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A B S T R A C T

Quality of randomness in generating random numbers is an attribute manifested by a sufficiently random
process, and a sufficiently large sample size. To assess it, various statistical tests for it have been proposed in
the past. The application area for random number generation is wide in natural sciences, and one of the more
prominent and widely adopted is machine learning, where bounded randomness or stochastic random number
generation has been utilized in various tasks. The artificial neural networks used for example in deep learning
use random number generation for weight initialization, optimization and in methods that aim to reduce the
overfitting phenomena of these models. One of these methods include node dropout, which has been widely
adopted. The method’s internal logic is heavily dictated by a random number generator it utilizes. This study
investigated the relationship of quality of randomness and the node dropout regularization in terms of reducing
overfitting of neural networks. Our experimentation included five different random number generators, which
output were tested for quality of randomness by various statistical tests. These sets of random numbers were
then used to dictate the internal logic of a node dropout layer in a neural network model, in four different
classification tasks. The impact of data size and relevant hyperparameters were tested, and the overall amount
of overfitting, which was compared against the randomness results of a generator. The results suggest that
true random number generation in node dropout can be both advantageous and disadvantageous, depending
on the dataset and prediction problem at hand. These findings suggest that fitting neural networks in general
can be improved by adding random number generation experimentation to modelling.
1. Introduction

When fitting probabilistic models into data, nondeterminism can
work in your favour. When properly bounded, nondeterministic algo-
rithms can quickly arrive to a feasible solution, while deterministic al-
gorithms arrive to the best, worst and average solution in substantially
larger amount of time (Floyd, 1967).

The current formulation of the feed-forward neural networks lever-
age this bounded nondeterministic or stochastic behaviour in multiple
different ways. Stochastic optimization algorithms such as stochastic
gradient descent (SGD) (Ruder, 2016) along with random weight ini-
tialization are used for the purpose of optimizing or fitting the model
to training data. This way, large datasets can be processed in a feasible
amount of time, because all of the possible points of the search space
are not calculated and evaluated.

Bounded random number generation has also been leveraged to
improve generalizability in neural networks, in the form of noise
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injection (Matsuoka, 1992) and node dropout (Hinton, Srivastava,
Krizhevsky, Sutskever, & Salakhutdinov, 2012). These mechanisms try
to reduce the over-fitting phenomena (Tetko, Livingstone, & Luik,
1995), where the model completely fits into training data while reduc-
ing generalizability to perform adequately with unseen data.

Quality of randomness in a random number generation can vary.
Pseudorandom numbers can appear random, but they are produced by
a deterministic process (Vadhan et al., 2012). This is the case for most
random numbers generated for fitting neural networks or any stochastic
machine learning algorithms, because the hardware and software they
are calculated with are deterministic by design. On the other hand,
true random numbers in theory can be derived from processes that
are observed to be truly random. Examples of these include quantum
mechanical phenomena such as the photoelectric effect with beam
splitters (Jennewein, Achleitner, Weihs, Weinfurter, & Zeilinger, 2000)
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and the avalanche breakdown in semiconducting circuits (Lampert,
Wahby, Leonard, & Levis, 2016).

Quality of randomness is an essential metric for systems that lever-
age randomness for their primary function (Demirhan & Bitirim, 2016).
There exists physical devices that measure truly random natural pro-
cesses in order to produce true random numbers, that can be used in
deterministic environments such as computers. Because of this, success-
ful applications for these devices have been shown to be cryptographic
encryption and lottery machines (Demirhan & Bitirim, 2016; Stipcevic,
2012). While the true randomness status of the numbers generated
by these devices can be contested not to be fully random due to
microscale production variations that affect the measurement devices,
in practise they produce true random numbers according to the many
statistical tests designed to measure quality of randomness in a set of
numbers (Marsaglia et al., 2002; Ritter, 1996).

Artificial neural networks utilize random number generation in
various steps during the fitting or training process (Hopfield, 1982).
The nondeterminism is lost after the training phase is completed, and
using the model for inference is a deterministic process, therefore they
are commonly described as being stochastic because of their common
optimization methods (Spall, 2005). The effect of quality of randomness
on fitting feed-forward neural networks can be easily demonstrated by
assigning same initial weights to two hidden units in a hidden layer.
If their initial states are completely the same and no randomness is
introduced, both of them are updated in the same deterministic man-
ner (Goodfellow, Bengio, & Courville, 2016). Pseudorandom number
generation has been the standard for neural network-related optimiza-
tion in the past, however how their quality of randomness affects the
optimization process is an open research topic (Bird, Ekárt, & Faria,
2020; Heese, Wolter, Mücke, Franken, & Piatkowski, 2021).

Node dropout can be considered one of the most prominent regu-
larization method for neural networks, where the aim is to randomly
choose hidden nodes to become inactive during a training epoch (Hin-
ton et al., 2012). The core idea of this is to force adjacent hidden
nodes in a hidden layer to learn different weights and biases. This
forced diversity between hidden nodes is what disables the network
from learning the most optimal fit for training data, and the product of
this is better generalizability to unseen data. The random selection of
hidden nodes utilizes uniform pseudorandom number generation, and
is therefore an ideal candidate for quality of randomness investigation
in a neural network context.

In this study, we investigate the relationship of quality of random-
ness and neural network-related regularization method node dropout.
Popular pseudorandom number generator algorithms are compared
against true random number generators, which are based on observing
some natural phenomena. Results are derived using multiple datasets,
random number generators and neural network node dropout hyperpa-
rameters. This novel investigation proposes that quality of randomness
could be impactful to modelling outcomes in terms of generalizability.
If neural network models utilizing node dropout during training could
be improved by simply using more random sequences to dictate the
dropout process, it would have implications to fitting better neural
networks in general. The structure of the paper will be the following:
1. lists the prior literature of the subject, 2. describes the materials and
methods used in the study, 3. will showcase the results and 4. contains
the discussion and conclusions of the study.

At the time of writing this paper, the topic of applying true random
noise to neural networks is relatively unexplored. In 2018, Fan et al.
proposed a neural network model to accurately produce pseudorandom
numbers while investigating differences in pseudorandom and true
quantum random numbers (Fan & Wang, 2018). Next year, Alcin et al.
proposed a neural network model that could statistically produce true
random numbers (Alcin, Koyuncu, Tuna, Varan, & Pehlivan, 2019).
In 2020, Bird et al. investigated pseudorandom and true quantum
random number generators or QRNG for the initialization of neural
2

networks, and proposed a Quantum Random Tree classifier (Bird et al.,
2020). In the paper, the authors report that the QRNG initialization
produced mixed results over pseudorandom, as some differences were
unremarkable and some were significant (Bird et al., 2020). In 2021,
Heese et al. continued the investigation of initializing neural networks
with PRNG and QRNG numbers, and they did not find reproducible
statistical difference between the two (Heese et al., 2021). As far as the
authors know, this study is the first to address true random numbers to
be applied to the node dropout regularization process.

2. Materials and methods

In this section, materials and methods used in the study are listed.
In order to assess the quality of randomness of a number sequence, the
statistical tests used in this study are listed. Also, the random number
generators used for calculating those sequences are described. Datasets
for neural network modelling experiments are mentioned, the neural
network models used, and lastly the utilized software and hardware.

2.1. Quality of randomness testing

Various statistical tests have been proposed in the past that aim to
qualify and quantitate randomness in a set of random bits (Marsaglia
et al., 2002; Ritter, 1996). As most of the tests evaluate randomness
from different aspects, they are usually done in unison as a battery
of tests. Some focus more on sub-sequences within the whole set of
random bits, while others calculate more global statistics of the whole
set. Notable implementations of these tests include Diehard (Marsaglia,
2008), Dieharder (Brown, Eddelbuettel, & Bauer, 2018), TestU01
(L’ecuyer & Simard, 2007) and the NIST Statistical Test Suite (National
Institute of Standards and Technology, 2010). For our experimentation,
NIST Suite was selected due to the fact that it can operate on bit streams
and therefore 64-bit integers, while TestU01 and Dieharder operate
strictly on 32-bit sequences (Vigna, 2016).

NIST Suite contains 15 different statistical tests for quality of ran-
domness, they are listed in Table 1. Frequency test investigated the
proportion of zeros and ones for the entire sequence, while block
frequency test checks proportions within M-bit blocks. Run test cal-
culates the total number of runs in the sequence, where a run is an
uninterrupted sequence of identical bits, while run test (longest run
of ones) does this for the longest run of ones within M-bit blocks.
Binary matrix rank test ranks the disjoint sub-matrices of the entire
sequence, and checks for their linear dependence to the original se-
quence. Discrete Fourier transform test calculates the peak heights
in Fourier space and attempts to detect periodic patterns. Overlap-
ping and the non-overlapping template matching tests look for the
occurrences of pre-specified target strings. Maurer’s universal statistical
test is used to test the number of bits between matching patterns.
The authors of NIST Suite suggested certain sample sizes to be used
with certain sequence block sizes (National Institute of Standards and
Technology, 2010), which we also used in our experimentation. Lin-
ear complexity test investigated the length of a linear feedback shift
register or LFSR (Canteaut, 2005). Serial test calculates the frequency
of all possible overlapping m-bit patterns across the entire sequence.
Approximate entropy test on the other hand tests for the frequency
of all possible overlapping M-bit patterns across the entire sequence.
Cumulative Sums test can be executed forwards and backwards, and
it checks for the maximal excursion of a random walk defined by the
cumulative sum of adjusted (−1, +1) digits in the sequence. Random
excursions test calculates the number of cycles having exactly K visits
in a cumulative sum random walk, and lastly random excursion variant
test calculates the number of times that a particular state is visited in
a cumulative sum random walk.

As the authors noted in the companion publication that no set of
tests can give an absolute answer of quality of randomness (National
Institute of Standards and Technology, 2010). Also, using NIST only

for testing randomness has been criticized in the past (Hurley-Smith
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Table 1
Statistical tests in the NIST Statistical Test Suite (National Institute of
Standards and Technology, 2010).

Test

1. Frequency Test
2. Block Frequency Test
3. Run Test
4. Run Test (Longest Run of Ones)
5. Binary Matrix Rank Test
6. Discrete Fourier Transform (Spectral) Test
7. Non-overlapping Template Matching Test
8. Overlapping Template Matching Test
9. Universal Statistical Test
10. Linear Complexity Test
11. Serial Test
12. Approximate Entropy Test
13. Cumulative Sums (Forward & Backward)
14. Random Excursion Test
15. Random Excursion Variant Test

& Hernandez-Castro, 2020). For our experimentation however they
are sufficient, as they give a heuristic approximation for ranking the
different random number generators, so that the investigation can be
conducted.

2.2. Random number generators

Pseudorandom number generators were selected based on their
popularity in machine learning-related software libraries. These in-
cluded Mersenne Twister (Matsumoto & Nishimura, 1998) or MT and
Philox (Salmon, Moraes, Dror, & Shaw, 2011). MT uses matrix linear
recurrence over a finite binary field in order to generate random
variables. The popular implementation of MT, MT19937, has a word
length of 32-bits, which is derived from the Mersenne prime of 219937−1.
While MT19937 can pass the Diehard tests and most TestU01 tests
given enough derived samples (L’ecuyer & Simard, 2007), its state
vector is 624 long, meaning that if the generator’s output is observed as
a sequence of 624 integer values, one can duplicate the generator and
successfully predict the next random values the generator produces.

The second pseudorandom number generator Philox is counter-
based, meaning that it only uses an integer counter as its internal
state. Its state vector consists of a 256-bit value which is encoded as
a 4-element unsigned integer array and a 128-bit value encoded as
a 2-element unsigned integer array. The 64-bit implementation uses
wide multiples of two 32-bit numbers in order to produce 64-bit
numbers. Since the schema of Philox involves the creation of multiple
independent streams, it is commonly used with hardware such as GPUs
that can parallelize calculation. Philox has been tested to perform well
with the TestU01 suite (Salmon et al., 2011).

True random number generators used in the study were the Quantis
QRNG USB-device by ID Quantique (Quantique, 2021), ANU QRNG, a
website hosted by The Australian National University (Symul, Assad,
& Lam, 2011) and HotBits, a website hosted by Fourmilab (Fourmilab,
1996). All of these random number sources leverage natural phenom-
ena in generating values. Quantis exploits a quantum optics process
where photons are sent one by one onto a semi-transparent surface,
and they have a naturally occurring 50/50 chance of either reflect
off or pass through. Within the device, this is implemented by one
light source, a 45-degree mirror and two light collection components at
each end of possible photon traversal. The detected photons are then
encoded as 0 and 1 bits accordingly. The schema of this is showcased
in Fig. 1. These types of quantum device applications are known to be
affected by thermal noise (Saulson, 1990), where the calculation out-
come is highly affected by the environmental temperature. However,
the effect of this should be lesser on light-based calculation (Arrazola
et al., 2021). The manufacturer states that the contribution of the
thermal noise in deriving random bits is less than 1%, and the device
3

Fig. 1. Quantum optic random number generation of Quantis (Quantique, 2021).
When photons make contact with the semi-transparent mirror, there is roughly 50%
probability that it will pass the mirror, and 50% probability that it bounces of the
mirror surface. Light collectors at each end of the trajectories measure the photons,
and encode them as 0 and 1 bits accordingly.

has acquired various certifications related to producing statistically
true random numbers (Quantique, 2021). For our testing, the ambient
temperature was 22.6 ◦C, which is within the storage temperature
range of the general specifications for the device.

ANU QRNG website provides open data quantum random numbers
that can be accessed. These numbers are either generated beforehand
or live within a lab in The Australian National University, by using
lasers to measure vacuum fluctuations that are proposed to be truly
random (Symul et al., 2011). In such measurement, broadband mea-
surements of the vacuum field are made, which can be detected in
the radio-frequency sidebands of a single-mode laser (Symul et al.,
2011). This digitized photocurrent is then processed with appropriate
algorithms in order to reduce noise coming from the environment and
measuring setup (Haw et al., 2015). The authors claim that this random
number generation scheme has high environmental immunity, which
is a similar claim as what has been stated about Quantis. However, it
should be noted that the quality of both Quantis RNG and ANU QRNG
have been criticized in the past (Hurley-Smith & Hernandez-Castro,
2020), where the authors stated that Quantis RNG did not pass various
tests without off-device post-processing of random numbers, while ANU
QRNG did not pass three tests in TestU01.

Lastly, HotBits website also provides true random numbers by mea-
suring the interval of two Cæsium-137 radiation decay events from
a radiation source (National Institute of Standards and Technology,
2009). The natural uncertainty of a Cæsium-137 nucleus decay event
enables this process, and they are detected by a Geiger counter. By
calculating the time interval between two individual, consecutive pairs
of decay events, bit encoding can be calculated if the first or the second
interval is longer. Even comparisons are discarded. Also, in order to
reduce any systematic errors stemming from the radiation source or
the measuring process, the encoding is reversed for consecutive com-
parisons. The schema of this measurement logic is showcased in Fig. 2.
TRNGs based on radioactive decay have been criticized in the past for
their low bit rate and the need for post-processing (Herrero-Collantes
& Garcia-Escartin, 2017).

2.3. Study data

Four datasets commonly used for machine learning research were
selected for the study; Iris (Anderson, 1936), Wine (Aeberhard,
Coomans, & de Vel, 1992) Dry Bean (Koklu & Ozkan, 2020), and Adult
(Kohavi et al., 1996). The selection was made to confirm that given
enough epochs, overfitting during training would occur. Iris represents
the simplest dataset in terms of feature dimensionality and number
of observations, while Adult is the most complex of the four. All of
the datasets are similar in terms of the prediction task, multivariate
classification. Data description is listed in Table 2.
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Fig. 2. The process behind HotBits. The time intervals of two consecutive radiation
decay event pairs 𝑇1 and 𝑇2 are calculated, and then they are compared. If 𝑇1 is shorter,
this is encoded as 0, and as 1 of 𝑇1 is longer. This logic is reversed at every consecutive
comparison.

Fig. 3. 3A depicts the simplistic network architecture of the baseline model without
dropout, while 3B depicts the model used to investigate node dropout’s association to
randomness. Input and output layers are adjusted to fit each dataset and their learning
task, while the design of hidden layers stay the same.

Table 2
Description of the data used in the study.

Attribute Iris Wine Dry bean Adult

Observations 150 178 13611 48842
Features 4 13 17 14
Feature types Real Integer, Real Integer, Real Categorical, Integer
Target classes 3 3 7 2
Missing values No No No Yes

2.4. Neural networks & node dropout

Neural network models were chosen to be as simplistic as possible
in order to mitigate the effect that choosing a specific architecture
would affect the modelling results. For all datasets, a deep feed-forward
neural network containing 3 hidden layers were used, all containing
100 nodes using the ReLU activation (Agarap, 2018). As all of the
modelling tasks included in this investigation were classification, soft-
max activation (Goodfellow, Bengio, & Courville, 2018) was used in
the output layer. The number of output nodes would be adjusted to fit
the data in question, this adjustment was also done for the input layer.
Categorical cross-entropy (Murphy, 2012) was used as the loss metric,
and Adam (Kingma & Ba, 2014) was used as the optimizer. Parameters
of the optimizer were set to the default values of TensorFlow 2 (Abadi
et al., 2015). Random seeds related to the model were fixed.

For utilizing node dropout, node dropout layers after each hidden
layer were added to the network architecture. The schematic view of
both architectures is presented in Fig. 3. Instead of using pseudorandom
number generators of the library, the default implementation of Ten-
sorFlow 2 dropout layer was extended in a way that a set of random
numbers could be given as input, and the random decisions made by the
4

layer during training would be anchored to those values. This enabled
us to conduct repeatable experiments with various sets of random
values. The amount of hidden nodes to be dropped was chosen to be
one of the hyperparameters that would be iterated during the study, in
order to assess its affect on the results. The second hyperparameter was
the number of epochs, which dictates how many node dropout-related
random decision are needed during training.

2.5. Software and hardware

For testing random number sequences, NIST statistical test suite
(National Institute of Standards and Technology, 2010) and Dieharder
(Brown et al., 2018) were used. For NIST, the python implementation
by Steven Kho Ang, version 1.3 was used (Ang, 2021). Modelling
experiments were conducted using Python 3.6.7 (Van Rossum & Drake,
2009), Tensorflow 2.6.0 (Abadi et al., 2015), Numpy 1.19.5 (Harris
et al., 2020) and Pandas 0.23.4 (McKinney et al., 2010). For data
processing of bit data, bitstring 3.1.9 package was used (Griffiths,
2021). For producing Fig. 4, the R package ggplot2 was used (Wickham,
2016).

The modelling experiments were calculated using either the NVIDIA®
RTX™ 2080 Ti GPU, or the Intel® Core™ i9-9940X CPU. For Quantis
random bit data, Quantis USB device (Quantique, 2021) was used.

2.6. Experiment description

In order to investigate the relationship between quality of random-
ness of random numbers used in the internal logic of node dropout and
a neural network’s ability to overfit, the study was designed to include
multiple datasets and multiple random data generators. First, all of the
generators were used to calculate a random set of 64-bit integers, where
the quantity corresponds to the maximum number of random number
generation events which are needed for fitting a neural network. The
maximum number of epochs included in our investigation determines
the amount of RNG events. After this, the sets were tested with the NIST
Suite by converting and combining them to bit sequences, after which
they were ranked based on the number of tests they pass. This gives us
a heuristic, qualitative result of the quality of randomness for each set.
This step was followed by the neural network fitting experiments.

One unit in our model fitting experimentation was a 10-fold cross
validation process, which was iterated in terms of used datasets, ran-
dom number sets and neural network parameters. In cross validation,
the data is first partitioned into 10 folds. Then, these folds are iterated
over in a way that one fold is the test set for the duration of the
iteration, and the rest are combined as training data. In the next
iteration, the next subsequent fold is deemed as the test data, and
the rest as training data. This way, 10 model fits are done during the
experiment, and 10 test set accuracies are calculated, which gives an
accurate representation of model performance. Four common machine
learning open datasets Wine, Iris, Dry Bean and Adult were used to
fit a neural network with the same architecture, excluding the input
and output layers, which were dataset-specific. Initializations of those
models were also the same. The five random number sets used to
anchor randomness during each epoch for the fixed dropout layers
were MT, Philox, Quantis QRNG, ANU QRNG and HotBits. Model
parameters node dropout amount (10% to 50% by 10% increments)
and number of epochs (10,100,1000 and 10 000) were iterated to
see their effect. Also, for assessing the usefulness of node dropout
in general, a baseline model without dropout layers was calculated.
This amounted in a total of 16 cross-validation experiments for the
baseline neural network model, and 400 experiments for node dropout
model. Fig. 4 contains the flowchart for the experiments. These results
are inspected in terms of training data size, number of epochs and
amount of node dropout. Finally, for each random number generator
the average amount of model overfitting is investigated. This is done by
calculating the amount of overfitting 𝑎𝑐𝑐𝑑𝑖𝑓 , where accuracy produced
by the test data is subtracted from the training data accuracy result.
These results are compared against how many randomness tests the
generator in question passed.
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Fig. 4. Flowchart for the baseline and node dropout experiments.
3. Results

In this section, the study results are showcased. Firstly, the random-
ness results of each random number generator are described. Then, the
neural network modelling experiment results are listed.

3.1. Randomness testing

All of the five random number generators were used to produce
the 300 000 random integers needed for fitting a neural network. This
means that when the integers are converted to bits, the number of bits
can vary. Also, while the QRNG and Philox generators operate in 64-bit,
MT operates with 32-bit precision which actively halves the number of
bits. These sets are partitioned to 300, 3000, 30 000 and 300 000 sets,
which in turn represent the maximum amount of needed random seeds
with 10, 100, 1000 and 10 00 epochs when 3 hidden layers are utilized
in the neural networks. This way, when investigating a certain model
training experiment, we can also assess the number of statistical tests
the used random number set would have passed. Table 3 presents the
numbers of total bits contained in each random number set of each
generator.

Table 4 contain the results of the statistical testing done to each
set of random bits, derived from the random integers generated by a
random number generator. The results show that the number of passed
tests depends on the sample size of the tested values, for example tests
2,7 and 9 fail mostly with 30 000 and 300 000 numbers. Comparing
pseudo-random generators with true random ones, MT produces the
worst overall result of 24 tests passed, while Philox passes a similar
amount of tests when compared to true random number generators.
However, due to the 32-bit word length of MT, the comparison is
not favourable towards it, as the random numbers do not generate
enough bits for the same amount of tests to be conducted. Tests 10,
11 and 12 with 30 000 numbers are not calculated due to insufficient
bits. MT is however a highly utilized random number generator in ML
implementations, so its inclusion is justified in this comparison, as most
practitioners utilize it in ML experiments, knowingly or unknowingly.

Out of the three true random number generators, Quantis performed
the best with 29 tests passed. However, it failed test 15 with 3 different
5

Table 3
Description of the random value sets created by different generators. As the values are
sampled as integers and then converted to bits, the number of total bits in a set can
differ.

Data generator Size Bits

MT (32-bit) 300 9344
3000 92994
30 000 930092
300 000 9299174

Philox (64-bit) 300 18883
3000 188997
30 000 1889984
300 000 18898134

ANU QRNG (64-bit) 300 18917
3000 188939
30 000 1889924
300 000 18900233

Quantis (64-bit) 300 18884
3000 188955
30 000 1890702
300 000 18900083

HotBits (64-bit) 300 18941
3000 189085
30 000 1889660
300 000 18900116

data sizes, when no other generator did. Surprisingly, the pseudoran-
dom generator Philox performed better with tests 1, 5, 10, 11 and 13
when compared to ANU QRNG and HotBits, implicating that measuring
a natural phenomena does not always produce more favourable ran-
domness results. This can be caused by the bias originating from the
measurement process. Out of the 15 statistical tests, frequency test or
test 1 and cumulative sums or test 13 were failed the most by generators
in general. Failure of test 1 also meant that test 3 was not calculated
for those cases, making it the test with the most missing results.

3.2. Model fitting

Fig. 5 demonstrates the mean(𝑎𝑐𝑐𝑑𝑖𝑓 ) results over different epochs
and amount of node dropout used. Results under 0 imply that some
overfitting has occurred, while results over 0 mean that the fitted model
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Table 4
P-value results of the statistical tests 1 to 15 per random number generator, using 300, 3000, 30 000 & 300 000 numbers. Significance level
<0.01 for not truly random sequence, these results are in bold. Number of passed tests are listed with the generator names. Random excursion
tests 14 and 15 are either passed if all of the states are truly random with <0.01 significance, and failed otherwise. Tests 11 and 13 are
considered passed only if both of the associated p-values are not significant.

Test name MT (24) Philox (29) ANUQ (27) Quantis (29) HotBits (26)

1. Frequency Test <0.01 0.032 0.007 0.126 <0.01
<0.01 <0.01 <0.01 <0.01 <0.01
<0.01 <0.01 <0.01 <0.01 <0.01
<0.01 <0.01 <0.01 <0.01 <0.01

2. Block Frequency Test 0.18 0.248 0.428 0.589 0.103
0.025 0.447 0.064 0.674 0.683
<0.01 0.055 0.021 0.025 0.035
<0.01 <0.01 <0.01 <0.01 <0.01

3. Run Test NA𝑎 0.451 0.343 0.562 0.440
NA𝑎 NA𝑎 NA𝑎 NA𝑎 NA𝑎

NA𝑎 NA𝑎 NA𝑎 NA𝑎 NA𝑎

NA𝑎 NA𝑎 NA𝑎 NA𝑎 NA𝑎

4. Run Test (Longest Run of Ones) 0.079 0.226 0.923 0.129 0.338
<0.01 <0.01 <0.01 <0.01 <0.01
0.485 0.107 0.428 0.021 0.125
<0.01 <0.01 <0.01 0.013 <0.01

5. Binary Matrix Rank Test NA𝑏 NA𝑏 NA𝑏 NA𝑏 NA𝑏

0.702 0.587 0.607 0.289 0.753
0.227 0.625 0.706 0.617 0.857
0.221 0.657 <0.01 0.755 0.214

6. Discrete Fourier Transform (Spectral) Test 0.279 0.486 0.574 0.635 0.948
0.837 0.575 0.583 0.592 0.240
0.073 0.901 0.968 0.384 0.075
0.419 0.749 0.185 0.429 0.524

7. Non-overlapping Template Matching Test 0.527 0.546 0.307 0.320 0.949
0.059 0.208 0.121 0.024 0.248
<0.01 <0.01 <0.01 <0.01 <0.01
<0.01 <0.01 <0.01 <0.01 <0.01

8. Overlapping Template Matching Test NA𝑏 NA𝑏 NA𝑏 NA𝑏 NA𝑏

NA𝑏 NA𝑏 NA𝑏 NA𝑏 NA𝑏

NA𝑏 NA𝑏 NA𝑏 NA𝑏 NA𝑏

<0.01 <0.01 <0.01 <0.01 <0.01
9. Universal Statistical Test NA𝑏 NA𝑏 NA𝑏 NA𝑏 NA𝑏

NA𝑏 NA𝑏 NA𝑏 NA𝑏 NA𝑏

0.854 0.502 0.935 0.125 0.508
<0.01 <0.01 <0.01 0.755 0.236

10. Linear Complexity Test NA𝑏 NA𝑏 NA𝑏 NA𝑏 NA𝑏

NA𝑏 NA𝑏 NA𝑏 NA𝑏 NA𝑏

NA𝑏 0.36 0.285 0.762 0.394
0.609 0.326 0.31 0.537 <0.01

11. Serial Test NA𝑏 NA𝑏 NA𝑏 NA𝑏 NA𝑏

NA𝑏 NA𝑏 NA𝑏 NA𝑏 NA𝑏

NA𝑏 0.081, 0.495 <0.01, 0.018 0.031, 0.532 <0.01, 0.031
<0.01, 0.382 <0.01, 0.30 <0.01, 0.509 0.015, 0.291 <0.01, 0.074

12. Approximate Entropy Test NA𝑏 NA𝑏 NA𝑏 NA𝑏 NA𝑏

NA𝑏 NA𝑏 NA𝑏 NA𝑏 NA𝑏

NA𝑏 <0.01 <0.01 <0.01 <0.01
<0.01 <0.01 <0.01 <0.01 <0.01

13. Cumulative Sums (Forward & Backward) 0.008, 0.014 0.057, 0.050 0.003, 0.013 0.027, 0.232 <0.01, <0.01
<0.01, <0.01 <0.01, <0.01 <0.01, <0.01 <0.01, <0.01 <0.01, <0.01
<0.01, <0.01 <0.01, <0.01 <0.01, <0.01 <0.01, <0.01 <0.01, <0.01
<0.01, <0.01 <0.01, <0.01 <0.01, <0.01 <0.01, <0.01 <0.01, <0.01

14. Random Excursion Test Passed Passed Passed Passed Passed
Passed Passed Passed Passed Passed
Passed Passed Passed Passed Passed
Passed Passed Passed Passed Passed

15. Random Excursion Variant Test Passed Passed Passed Failed Passed
Passed Passed Passed Failed Passed
Passed Passed Passed Failed Passed
Passed Passed Passed Passed Passed

NA𝑎 Test fails due to failure of the Frequency test, NA𝑏 Number of bits is below the suggested minimum (National Institute of Standards and
Technology, 2010).
performed better with test set data, when compared to the accuracy
achieved with training data. The no dropout baseline method results
showcase how without node dropout, the calculated mean(𝑎𝑐𝑐𝑑𝑖𝑓 ) in
most cases decreases as the number of epochs is increased. Wine and
Adult datasets are good examples of this. In the 1000 epochs plot,
the baseline result for Iris remains near zero, while all node dropout
methods seem to produce overfitting. It is probable that the small
number of observations in the Iris dataset introduces some added
6

variability to the results, as results for the two bigger datasets are more
consistent. For Dry Bean, the baseline results over all epochs remain
near zero. This result speaks of the dataset’s quality and consistency, as
the 10 different iterations of the cross validation experiment produce
roughly the same performance of the training and test sets.

The two small datasets Iris and Wine produced biggest variation in
results, this is to be expected as the number of observations during
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Fig. 5. Mean accuracy difference results, plotted by the amount of node dropout and epochs used over all four datasets. Different random number generators used with node
dropout are highlighted in different colours, and also the benchmark result of no node dropout utilized. The zero line indicates overfitting results on the negative side, and increased
test data accuracy over training data accuracy on the positive side.
model fitting is at it’s lowest. Every node dropout experiment per-
formed better than the baseline at 10 epochs for both datasets. At 100
epochs, only node dropout of 0.3 and 0.4 were able to achieve the same
performance, as 0.1, 0.2 and 0.5 for some random number generators
performed worse. For this many epochs and this level of complexity of
the learning task, 0.1 and 0.2 were not enough to produce consistent
improvements. Aside from Philox, node dropout of 0.5 over-performed
the baseline.

For epochs of 1000 and 10 000, node dropout methods performed
either on par or worse when compared to the baseline. This showcases
the fact that the optimal number of epochs per dataset and learning
task differs. If the amount of epochs is set unfeasibly large, the neural
network model will overfit to the training data, regardless of how much
node dropout is used, or what random number generators were used to
dictate it’s functionality.

The results calculated for the other two datasets, Adult and Dry
Bean, differ from the two smaller datasets in terms of epochs more than
10, most probably due to their significantly different size. For 10 epochs
7

and both datasets, every node dropout method performs better when
compared to the baseline. Dry bean seems to clearly benefit from node
dropout at 1000 epochs, and at 100 epochs for most experiments as
well. At 10 000 epochs, generally minor improvements in performance
can be seen with dropout amount from 0.1 to 0.3, however with 0.4
and 0.5 amounts the experiment performances get significantly worse
when compared to the baseline. This dictates a saturation point, where
too much dropout with too many epochs results in a situation where the
model to struggles to learn the underlying signal, as too much variance
is introduced by the node dropout method.

For the Adult dataset, at 100 epochs the node dropout experiments
generated significantly better models when compared to the baseline,
which seems to overfit more as more epochs are calculated. This is
also true for experiments calculated with 1000 and 10 000 epochs, ex-
cluding dropout amount of 0.5 where performance seems to deteriorate
again. This similar saturation point can be seen with Dry Bean.

When different generators over different epochs and dataset are
compared, there does not seem to be a clear general pattern indicating
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Table 5
The comparison of model fitting results from the 10-fold cross validation experiments per dataset and generator over different epochs used. For
the no node dropout baseline results, the unit is mean(𝑎𝑐𝑐𝑑𝑖𝑓 ), while for the node dropout results, the unit is the difference from the baseline
result. Different random number generators used for node dropout are listed, along with their number of passed NIST tests.

Iris Wine
Node Dropout, difference from baseline Node Dropout, difference from baseline

Epochs Baseline MT HotBits ANU QRNG Philox Quantis Baseline MT HotBits ANU QRNG Philox Quantis

10 1.33 −6.04 −9.05 −9.17 −6.31 −7.19 −0.74 −8.12 −12.67 −11.24 −8.39 −9.26
100 −1.26 −0.96 −1.44 −1.70 −0.92 −1.01 −0.81 −0.47 −1.05 −1.24 −0.47 −0.58
1000 <0.01 1.57 1.67 0.96 2.15 0.83 −2.07 −1.39 −0.62 −0.92 −0.61 −1.08
10000 −2.37 0.87 0.37 0.47 −0.28 0.16 −3.11 0.53 −0.55 −0.86 0.40 −0.86

Mean −1.14 −2.11 −2.36 −1.34 −1.80 Mean −2.36 −3.72 −3.57 −2.27 −2.94

Dry bean Adult
Node Dropout, difference from baseline Node Dropout, difference from baseline

Epochs Baseline MT HotBits ANU QRNG Philox Quantis Baseline MT HotBits ANU QRNG Philox Quantis

10 <0.01 −0.83 −0.77 −0.81 −0.82 −0.80 −0.14 −1.10 −0.93 −1.07 −1.06 −1.04
100 0.13 −0.19 −0.99 −0.19 −0.60 −1.17 −0.69 −1.25 −1.41 −1.21 −1.24 −1.18
1000 −0.10 −1.39 −1.12 −1.23 −1.12 −1.27 −1.73 −1.27 −1.04 −1.23 −1.24 −1.15
10000 −0.05 5.70 5.73 5.51 5.18 5.78 −5.05 −2.96 −3.27 −2.97 −3.15 −2.79

Mean 0.82 0.71 0.82 0.66 0.63 Mean −1.65 −1.66 −1.62 −1.67 −1.54
that using one over the other would result in improved generalizabil-
ity. However, with optimal learning parameters in terms of dataset
and learning task, the quality of randomness seems to affect added
generalizability imposed by utilizing node dropout. Table 5 showcases
the mean(𝑎𝑐𝑐𝑑𝑖𝑓 ) results of each baseline model, and how much each
andom number generator-based node dropout model differs from these
esults. This way, the bigger the difference is on the negative side, that
uch better generalizability the results provide. For Iris and Wine, the

esults in Fig. 5 indicate that node dropout was beneficial to use, when
he number of epochs was either 10 or 100. For those experiments, ANU
RNG provided the best improvement over baseline, excluding Wine
t 10 epochs, where HotBits had the best improvement of −12.67 over

the baseline. MT on the other hand produced the worst improvement
during these experiments, tied with Philox at 100 epochs for Wine.

For Dry Bean, the results in Fig. 5 showcased that at 10 000 epochs
there is a clear saturation point in performance, where node dropout
was not beneficial. At 10 epochs, MT produced the best result of −0.83.
At 100 epochs, Quantis reached the best improvement of −1.17. Lastly,
at 1000 epochs, MT had the best improvement of −1.39. For Adult, the
benefits of node dropout can be clearly seen with epochs 10 and 100.
MT had the best result of −1.10 at 10 epochs, while HotBits had the
best result of −1.41 at 100 epochs.

In Table 6, the mean results from Table 5 and the number of
passed NIST tests of a random number generator were tested for
correlation. For Wine and Adult datasets, the Pearson correlation was
0.07 and 0.40 respectively. This indicates that on average, using a
random number generator with improved randomness to dictate the
node dropout process reduced generalizability for these datasets. For
the Iris and Dry Bean datasets, the correlation result was −0.17 and
−0.80 respectively. This would suggest that on average, using more
random numbers to dictate the node dropout process had the effect of
improved generalizability, especially with the Dry Bean dataset.

4. Discussion and conclusions

The determination of true randomness can be undecipherable at
times for multiple reasons. The statistical tests conducted can be dis-
advantageous to certain pseudonumber generators due to the fact that
their core functionality is drawn from the same theory as the test. This
amounts to the fact that the significance of a test result with different
generators is not uniform. Tests can also assume a fixed sequence size
as input, so generators that produce differing sizes need additional
processing to be compatible, and in worst cases this processing can
deteriorate the quality of randomness of that sequence. This is why ran-
domness tests are usually described as being not theoretically complete,
8

but useful in practise (Brown et al., 2018).
Table 6
Correlation results from the 10-fold cross validation experiments per dataset, over
all generators and datasets. Overfitting statistic of baseline difference of mean(𝑎𝑐𝑐𝑑𝑖𝑓 )
proposed in Table 5 are compared against the number of passed NIST tests with Pearson
correlation.

RNG Iris Wine Dry bean Adult Passed NIST
tests

MT −1.14 −2.36 0.82 −1.65 24
HotBits −2.11 −3.72 0.71 −1.66 26
ANU QRNG −2.36 −3.57 0.82 −1.62 27
Philox −1.34 −2.27 0.66 −1.67 29
Quantis −1.80 −2.94 0.63 −1.54 29

Pearson correlation −0.17 0.07 −0.80 0.40

Dieharder was used to test all of the full random number sets in
this study, MT did not pass 2 tests, while Philox did not pass 5 tests,
ANU QRNG did not pass 3 tests, Quantis did not pass 4 tests and
HotBits did not pass 5 tests. The authors suspect that the poor Dieharder
performances of Philox, ANU QRNG, Quantis and HotBits were due to
the fact that Dieharder operates on 32-bit sequences (Marsaglia, 2008),
while the binary sequences were constructed from 64-bit integers. In
practise this means that the 64-bit sequences are partitioned into two
32-bit sequences, which introduces non-uniformity to the overall bits
processed by the tests.

Our experimentation showcases that the selection of data, epochs
and the amount of node dropout affect the amount of overfitting
demonstrated by the model. In small to modest datasets, iterating
epochs by magnitudes had a significant impact on overfitting. At 1000
and 10 000 epochs, using node dropout did not have a beneficial effect,
demonstrating the fact that the number of epochs should firstly be fine-
tuned for the specific data in question. For larger datasets, this effect
was not as dramatic, however a clear saturation point with high number
of epochs and amount of dropout used was seen.

Increased quality of randomness was strongly correlated with a neu-
ral network model’s ability to generalize within the Dry Bean dataset.
There was also a mild association within the Iris dataset. At the same
time, it had a moderate correlation within the Adult dataset to decrease
generalization, and very mild association with Wine. Therefore, our
study results support the notion of Bird et al. (2020) and Heese et al.
(2021), that there would not be a reproducible general association, but
that the effect is highly data-dependent. Differences between random
number generators were found, and in most optimal experiments, more
random generators would provide over 4% better accuracy results with
the used test sets.

The significance of this finding is that potentially any neural net-
work model that utilizes node dropout during training could be im-

proved generalization-wise. By iterating multiple different random
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number generators during training experiment, one could select the
most optimal one, instead of strictly using just one for all experiments.
As training neural networks is commonly a highly iterative process,
this additional step could fit into the existing modelling workflows.
Acquiring random number sequences from a source could be done in
advance, and read from a database during training. Same subsequences
could also be reused, giving the modelling step reproducibility, even
with true random numbers.

In addition to node dropout, future work could also include an
investigation of quality of randomness to stochastic depth method,
which is a layer-level dropout method initially proposed for residual
networks (Huang, Sun, Liu, Sedra, & Weinberger, 2016). Random se-
lection of layers to drop is a similar selection problem when compared
to hidden node dropout selection in node dropout.

The clear limitations of the study are the amount of datasets
used, future work would include experimenting with a wider range of
datasets, with various classification and regression tasks. This would
improve the generalizability of our findings. Also, more complex data
such as image and video should be investigated. At the time of writing
this paper, this was not feasible with the hardware we had available.

This study provides the initial investigation to how quality of ran-
domness affects the regularization impact of node dropout in neural
network model fitting. Increasing statistical quality of randomness of
decisions made by node dropout layers can have beneficial effect with
datasets, when other parameters regarding training and node dropout
have been fine-tuned.
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