraphPad Prism 6.0, and are presented as the means ± SD. Significant differences in 

the immune gene expression along BAP1lo, BAP1mid and BAP1hi groups were estimated using one-way analysis of 

variance followed by Bonferroni’s multiple comparisons test. Survival analysis was performed in Xena Browser 

using Kaplan–Meier assay and was compared using the log-rank test. The correlation between different mRNA 

expression and overall survival (OS) of TCGA-UM patients was evaluated by nonparametric Spearman’s correlation, 

two-tailed, where *0.01<p<0.05, **0.001<p<0.01; ***0.0001<p<0.001 and ****p <0.0001 were considered to 

indicate significant differences. 

RESULTS 

BAP1 loss significantly correlates with the modulation of immune genes and patient survival in UM. 

In the previous TCGA-UM analysis, Robertson et al. reported that the M3 phenotype in UM is associated with the 

upregulation of 30 immune genes [4,24], and we therefore first sought to investigate whether this association could 

be the result ofBAP1 loss. We found that an absence or reduced expression of BAP1 mRNA (cut-off 19.54 for BAP1 

expression, and 2500 d as the default end point) also significantly correlated with a decreased survival, similar to M3 

status (cut-off -0.3649 for Chr3 copy number, and 2500 d as the default end point) (Figure 1A). Using Spearman’s 

correlation analysis, we demonstrate that most of the investigated immune genes have a better expression correlation 

with BAP1 mRNA loss than with M3 (Figure 1B). In addition, only about 50% of these genes are significantly 

associated with patient survival, indicated by blue squares representative of Kaplan–Meier statistical test results 

(Figure 1B, supplementary material, Table S5).  

We further expanded this analysis by interrogating the TCGA-UM RNA-seq data with a panel of 730 immune genes 

defined by the nCounter Pan Cancer immune panel (NanoString Technologies). One hundred and forty-two immune 

genes exclusively correlated with BAP1 expression, but not with chromosome 3 copy number variation 

(supplementary material, Table S6); the expression of 117 genes negatively- and another 25 genes positively-

correlated with BAP1 expression (r scores varying from –0.53 to 0.46). Amongst 181 immune genes that significantly 

correlated with both BAP1 expression and chromosome 3 copy number variation, 151 genes were negatively 

correlated, and 30 genes were positively correlated, all with higher correlation score to BAP1 expression than 

chromosome 3 (r scores varying from –0.60 to 0.67) (supplementary material, Table S7). Among BAP1 correlated 
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genes (n=323), 168 genes that were negatively correlated with BAP1 expression were significantly associated with 

decreased survival, whilst 15 genes positively correlated with BAP1 expression were significantly associated with 

improved survival (Figure 1C, supplementary material, Table S8).  

Independent of BAP1 expression, the M3-UM genotype exclusively correlates with 43 immune genes and with 82 

immune genes that also correlates with BAP1 in lower degree (supplementary material, Table S9,10), from which 48 

are upregulated immune genes and 17 are downregulated immune genes, all significantly associated with patient 

survival (Figure 1C, supplementary material, Table S11). Supervised clustering analysis based on BAP1 mRNA 

expression is shown, including the p value profile of each gene related to survival outcome (Figure 1E). These 

findings suggest that loss of BAP1 expression is strongly associated with immune modulation of the 

microenvironment in pUM.  

BAP1 loss correlates with immunosuppressive networks in pUM. 

We next analysed the group of immune genes upregulated following BAP1 loss, to predict the likely effects on the 

microenvironment. A scatter plot shows the gene expression and variance of 168 upregulated immune genes 

following BAP1 loss along the TCGA UM cohort, highlighting important immune genes involved in immune 

suppressive pathways, including LGALS3, CD74, CD38, PDCD1, IDO1 and HLA-DR (Figure 2A). Differential 

expression analysis revealed that most of these immune genes are significantly upregulated in the TCGA-UM cohort 

following BAP1 loss, as shown in the second quadrant of the volcano plot (Figure 2B, supplementary material, Table 

S8). PDCD1 and IDO1 have high significance with -Log p values higher than 1.5 and Log2FC lower than 0.2 and 

for that reason are not visible in the volcano plot.   

Importantly, all BAP1 significantly correlated immune genes simultaneously integrate different subcategories of the 

immune response, which were used to build an interactive transcriptomic network for visualization of the 

predominant immune profile driven by pUM with BAP1 loss. Therefore, we performed a gene network analysis using 

two classification systems: a general immune response network based on major immune categories, and an amplified 

leukocyte functional immune network. In this analysis, the variance of gene expression (σ2) is represented by the 

thickness of the network lines, indicating the plasticity of the network towards BAP1 loss. 
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This analysis demonstrated that most of modulated immune genes correlate with leukocyte functions, and some of 

them with chemokines, interleukins and cytokines expression, B-cell functions, TLR and TNF superfamilies, and 

antigen presentation processes (Figure 2C). Within the leukocyte network, a dominance of immune suppressive 

pathways was observed, represented by red lines predominantly with higher expression variance (higher thickness), 

including Treg functions, Th1 suppression, Th2 activation, T cell tolerance responses, homing of T regs, M2 

macrophage functions and ICRs (Figure 2C). Immune networks related to effective anti-tumour immune responses 

are represented by green lines, predominantly with lower expression variance (lower thickness). 

Importantly, some of the few immune genes that are downregulated following BAP1 loss (MICA, TNFSF13 and 

CD44) are important for the activation of anti-tumour immune responses [25-27], as shown in box and whisker plots 

together with other immunosuppressive and exhaustion related genes (i.e., HLA-DOB, CD74, CD38, LGALS3, IDO1, 

TIGIT, LAG3, and CD96) (Figure 2D). Although HLA-DR has been classified as an immune response activation 

gene in disease given its importance in peptide presentation to CD4+ T cells [28], many regulatory functions has been 

attributed to HLA-DR expression in the context of cancer [29]. For that reason, in the network analysis HLA-DR was 

classified as immunosuppressive, although the generic immune activation classification was kept in Figure 2D. 

Immune genes that have significant correlation with M3 status but do not correlate with BAP1 expression are 

probably regulated by different mechanisms that exclude BAP1 involvement. Among these genes, those related with 

immune response activation are downregulated, including IL12RB12, TLR1 and TLR5, and those involved with 

suppression of immune response are upregulated, including FN1, CD70 and CD73 (NTFE) (supplementary material, 

Figure S2A,B). All together, these findings show how different immune genes may integrate similar immune 

suppressive categories in high risk BAP1-pUM, suggesting an importance in regulating the immune profile of mUM. 

Transcriptomic analysis of mUM reveals a similar gene expression profile to BAP1-pUM. 

In order to compare the transcriptomic immune profiles of the primary and metastatic sites of UM, we performed a 

NanoString assay interrogating the expression profile of the nCounter Pan Cancer Immune Profiling panel using 4 

pUM and 6 mUM, all lacking nuclear BAP1 expression. Unsupervised cluster analysis was performed revealing a 

high correlation between most pUM and mUM cases, with the exception of one mUM (mUM-06). No significant 

correlation was observed between a normal liver control and tumour tissues (Figure 3A). 
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Spearman’s correlation test of the total gene expression counts revealed significant similarity between the gene 

expression of both primary and metastatic groups (r = 0.92, p < 0.0001) for BAP1 correlated immune genes 

(supplementary material, Table S8) (Figure 3B, left). A similar correlation score was also observed for one patient 

with matched primary and metastatic samples (Figure 3B, middle). Importantly, because the expression of groups of 

samples of the same cancer, generated using the same methodology and normalisation are often highly correlative, 

we also evaluated the correlation status between our NanoString dataset (normalized counts) with different samples 

from the TCGA-UM cohort with the same genes (normalized Log2(fpkm-uq+1)). We observed that the normalized 

RNA-seqfrom the TCGA-UM cohort is still highly correlative with the NanoString data, for both the primary and 

metastatic tumours (Figure 3B, right). 

Strikingly, when comparing the gene expression of 6 mUM patients with that of one human disease-free liver normal 

biopsy (normal liver, NL), most mUM patients displayed upregulation of specific immune genes related to 

suppression of cytolytic T cells (CTLs) (Figure 3C), including HLA-DRA, LGALS3, and CD38 partially [30-38], 

ICRs such as TIM-3 (HAVCR2), HMGB1, IDO1, LAG3, CD73 (NT5E) [39-44], and TAM functional markers, such 

as ANXA1, CD74, CD9, INFAR2, MIF, PLA2G6 and CD163 [36,45,46]. In addition, transcript levels of NOS2, a 

predominant M1 macrophage marker [47], was similar to the levels found in normal liver without tumours. We also 

found high expression levels of CD74 and the macrophage migration inhibitory factor (MIF) across mUM tissues 

compared with normal liver. RNA levels of CD38 were increased compared with the levels found in normal liver. At 

the protein level, we found that CD38 is also positively expressed among regions of T cell infiltrates in one BAP1- 

mUM case, as evidenced by IHC staining (supplementary material, Figure S3H). B cells are nearly absent (low 

numbers of CD20+ cells) in mUM, and cytolytic effector cells seem to be at low activation states given a paucity of 

TIA1+ cells amongst the TILs. 

These findings suggest that the immune profile of BAP1- pUM are similar to mUM at the transcriptome level, 

suggesting an important role of CTL suppressive molecules, including HLA-DRA and CD38, and TAM-related 

pathways, where CD74/MIF axis seems to play an important role driving the M2-like phenotype and potential local 

tolerogenic responses. Therefore, some of these markers were further evaluated at the protein level of BAP1-pUM. 
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High-resolution single-cell analysis reveals regulatory T cell phenotype and a mixed macrophage phenotype 

within pUM with BAP1 loss. 

In order to phenotypically and functionally characterize pUM at the protein level, we performed for a high-resolution 

single-cell analysis using mass cytometry in five pUM, of which four with BAP1 loss and one with normal BAP1 

expression. Among infiltrating CD45+ cells, we observed a predominant cluster of macrophages, T lymphocytes 

(CD8+ and CD4+ T cells), B cells and DCs, as evidenced in HSNE plots of all samples clustered together (Figure 

4A,B). The frequency of each cell subtype was calculated for samples. The breakdown of the CD45+ infiltrating 

immune cells in BAP1- samples was as follows: CD4+ T cells (12%), CD8+ T cells (37%), DCs (10%), macrophages 

(30%) and B cells (11%) (Figure 4C, left). For one BAP1+ case, the breakdown of the CD45+ infiltrating immune 

cells was as follows: CD4+ T cells (14%), CD8+ T cells (59%), DCs (3%), macrophages (22%) and B cells (2%) 

(Figure 4C, right). 

High dimensional HSNE single-cell frequency clustering analysis and t-SNE analysis (BAP1- cases) were performed 

among CD45+ cells for pUM cases in order to detect major clusters among the different cell subtypes (Figure 4D,E 

and supplementary material, Figure S1B,C,D). Across the T lymphocyte compartment, we observed high expression 

levels of CD28 receptor on both CD4+ (Cluster A) and CD8+ T cells (Clusters B and C), with low expression of 

CTLA-4 and LAG-3 checkpoint inhibitors (Figure 4D,E, and supplementary material, Figure S1D). Two out of four 

patients have low CD28 expression in CD8+ T cell clusters (supplementary material, Figure S1D), but no conclusions 

can be made given the low number of investigated tumours. However, the frequency of CD28+CD8+ cells is still 

lower than CD28+CD4 T cells in all 4 cases examined. CD4+ T cells mostly express CD25 and CD127 markers 

(cluster A, 5.1%) suggesting that they have a T regulatory phenotype [48-52]. In addition, CD8+ T cells were positive 

for the proliferation marker, Ki67 (clusters B-D), which had low expression among CD4+ T cells (Cluster A) (Figure 

4D). High levels of Ki67 partially explains that the greater frequency of CD8+ T cells over to CD4+ T cells may be 

attributed to higher proliferation levels. Cluster C (CD38+HLA-DR+CD8+ T cells) is the most frequent CD8+ T cell 

cluster among BAP1- tumours (13.5%) and also showed increased expression of CD74 (Figure 4D,E).  

In accordance with this suppressive phenotype, most CD8+CD28+ T cells (cluster B-D) were HLA-DR+, a phenotype 

typical of regulatory CD8+ T cells [28]. Importantly, CD8+ T cells clusters express high levels of CD38, recently 
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reported to drive regulatory functions on CD8+ T cells [38,53]. Although B cells are not predominant in pUM, they 

could be divided into three subclusters: CD25+CD11b+ (cluster H), CD25lowCD11b+ (cluster I) and CD25-CD11b-

CD74+ B cells (cluster J) (Figure 4D,E). Interestingly, cluster H showed increased expression of the LAG-3 immune 

checkpoint regulator. In the macrophages and dendritic cells compartment (MOs and DCs), we found a mixed 

phenotype of M2-like CD68+CD163+CD74+ macrophages (cluster E, 7.7%%), M1-like CD68+CD163-CD74-

CD11c+CD11b+ macrophages (cluster F, 9.7%), and myeloid dendritic cells CD68-CD11b+CD11c+ (cluster G, 7.8%).  

No significant differences were observed in the subclusters analysed in the pUM BAP1+ sample for the different 

immune cell subtypes compared with the BAP1- cases, unless for the CD8+ T cell compartment, which showed 

reduced levels of regulatory CD38+HLA-DRhighCD8+ T cell cluster (Cluster N,19.9%) compared with BAP1- 

tumours, and positive levels of the functional clusters CD38-HLA-DRlowKi67+CD8+ T cells (Cluster K 30.8%) and 

CD38-HLA-DRlowKi67-CD8+ T cells (Cluster M, 4.9%) and exhausted CTLA-4+HLA-DRlowCD8+ T cells (Cluster L, 

3.4%) (supplementary material, Figure S1B,C).  

Taken together, we describe the regulatory nature of TILs in UM with BAP loss, particularly CD4+ and CD8+ T cells, 

and a mixed macrophage phenotype where M2-like macrophages express higher levels of CD74. 

Immune profile of mUM in regions of interaction between macrophages and lymphocytes. 

A digital spatial profiling assay (DSP, NanoString) revealed the protein expression profile of 31 immune markers in 

different regions of interest where macrophages (CD68) and lymphocytes (CD3) localized simultaneously in two 

mUM cases with BAP1 loss. Co-localization of macrophages and lymphocytes occurred both within and at the edge 

of the tumours (Figure 5A). Amongst the cancer related markers, we observed the expression of β2M, STAT3, 

STING, and β-catenin (Figure 5B). The expression of β2M suggests that tumour antigens are presented via HLA-A 

in these tumour areas, and thus, supporting the efficacy of ICI [54]. Total levels of STAT3 were elevated, but not in 

its activated phosphorylated form (pY705), which regulates gene transcription for modulation of immunosuppressive 

factors [55]. The expression of STING suggests a macrophage-mediated hepatic inflammation and fibrogenic process 

[56]. 
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Importantly, high levels of β-catenin were detected in both mUM patients, which is related with tumour induced 

immune exclusion mechanisms [57-59], suggesting an accessory mechanism by which tumours modulate infiltration 

and proliferation of lymphocytes in the metastatic site.  

Among the immune phenotyping markers, we observed discrete, but positive levels of CD163, high levels of CD68, 

HLA-DR and CD11c, all macrophage and dendritic cell markers, and intermediate levels of the immune checkpoint 

PD-L1 (Figure 5B). The neutrophil marker CD66b was not detected in the selected ROIs, suggesting that neutrophils 

are not involved at least in the cross talk between macrophages and T cells in these particular BAP1- mUM cases. 

Lymphoid markers CD8A and CD4 were also found to be highly expressed. CD56 levels are relatively low compared 

with negative controls, suggesting absence of NK cells in the selected regions. However, T regulatory cells seem to 

be absent since intracellular levels of Foxp3 were not detected among these patients using this technique.  

In addition, low positive levels of Granzyme B were detected, together with high expression of B7-H3, a checkpoint 

regulator of lymphocyte functions [60]. We also observed the expression of IDO-1, TIGIT and VISTA (Figure 5B).  

IDO-1 is known to induce adaptive resistance to anti-PD1 and anti-CTLA4 immunotherapies [61,62]. In addition, 

IDO and TIGIT were recently described to be expressed in pUM-M3 with corresponding mUM tissues [63].  

Considered altogether, these findings suggest alternative mechanisms of T cell exhaustion other than PD-1 and 

CTLA-4 engagement, as well as the involvement of mechanisms for immune exclusion that may undertake an 

important role to support tumour immune evasion and consequently, immunotherapy failure. 

 

DISCUSSION 

In this multiparametric immunophenotyping work in UM, we profiled the immune response of the 80 patients of the 

TCGA-UM study, highlighting the involvement of BAP1 loss in the coordination of gene expression of several 

immune markers. Selected biomarkers were further investigated in a smaller number of primary and metastatic BAP1- 

UM, at both transcriptome and protein levels using cutting-edge techniques. Recently, our group observed that 

different patterns of nuclear BAP1 expression in pUM provide insights into prognostic significance of this tumour 

[64]. Among UM with a M3 status, the cumulative survival of patients with UM expressing nuclear BAP1 is 
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significantly greater compared with those UM patients whose tumours are M3 with nuclear BAP1 loss. These findings 

and previous reports associating BAP1 loss to a wide spectrum of cancers [65], underpins the molecular mechanisms 

behind the adverse prognostic effects of M3, supporting the importance of analysing immune gene expression from 

the aspect of BAP1loss in UM.  

The genetic diversity of UM was recently described, including copy number variations (CNV), somatic mutations 

and BAP1 alterations [63]. However, the diversity of immune gene expression is described by the tumour stroma (i.e. 

the features of the reactive cells in the tumour microenvironment), which shape accordantly with the tumour 

phenotype (e.g. BAP1 loss). As consequence of BAP1 loss in UM, tumour cells could therefore unleash metabolic 

mechanisms to secret different factors that would induce the regulatory phenotype of T cells and macrophages in the 

tumour microenvironment (TME) to a more tolerogenic profile. The positive expression of MIF observed at the 

transcriptomic level in mUM is in accordance with previous reports showing that UM cells can secrete MIF as a 

mechanism of immune escape [66]. The main receptor of MIF in different immune cells is CD74 [36,67]. In addition, 

MIF was recently reported to induce M2 polarization of TAMs leading to immune suppression on several solid 

cancers [34,36,66,68-72], and to downregulate the CTL responses [34], which may occur via its interaction with 

CD74 receptor expressed on CD8+ T cells in UM, as observed for cluster C. Since CD74 expression was not observed 

in the CD8+ T cell clusters of one BAP1+ pUM, we hypothesize that tumours with reduced expression of MIF or its 

receptor CD74 may contribute to increase the frequency of more effective CD8+ T cells in the TME of UM. 

Therefore, modulation of T lymphocytes and macrophages towards an immunosuppressive phenotype could be 

explained by the expression of CD74 on these cells, which can be affected by suppressive factors derived from tumour 

cells, including MIF. CD74, which was highly expressed at the transcriptomic level in pUM, was also found at the 

protein level across the regulatory CD8+ T cell cluster and CD163+ M2-like macrophage cluster. CD74 is a chaperone 

involved in the trafficking of HLA-DR molecules to the surface of immune cells, and while it remains expressed on 

the surface of the cells, it may bind to MIF secreted by tumour cells in the TME [46,67,73].  

The pharmacological blockade of MIF/CD74 interaction restores the TME immunogenic profile, as well as an 

effective anti-tumour immune response against metastatic melanoma and gliomas [36,46]. The CD74 monoclonal 
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blocking antibody milatuzumab is currently approved by the Food and Drug Administration (FDA) in the United 

States for the treatment of multiple myeloma, non-Hodgkin lymphomas, and other CD74+ cancers [74,75].  

Changes in BAP1 expression has also been associated with immune transformation in mesothelioma, and became a 

predictive tool for immunotherapy of peritoneal mesothelioma [76,77]. The impaired ability of thymic development 

and the proliferative responses of T lymphocytes in the context of BAP1 inhibition is strong evidence that loss of 

BAP1 function is associated with immune suppression and systemic myeloid transformation [16,78]. 

In this study, we also observed that increased transcriptome levels of CD38, HLA-DRA, IDO1 and LAG-3 are 

significantly correlated with BAP1 loss. These immune biomarkers are of extreme importance because they have 

been associated with different immune suppressive pathways that suggests mechanistic insights for immune 

suppression and immunotherapy resistance using ICIs [30,36-38,41]. In the protein single-cell level, we show the 

functional state of UM infiltrating CD8+ T cells, which co-express high levels of CD38, HLA-DR and CD28. The 

co-expression of HLA-DR/CD28 in CD8+ T cell suggest that these lymphocytes are distinct from cytolytic effector 

T cells [30], and can be classified as regulatory CD8+ T cells, with similar functions to classical CD4+Foxp3+ cells 

[28].  In addition, higher levels of CD38 demarcates regulatory and memory status to CD8+ T cells in the context of 

IFN-γ mediated immunosuppression, and was recently addressed to drive mechanisms of tumour mediated immune 

escape to immunotherapies using PD1/PD-L1 blockade [37,38]. Indeed, IFN-γ is upregulated in the context of BAP1 

loss and widely associated with several immune suppressive network categories, which is in accordance with recent 

reports showing the immune suppressive roles of IFN-γ [79].Therefore, targeting CD38 in UM may be considered a 

suitable strategy to improve the efficacy of immunotherapy using ICI in metastatic UM. A recent study showed that 

targeting CD38 using isatuximab can preferentially block immunosuppressive T-regulatory lymphocytes and, 

therefore, restore immune effector function against multiple myeloma [53].  

The low expression of ICRs LAG-3 and CTLA-4 among the majority of T cell clusters suggest that these lymphocytes 

may not be exhausted, but exist in a lower activation state in pUM [80-83]. Increased transcriptome levels of LAG-

3 in the TCGA-UM study could be linked with LAG-3 expression among CD25+ B cell clusters as evidenced by 

mass-cytometry, suggesting a memory and natural regulatory phenotype for these cells [84,85]. Moreover, higher 

expression of IDO1 in both pUM and mUM suggests this molecule as an important adjuvant target for immunotherapy 
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using ICIs, since IDO1 blockade has been shown to synergize the therapeutic effector of both CTLA-4 and PD1/PD-

L1 inhibitors [61]. 

Our findings in this report also provide the evidence that BAP1- pUM could shape an immune response similar in 

mUM tissues, since BAP1-loss-correlated immune genes are similarly expressed in mUM, as observed using the 

NanoString approach. Furthermore, the DSP approach revealed that additional ICIs resistant mechanisms not 

necessarily related to BAP1 changes may also be important in mUM induced exclusion of immune cells, such as the 

wnt/β-catenin axis [58,59]. A recent study showed that hepatocellular carcinoma patients displaying an altered Wnt/β-

catenin pathway were refractory to immune-checkpoint blockade [86], which is aligned with evidences that 

melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity [87]. 

It is important to highlight that a weakness of this study is the low number of analysed BAP1- UM samples for CyTOF 

studies. The reason behind that is the scarcity of the type of fresh tumour sample, not only because this type of tumour 

is very rare, but also because the tissues must be sufficiently large to provide significant amounts of immune 

infiltrated cells for further downstream analysis, and thus, reducing the sample size of this study.  Despite this, we 

could not only reproduce and confirm previous data published regarding the higher frequency of infiltrated CD8+ T 

cells over CD4+ T at the transcriptomic and protein levels [4,15], but also detect the expression of specific immune 

markers initially detected in the transcriptome analysis of the larger TCGA-UM cohort (n=80), and also observed in 

mUM tissues, expanding the impact of our pUM mass cytometry findings. 

The present work shows an improved overview of the immune profile of pUM and mUM at both transcriptome and 

protein levels and suggests that immune modulation in UM may be driven by loss of BAP1 expression. 

Immunosuppressive networks found in BAP1- tumours may not only influence the quality and quantity of local anti-

tumour immune responses, but also affect immunotherapy outcomes using ICIs, leading to regulation or exclusion of 

T effector lymphocytes, as well as alternative polarization of macrophages towards a tolerogenic phenotype in the 

TME. The relative importance of these findings will require further functional validation, and this study provides the 

solid ground to initiate these studies. Detected key immune biomarkers, such as CD38 and CD74, could be 

immediately investigated for functional validation in the adjuvant settings of ICI immunotherapies, since there are 

currently available FDA approved inhibitors against these targets[53,74]. Altogether, this work provides the most 
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critical immune markers and pathways to consolidate the type of immune responses in the context of BAP1 loss in 

UM. This may help us to understand why this type of cancer is one of the most refractory to current immunotherapies 

using ICIs at present. 
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Figure 1. BAP1 loss significantly correlates with the modulation of immune genes and patient survival in pUM. 

(A) Decreased mRNA expression of BAP1 is significantly correlated with a poor survival of primary UM patients 

similarly as the monosomy 3 (M3) status in the TCGA cohort. (B) Spearman’s correlation analysis of specific immune 

genes to BAP1 expression than Chromosome 3 (Chr3) copy number variation. (C) Venn diagram depicting immune 

genes with significant correlation to Chr3 and BAP1 and with predictive survival significance. (D) Heatmap cluster 

analysis sorted by BAP1 expression showing upregulated and downregulated immune genes, including the p value 

profile of Kaplan–Meier survival scores. 

Figure 2. BAP1 loss correlates with increased regulatory immune networks in primary uveal melanoma. (A) 

Gene expression profile of the TCGA-UM cohort (n=80) sorted from genes with the highest (left) to the lowest (right) 

gene variance expression. (B) volcano plot depicting the most significant upregulated immune genes with BAP1 loss 

(black arrows), which have potential immunosuppressive functions.  (C) Immune network subcategories integrations 

with upregulated genes following BAP1 loss. Left panel shows general immune response networks and right panel 

shows an expanded leukocyte effector immune response network. (D) Box and whiskers plots of selected upregulated 

and downregulated immune genes according with BAP1 expression levels (high, mid and low). One-way ANOVA 

was used for statistical analysis with Bonferroni’s multiple comparisons test. ****p<0.00001, ***p<0.0001, 

**p<0.001, *p<0.05. 

Figure 3: Transcriptomic analysis of BAP1 negative metastatic uveal melanoma reveals similar immune 

profiles to BAP1 negative primary tumours. (A) Heatmap of unsupervised clustering of all the samples (mUM 

(n=6), pUM tissues (n=4), and one normal liver) and all the transcripts (nCounter 730 immune genes panel). (B) 

Spearman’s correlation analysis of gene expression between unmatched tumours from four pUM and five mUM 

(Left), two matched tumour from one UM patient using Spearman’s correlation rank (r = 0.92, p < 0.0001) (Middle), 

and pUM/mUM NanoString data correlation analysis with TCGA-UM Fpkm-uq+1 normalized RNA-seq data 

(Right). (C) Heatmap views of normalized RNA expression counts from six mUM and one normal liver depicting 

the expression profile of CTLs/NKs suppression markers, immune checkpoint regulatory markers and M2 

macrophages regulation markers. * highlights selected highly expressed immune genes across the tissues. 

This article is protected by copyright. All rights reserved.



  

Figure 4. Mass cytometry analysis of infiltrated immune cells in primary UM. (A) Hierarchical Stochastic 

Neighbor Embedding (HSNE) analysis showing the density of CD45+ infiltrated immune cells and selected 

phenotyping markers of concatenated pUM patients (BAP1-, n=4 and BAP1+, n=1). (B) Colour HSNE maps 

representing the phenotype of infiltrated immune cell subclusters. (C) Pie frequency charts of infiltrated immune cell 

subtypes detected by HSNE analysis for BAP1- and BAP1+ tumours. (D) Heatmap displaying normalized marker 

expression of each immune cell cluster for four concatenated BAP1- pUM samples. Analysis was generated in 

Cytosplore highlighting the most frequent clusters of CD45+ infiltrated immune cells, and an expanded analysis 

among tumour infiltrated monocytes, T lymphocytes and B cells. (E) Pie chart showing the frequency of each cluster 

identified in HSNE analysis across the four merged BAP1- pUM tumours.   

Figure 5. Digital Spatial Profiling analysis of two mUM BAP1 negative FFPE tissues using the NanoString 

immune oncology protein panel. (A) Regions of interest (ROI) to evaluate fibrotic areas with high infiltration of 

both macrophages (CD68) and lymphocytes (CD3). (B) Heatmaps representation of different cancer related markers, 

immune phenotyping markers, immune checkpoint and functional markers, all at the protein level among individual 

ROIs using normalized raw NanoString counts. 
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