
LETTER

doi:10.1002/evl3.284

Strong selective environments determine
evolutionary outcome in time-dependent
fitness seascapes
Johannes Cairns,1,2,3,4 Florian Borse,1 Tommi Mononen,1 Teppo Hiltunen,2,3,5 and Ville Mustonen1,6,7

1Organismal and Evolutionary Biology Research Programme (OEB), Department of Computer Science, University of

Helsinki, Helsinki 00014, Finland
2Department of Microbiology, University of Helsinki, Helsinki 00014, Finland
3Department of Biology, University of Turku, Turku 20014, Finland

4E-mail: johannes.cairns@helsinki.fi
5E-mail: teppo.hiltunen@utu.fi

6Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
7E-mail: v.mustonen@helsinki.fi

Received January 6, 2022

Accepted April 27, 2022

The impact of fitness landscape features on evolutionary outcomes has attracted considerable interest in recent decades. However,

evolution often occurs under time-dependent selection in so-called fitness seascapes where the landscape is under flux. Fitness

seascapes are an inherent feature of natural environments, where the landscape changes owing both to the intrinsic fitness con-

sequences of previous adaptations and extrinsic changes in selected traits caused by new environments. The complexity of such

seascapes may curb the predictability of evolution. However, empirical efforts to test this question using a comprehensive set of

regimes are lacking. Here, we employed an in vitro microbial model system to investigate differences in evolutionary outcomes

between time-invariant and time-dependent environments, including all possible temporal permutations, with three subinhibitory

antimicrobials and a viral parasite (phage) as selective agents. Expectedly, time-invariant environments caused stronger directional

selection for resistances compared to time-dependent environments. Intriguingly, however, multidrug resistance outcomes in both

cases were largely driven by two strong selective agents (rifampicin and phage) out of four agents in total. These agents either

caused cross-resistance or obscured the phenotypic effect of other resistance mutations, modulating the evolutionary outcome

overall in time-invariant environments and as a function of exposure epoch in time-dependent environments. This suggests that

identifying strong selective agents and their pleiotropic effects is critical for predicting evolution in fitness seascapes, with ramifi-

cations for evolutionarily informed strategies to mitigate drug resistance evolution.

KEY WORDS: Antibiotic resistance, Escherichia coli, experimental evolution, fitness seascape, fluctuating selection, microbial

evolution, phage resistance, pleiotropy, sub-MIC, time-dependent selection.

Impact Summary
Evolution is often inspected as positive or negative selection

for a heritable trait improving or decreasing fitness in a partic-

ular environment, causing the frequency of the trait to increase

or decrease in the population of an organism. However, there

is considerable complexity to this process. Notably, the heri-

table trait increasing fitness in a particular environment may

affect fitness in other environments. This is important since in
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real-life scenarios selective environments tend to change over

time. Are certain temporal sequences of environments partic-

ularly beneficial or detrimental to an organism harboring spe-

cific heritable traits? This question is not merely of theoret-

ical interest. For instance, climate change involves changing

environmental conditions, and it is important to understand

what types of traits may become enriched in populations to

predict the response of different organisms to climate change.

Moreover, in the treatment of cancers and pathogens, tempo-

ral sequences of drugs could be exploited to steer evolution

of the target cell population in a desired direction, such as

elimination of a pathogen and prevention of the emergence

of drug resistance. Here, we used a microbial model system

to investigate in vitro the factors driving the evolutionary re-

sponse across changing environments. We used antibiotics and

a virus to model different selective environments, combining

the antibiotics into different temporal sequences. We found

that only a couple of the environments drove the evolution-

ary response to all the environmental conditions applied. They

caused stronger selection not only for specific adaptations tar-

geted at them but also altered phenotypic and genetic prop-

erties relevant to withstanding the other environments. Their

time of exposure in the temporal sequence also affected the

level of resistance to them and the other agents. These results

indicate that identifying driver agents and their phenotypic ef-

fects is critical to assessing the evolutionary response of pop-

ulations exposed to changing environments.

Despite the high dimensionality of fitness landscapes (Mc-

Candlish 2011), the genomes of evolving organisms are fre-

quently visualized in fitness landscapes with low-fitness valleys

and high-fitness peaks (Weinreich et al. 2006; de Visser et al.

2018). The initial position on the landscape depends on the ge-

nomic background, which varies between lineages within a pop-

ulation, and determines the mutations with positive fitness con-

sequences. Once a mutation occurs in a phenotypic or genotypic

direction in the fitness landscape that makes it beneficial, it will

be selected, causing movement upward from a valley or toward a

peak. This position, in turn, determines the subsequent mutations

with high selection coefficients. The population can eventually

become trapped on a local peak or reach a global peak depend-

ing on the starting position, traversed path, and ruggedness of the

landscape. The concept of a three-dimensional fitness landscape

is based on the realization that the fitness effects of mutations

virtually always depend on the genomic background (pervasive

epistasis). Typically, the topology of the landscape is presented as

static. This may hold in a minimal setup with the evolution of a

single gene in a stable environment and when complications such

as frequency-dependent selection are not present. What features

of such static landscapes affect the predictability of evolution has

become an active research field (de Visser and Krug 2014; Läs-

sig et al. 2017). However, in many realistic scenarios, the targets

of selection change over time, causing the fitness landscape also

to change over time, becoming a fitness seascape (Mustonen and

Lässig 2009; Lässig et al. 2017). Therefore selection itself should

be regarded as a time-dependent force in evolutionary dynamics

as discussed in the classical population genetic theory by Wright,

Kimura, Ohta, Gillespie, and others (Wright 1948; Kimura 1954;

Gillespie 1972; Ohta 1972; Gillespie 1992). For instance, mu-

tations improving adaptation of a trait under directional selec-

tion often have deleterious consequences on traits under stabi-

lizing selection, an example of pleiotropy, causing selection to

alternate between mutations improving the adaptive trait and mu-

tations compensating for the cost on the conserved trait. More-

over, the concept of fitness seascape inherently captures evolu-

tion along time-dependent selective environments. This is some-

times called fluctuating selection (Bell 2010; Dean et al. 2017),

which also refers to the specific situation where the strength of

selection by particular selective pressures displays a pattern of

recurrence over time, such as in negative frequency-dependent

selection (Hall et al. 2011), rather than different selective envi-

ronments occurring one after each other.

In fitness seascapes, rather than the stepwise refinement of a

single trait depending on a limited set of epistatic interactions, the

mutational path is better characterized as a serpentine path where

previous adaptations can have varied effects on where the genome

lands in each time-dependent landscape. One consequence of this

is that directional selection improving a particular trait can be

stronger for time-invariant compared to time-dependent environ-

ments, although this is modulated by the frequency and duration

of exposure to any given environment. In particular, although

infrequent changes in the fitness seascape open the opportunity

for adaptive substitutions driven by positive selection, too rapidly

changing seascapes hinder the adaptive flux that can be sustained

by closing each opportunity before a typical substitution event

has completed (Takahata et al. 1975; Mustonen and Lässig 2008).

Moreover, mutations improving an adaptive trait in a particular

selective environment often influence other traits (i.e., display

pleiotropy), which may make the organism either more or less

adaptive to a subsequent selective environment compared to the

initial state. Pleiotropic effects have been shown to be prevalent

in multiple systems, including microbes evolving antimicrobial

resistance (Rosenkilde et al. 2019). Strong pleiotropic effects can

have dramatic effects on the evolutionary outcome as key traits

may improve or deteriorate even in the absence of direct selec-

tion (Martin and Lenormand 2015; Harmand et al. 2017).

In time-dependent environments, epistasis and pleiotropy

are expected to give rise to historical contingency of evolu-

tion whereby the mutations that are adaptive in the current
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environment are contingent on the adaptive mutations accrued

in the previous environment(s) (Kim et al. 2014; Nichol et al.

2015; Yen and Papin 2017). This should be seen as differences

in the mutational paths and profiles as well as in phenotypic out-

comes when the order of the environments is altered, with some

sequences constraining and others potentiating evolution. From a

statistical viewpoint, the variance of outcomes should therefore

be greater than expected by chance. A low deviation from the

null expectation would indicate a negligible role for epistasis and

pleiotropy in adaptation. For instance, in the case of strong selec-

tive pressures, selection may be strong enough and sustained for

long enough to allow for fixation of the relevant mutations be-

fore the environment changes again, causing the mutational pro-

file and adaptive trait outcome in a time-dependent environment

to be simply an aggregate of exposure to each environment in

isolation. However, because strong adaptations often have delete-

rious consequences on conserved traits (among the most frequent

modes of pleiotropy), accruing a succession of strong adaptations

each accompanied by a fitness cost may prove deleterious after a

particular set of environments. This could cause the extinction

probability to increase as a function of the number of environ-

ments. A dependence of extinction dynamics on the environmen-

tal sequence, in turn, could indicate a stronger role for epistasis

or pleiotropy, among other factors (i.e., demographic decline or

epigenetic changes caused by previous environment).

Even though evolution in real-world systems typically oc-

curs in dynamic fitness seascapes rather than static landscapes,

evolutionary dynamics in fitness seascapes remain relatively

poorly understood (Jasmin and Kassen 2007; Boyer et al. 2021).

Among the underexplored questions features the relative contri-

bution of directional selection and pleiotropy on the evolutionary

outcome in time-invariant versus time-dependent environments.

Moreover, the extent to which the environmental sequence de-

termines the evolutionary outcome in time-dependent environ-

ments has not been comprehensively examined. The relative role

of these processes influences the predictability of evolution and

determines the conditions where adaptation is constrained or en-

hanced, which is key also for any practical efforts to guide evolu-

tion, such as in evolutionarily informed strategies to treat cancer

or mitigate antimicrobial resistance (Nichol et al. 2015; Roemhild

and Schulenburg 2019; Tyers and Wright 2019).

Here, we designed a minimal setup for assessing evolution-

ary outcomes in fitness seascapes, comparing time-invariant and

time-dependent environments, and including among the latter all

possible permutations of environmental orders. We used a mi-

crobial model system exposing Escherichia coli at high replica-

tion to four environmental epochs consisting of three different

antimicrobials at subinhibitory levels and an antimicrobial-free

environment (Fig. 1). We also performed the full experiment in

the presence of a bacteriophage to investigate the modulatory im-

pact of an added layer of selective pressure, resulting in a to-

tal of 928 bacterial populations. Phages are also of interest by

adding another biotic stress to the system as well as represent-

ing an alternative type of antibacterial agent, with an increasing

trend in real-life clinical applications of phage therapy. We phe-

notyped populations over time for adaptation to each selective

pressure as well as phenotyping and whole-genome sequencing

clones isolated from populations at the experimental end point.

To assess differences in evolutionary outcomes between fitness

seascapes, we used a combination of analyses, including informa-

tion theoretical and machine learning approaches. This enabled

us to identify characteristics of fitness seascapes constraining or

enhancing adaptation and influencing the predictability of evolu-

tion. Our findings have implications for evolutionarily informed

strategies to manage populations, such as mitigating antimicro-

bial resistance evolution.

Methods
MODEL ORGANISMS

As a model organism, we used the E. coli strain REL606 (Ara−)

obtained from the Yale Stock Center (E. coli B ATCC 11303).

To enable distinguishing strains from mixed cultures in poten-

tial competition assays, we produced an REL607-like (Ara+) mu-

tant by culturing REL606 on minimal arabinose plates (personal

correspondence with Richard Lenski). The mutant was verified

by Sanger sequencing by a third party (Institute of Biotechnol-

ogy, University of Helsinki), and has the same point mutation

as REL607, allowing the use of arabinose as a carbon source

and thereby chromogenic differentiation from REL606 on ara-

binose agar (Fig. S1). A co-culture competition assay was used

to determine that the two strains did not initially differ in fitness

(Fig. S2). Additional details for mutant isolation and the com-

petition assay are described in Methods in the Supporting Infor-

mation and Tables S1-S3. As virulent bacteriophage, we used T4

strain ATCC 11303-B4. All culturing steps across experiments

were performed at 37°C.

SERIAL PASSAGE EXPERIMENT

We conducted a 48-day serial passage experiment consisting

of four 12-day epochs (Fig. 1). To allow an exhaustive explo-

ration of equivalent antimicrobial exposure space, we subjected

initially isogenic populations of E. coli to all permutations of

four antimicrobial treatments (one epoch each). This generated a

total of 24 unique exposure histories containing the same antimi-

crobial treatments in different orders. In addition, we included

five sequences, three of them featuring the same antimicrobial

treatment (i.e., time-invariant single agent environment) and

one containing all antimicrobials combined (i.e., time-invariant

combination environment) across all epochs throughout the
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Figure 1. Overview of experimental design to systematically study evolution under fitness seascapes. The main experiment on the

left was a 48-day serial passage experiment where initially isogenic E. coli was subjected to a control environment without antimicro-

bials; time-invariant environments with single antimicrobials or all three antimicrobials combined; and time-dependent environments

encompassing all permutations of four 12-day epochs, including the three antimicrobials and one antimicrobial-free environment. The

antimicrobials were used at subinhibitory concentrations (0.5 × MIC). This translates into a fitness cost seen as an intrinsic growth rate

(r) of the ancestral bacteria relative to the antibiotic-free environment of 0.88, 0.46, and 0.36 for nalidixic acid, rifampicin, and spectino-

mycin, respectively. The full experiment was repeated with and without initial introduction of phage representing an alternative type of

selection pressure. Each unique treatment combination was replicated 16 times, amounting to a total of 928 independent populations,

which were cross-phenotyped over time against low-level resistance to each of the antimicrobials. In addition, a single dominant clone

was isolated from all surviving end-point populations (N = 900) and phenotyped for growth (optical density [OD] at 600 nm after 24-

hour culture) at several concentrations of each antimicrobial. To investigate the underlying molecular evolution, a subset of 235 clones

representing different regimes and divergent low-level resistance outcomes were also subjected to whole-genome sequencing.

experiment, as well as an antimicrobial-free control environment.

The four antimicrobial treatments for the four 12-day epochs in

the permutation (i.e., time-dependent) environments consisted

of three antimicrobial-containing and one antimicrobial-free

treatment. The antimicrobial-free treatment was added because

antimicrobial-free periods can have a major effect on resistance

dynamics by either reversing prior resistance owing to fitness

costs or by potentiating future adaptation through compensatory

adaptations or increased genetic heterogeneity. The three an-

timicrobials were selected based on the previously established

susceptibility of E. coli REL606 and its ability to de novo evolve

resistance to them, as well as difference in antimicrobial class,

mode of action, and genomic target of resistance mutations.

Different antibiotic classes were used to avoid major synergy

or antagonism. However, because such effects at weaker levels

are extremely common, we considered that they cannot be com-

pletely ruled out and did not screen for them at the experimental

design phase. The antimicrobials thus selected were nalidixic

acid (naphthyridone, quinolone-like antimicrobial targeting DNA

gyrase), rifampicin (rifamycin antimicrobial targeting RNA poly-

merase), and spectinomycin (aminocyclitol, aminoglycoside-like

antimicrobial targeting 30S subunit of ribosome). In addition to

the antimicrobials, the full experiment was performed both with

and without the bacteriophage T4, representing an alternative

selective pressure or drug type (phage therapy) with a likely even

more divergent cellular target and mode of resistance compared

to those between the antimicrobial compounds.

The experiment was performed in a deep 96-well plate

setup in the DM1000 medium, which produces approximately

2 × 109 cells mL−1 during a 24-hour culture cycle at 37°C.

The experiment was started by adding approximately 106 cells

from a 24-hour culture of E. coli to a final volume of 500 µL of

DM1000 containing the appropriate antimicrobials. The antimi-

crobials were used at 0.5 × minimum inhibitory concentration

(MIC) to cause relatively strong selection for resistance while not

immediately killing susceptible cells or causing extinction of the

bacterial population in the presence of phage due to synergistic

population crash. Details for MIC determination are described in

Methods in the Supporting Information and Figure S3. This trans-

lates into a fitness cost seen as an intrinsic growth rate (r) of the

ancestral bacteria relative to the antibiotic-free environment of

0.88, 0.46, and 0.36 for nalidixic acid, rifampicin, and spectino-

mycin, respectively (Fig. S4). For the phage treatments, 5 × 105

infective particles (constituting a multiplicity-of-infection value,

or MOI, of 0.5) were subsequently added to the wells. Antibiotic

MIC and phage MOI are not comparative measures as virulent
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phages are multiplying entities that kill susceptible bacteria,

whereas antibiotic MIC is a static concentration that kills sus-

ceptible bacteria only at concentrations starting from the MIC

level. Both phage MOI and antibiotic level relative to MIC affect

resistance evolutionary dynamics in important ways. The lower

the MOI, the more generations bacteria have to evolve resistance

until the majority of the population will encounter the phage.

Similar to low MOI levels, sub-MIC levels of antibiotics that

are high enough to cause positive selection for resistance do

not require resistance to be immediately present in the standing

genetic variation of the population but resistance may evolve

over time in a susceptible population. The well plates were

cultured at 37°C with constant shaking at 120 r.p.m.

Every 24 hours, 2% (10 µL) of the old culture was trans-

ferred to a new well containing fresh medium and the appro-

priate antimicrobial. However, the phage was allowed to go ex-

tinct without replenishment. Every 96 hours, the cultures were

freeze-stored with glycerol at –20°C for later analyses. Details

concerning antimicrobial MIC determination using the microdi-

lution method, the culture medium, and antimicrobial concentra-

tions can be found in Methods in the Supporting Information. To

ensure adequate statistical power, each of the unique treatment

combinations (N = 58, including 24 antimicrobial sequences and

five monotherapy, combination therapy, or control sequences in

absence/presence of T4 phage) was repeated 16 times, eight times

each for the REL606 and REL607-like strain. This resulted in a

total of 928 unique serially passaged E. coli populations.

MEASURING ANTIMICROBIAL AND PHAGE

RESISTANCE PHENOTYPES

We quantified the evolution of antimicrobial and phage resistance

over time using a pin replicator on agar plate method. In addi-

tion, we isolated one individual clone from each experimental

end-point population and phenotyped the clone in experimental

conditions for resistance to a range of multiplicities of the MIC

value of the ancestral E. coli strain (1, 2, 10, or 100 × MIC), as

well as to the phage. The protocols used are described in detail in

Methods in the Supporting Information and Figures S5-S7.

DNA EXTRACTION, SEQUENCING, AND

PRE-PROCESSING SEQUENCE DATA

DNA extraction for clones from the experimental end point was

performed using the Qiaqen DNeasy 96 Blood & Tissue kit ac-

cording to a custom protocol (detailed protocol below). DNA

concentration was measured with the Qubit® 3.0 fluorometer

(Thermo Fisher Scientific, Waltham, MA, United States) using

the HS assay kit. Whole genome sequencing was performed

with the Illumina NovaSeq SP 300 (2 × 150 bp) platform by

a third party (Institute for Molecular Medicine Finland, FIMM)

according to in-house protocols. FASTQ files obtained from

FIMM were quality controlled with Cutadapt version 1.10 (Mar-

tin 2011), including removal of sequencing adapters (with mini-

mum overlap, -O, of 10 bp set for adapter match) and trimming

sequences by allowing minimum Phred-scaled quality cutoff (-

q) of 28 for the 30 end of each read, and minimum length of

30 bp. Before and following quality control, the quality of the

sequence data was assessed with FastQC version 0.11.8 (http:

//www.bioinformatics.babraham.ac.uk/projects/fastqc) and Mul-

tiQC version 1.7 (Ewels et al. 2016).

GENOME ALIGNMENT, VARIANT CALLING, AND

ANNOTATION

The pipeline used for genomic variant calling and annotation is

described in detail in Methods in the Supporting Information.

The main steps were alignment to the reference genome (NCBI

Reference Sequence NC 012967, assembly ASM1798v1) with

Bowtie 2 version 2.3.4 (Langmead and Salzberg 2012), variant

calling using the Genome Analysis Toolkit (GATK) version 3.8

(McKenna et al. 2010) followed by hard-filtration, and variant

annotation using SnpEff version 4.3i (Cingolani et al. 2012).

REGRESSION AND MACHINE LEARNING ANALYSES

The regression and machine learning analyses (Figs. 2A-F, 3,

4, and 5A) were performed in the R version 3.6.1 environment

(R Core Team 2019). Binomial generalized linear (i.e., logistic

regression) models, with binary drug resistance or phage resis-

tance outcome as a response variable and antimicrobial regime

(time-invariant single agent, time-invariant combination, or time-

dependent protocol), antimicrobial exposure epoch, phage pres-

ence, and presence of nonsynonymous mutations in genes of in-

terest as covariates, were performed for experimental end-point

populations or clones using the glm function in base R. Time

series resistance data for time-invariant nalidixic acid and ri-

fampicin environments were analyzed using generalized least

squares models, as implemented in the nlme package (Pinheiro

et al. 2017), assuming AR1 residual correlation structure within

replicates. Random forest models for predicting exposure epochs

from end-point phenotypes were generated using the randomFor-

est package (Liaw and Wiener 2002). Details about the machine

learning procedure are described in Methods in the Supporting

Information.

MUTUAL INFORMATION ANALYSES

The analyses were performed in Python, using NumPy and pan-

das. We first bootstrapped 10,000 individual datasets drawn from

the full dataset. Subsequently, the mutual information between

experiment outcome and experimental conditions (i.e., environ-

mental history) was calculated on these sets and averaged to a

single value.
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(A) (C)

(E)

(G)

(F)

(D)

(B)

Figure 2. Contingency of phenotypic outcome and mutation landscape on selective regime. Panels A and B show resistance dynamics

over time for nalidixic acid and rifampicin, respectively (mean ± bootstrapped 95% confidence intervals; 32 replicates per mean data

point; data in presence and absence of phage pooled). Gray rectangles denote epoch boundaries for time-dependent protocols. Panels C,

D, E, and F show low-level resistance outcomes to nalidixic acid, rifampicin, spectinomycin, and phage T4, respectively, for clones isolated

from each population at the experimental end-point (logistic regression expected value ± 95% confidence intervals; 16 replicates per

mean data point). Resistance has been quantified as a binary variable and indicates the ability to grow at levels exceeding the minimum

inhibitory concentration of the ancestral bacterial strain. (G) Mutational landscape. The heat map on the left shows the proportion of

sequenced clones containing a nonsynonymous (or infrequently synonymous) mutation in a gene recurrently hit in the dataset. The genes

have been ordered by total number of hits. The bar plot on the right shows the median mutation count for clones in each history (lack of

bar indicates median of 0 mutations). The y-axis labels indicate the antimicrobial therapy protocol with the following encoding for each

of the four 12-day experimental epochs: X = antimicrobial-free environment; N = nalidixic acid; R = rifampicin; S = spectinomycin; A =
all three antimicrobial compounds combined.

The following definition of mutual information was used for

the calculation:

I (X ;Y ) =
∑

y∈Y

∑
x∈X

p(X,Y ) (x, y) log

(
p(X,Y ) (x, y)

pX (x) pY (y)

)
.

The marginal probabilities pX(x) were calculated by count-

ing the number of samples corresponding to every outcome x—

the level of resistance to the antimicrobial of interest, or the sum

of these resistances as in the multidrug resistance column in

Figure 5B—and dividing the counts by the total number of

samples.

The marginal probabilities pY(y) were calculated by count-

ing the number of samples that were subjected to experimental

conditions y, and dividing the counts by the total number of

samples; these conditions correspond either to exposure to phage;

the first epoch a particular antimicrobial has been administered

if at all; the type of treatment used, grouping the alternating

treatments together while considering the uniform treatments
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(A) (B) (C)

Figure 3. Pleiotropy and fitness effect of resistance. (A) Low-level nalidixic acid and spectinomycin resistance after 48 days in time-

invariant rifampicin environment (mean ± bootstrapped 95% confidence intervals). (B) Influence of phage resistance on whether muta-

tions in the genes nadR, rpoB, or spoT produce a low-level spectinomycin resistant phenotype (mean ± bootstrapped 95% confidence

intervals). The data are for clones from phage-exposed environments (for which phage resistance phenotype was determined). (C) Fitness

effect of phage resistance (mean ± bootstrapped 95% confidence intervals). Fitness has been quantified as optical density (OD) at 600 nm

wavelength after 24-hour culture in liquid medium. The value has here been related to the mean growth of the clones from the control

treatment (absence of antimicrobials and phage). The data for all the figures is for clones isolated from populations at the experimental

end point (Ntotal = 900), with subset treatments or phenotypes included in a particular analysis indicated in the figure or legend.

(A) (B) (C)

Figure 4. Antimicrobials driving resistance evolution in time-dependent regimes. (A) Rifampicin resistance over time as a function of

rifampicin exposure epoch (both in presence and absence of phage that had no effect on selective antimicrobial as it did for nalidixic acid).

(B) Nalidixic acid resistance over time in the absence of phage as a function of rifampicin exposure epoch. (C) Nalidixic acid resistance over

time in the presence of phage as a function of nalidixic acid exposure epoch. All the data are shown as mean resistance ± bootstrapped

95% confidence intervals, and are based on N = 928 populations. The shaded area indicates the relevant (antimicrobial color code)

exposure epoch.

individually; and finally, the full exposure histories. These condi-

tions were then further distinguished additionally by whether the

phage had been administered or not. Similarly, the joint probabil-

ities pX,Y(x,y) were calculated by counting the number of samples

corresponding to every outcome x while subjected to experimen-

tal conditions y, and dividing the counts by the total number of

samples.

Results
EVOLUTIONARY DYNAMICS AND OUTCOMES DIFFER

BETWEEN AND WITHIN TIME-INVARIANT AND

-DEPENDENT ENVIRONMENTS

The evolutionary dynamics and outcomes differed both be-

tween and within time-invariant and time-dependent environ-

ments (Fig. 2A-F; for statistical outputs for each selective agent
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(A)

(B)

Figure 5. Predictability of past drug exposure and future resis-

tance evolution in time-dependent regime. (A) Degree of predic-

tive power obtained for antimicrobial and phage exposure past

based on phenotypic data from populations and clones at the

end-point of 48-day serial passage experiment. The white dashed

line indicates the level of predictability of the estimated factor by

chance. (B) Mutual information between exposure history (rows)

and end-point clone antimicrobial resistance phenotype states

(columns). The exposure histories are described at various levels of

detail ranging from coarse (phage status and epoch of exposure to

an antimicrobial separately) to full information (phage status and

antimicrobial epoch order considered simultaneously). For exam-

ple, the phage presence label of the histories carries substantial

information on spectinomycin resistance status of the end points

clones.

at population and clone levels, see Tables S4-S10). Within

the time-invariant environments, as expected, constant subin-

hibitory (0.5 × MIC) selection by a single selective pressure

(i.e., antimicrobial agent) leads to the emergence of low-level

(1 × MIC) resistance and phage selection to the emergence

of phage resistance. Selection was strongest for one antimicro-

bial agent, rifampicin, with most replicate populations evolv-

ing low-level resistance both in the presence and absence of

bacteriophage. The two other agents, nalidixic acid and specti-

nomycin, depended on the presence of bacteriophage for resis-

tance to evolve to levels detectable for clones from the experi-

mental end point. Even then, low-level resistance only evolved

in a minority of the replicate populations. The development of

nalidixic acid and spectinomycin resistance in the presence of

phage could be caused by a higher effective MIC (i.e., higher

selection coefficient) in the presence of an additional stressor.

More sensitive population-level phenotyping over time, where re-

sistance in a subset of the population could yield a positive sig-

nal (while end-point clones represent dominant population phe-

notypes), showed stronger nalidixic acid resistance development,

with a minor clade in most populations developing low-level re-

sistance (end-point phenotyping for one clone from each popu-

lation could only reveal major clade resistance). This could not

be assessed for spectinomycin as the temporal population-level

data were too noisy (high levels of positive signal across en-

vironments). This is likely to be the outcome of random ge-

netic variation in minor clades exhibiting low-level resistance

phenotypes.

A time-invariant environment combining all three antimicro-

bials showed similar levels of rifampicin resistance and higher

levels of nalidixic acid resistance (also in the absence of phage)

compared to the single-antimicrobial environments, whereas

spectinomycin resistance failed to evolve. The higher levels of

nalidixic acid resistance could either be the outcome of the ef-

fective MIC being higher (i.e., higher selection coefficient) in

the multidrug (i.e., multistressor) environment compared to the

single-drug environment or pleiotropic effects from rifampicin

resistance (inspected further below). Because spectinomycin ex-

hibited the weakest selection pressure out of the three antimi-

crobials, the failure of spectinomycin resistance to evolve in the

multidrug environment may be the outcome of the fitness cost

of more readily evolved rifampicin or nalidixic acid resistance

further decreasing the selection coefficient for spectinomycin

resistance.

Evolution was strongly constrained for two out of the

three antimicrobials, rifampicin and nalidixic acid, in the time-

dependent compared to time-invariable environments, with no

to low proportions of replicate populations evolving low-level

resistance. Spectinomycin was a striking exception, with no

sign of resistance evolution in the presence of phage but high
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prevalence of resistance in the absence of phage (see next section

for interpretation).

Phenotypic resistances to each of the antimicrobials as well

as the phage were associated with recurrent mutations in partic-

ular genes (Fig. 2G). Some of these genes have previously been

associated with phenotypic resistance to these agents, whereas

others have not and are implicated with low-level phenotypic re-

sistance in this study (for detailed information on these genes and

references to previous research, see Results in the Supporting

Information). There were little signs of differences in recurrent

genes between time-invariant and time-dependent environments,

although the low prevalence of resistance evolution in the latter

prevents a thorough statistical testing of this question.

PLEIOTROPIC AND FITNESS EFFECTS OF STRONG

SELECTIVE AGENTS, RIFAMPICIN AND PHAGE,

MODULATE EVOLUTIONARY OUTCOME

Unexpectedly, in terms of the different modes and targets of re-

sistance for the different antibiotics, the time-invariant rifampicin

environment resulted in an increased probability of low-level

resistance to nalidixic acid and spectinomycin, specifically in

the absence of phage (Fig. 3A). When comparing control and

time-invariant rifampicin environments with and without phage,

nalidixic acid-resistant clones only occurred in time-invariant ri-

fampicin environments without phage (hence, their prevalence

between these environments cannot be compared using logis-

tic regression). Low-level spectinomycin resistance, in turn, oc-

curred in a small subset of the populations also in the control

environments but was extremely prevalent in the time-invariant

rifampicin environment without phage (time-invariant rifampicin

environment vs. control, P = 0.039; phage presence, P < 0.001;

interaction, P = 0.002; for full results, see Table S11). More-

over, low-level spectinomycin resistance was much more preva-

lent in time-dependent environments in the absence of phage

compared to the time-invariant spectinomycin environment. We

hypothesized that both observations could result from pleiotropic

effects of mutations selected by rifampicin (Jin and Gross 1989;

Balbontin et al. 2021), with either mutational targets being al-

tered or the pleiotropic effect being modulated by the presence

of phage. In line with the latter explanation, we found that six

out of eight clones containing rpoB mutations (producing ri-

fampicin resistance) and unexposed to the phage displayed low-

level resistance to spectinomycin. Conversely, only four out of

17 clones with rpoB mutations in the presence of phage dis-

played resistance to spectinomycin. We also found a similar pat-

tern of antimicrobial cross-resistance depending on phage resis-

tance for two other genes: the stringent response gene spoT that

was mutated across experimental treatments and the previously

identified spectinomycin-selected gene nadR (Fig. 3B). Conse-

quently, clones containing mutations in either nadR, rpoB, or

spoT had a high likelihood of exhibiting a low-level spectino-

mycin resistance phenotype conditioned on occurring in a phage

susceptible genomic background (ANOVA for binomial gener-

alized linear model: presence of mutations in nadR, rpoB, or

spoT, χ2
1,233 = 1.90, P = 0.17; phage resistance, χ2

1,232 = 25.7,

P < 0.001; presence of mutations in nadR, rpoB, or spoT × phage

resistance, χ2
1,231 = 7.01, P = 0.008).

Furthermore, we found that all mreC mutants (selected by

rifampicin) as well as a single mreD mutant displayed low-level

multidrug resistance. Two of three mreC mutants (containing

the same frameshift mutation, Glu291fs) and the mreD mutant

were resistant to all three drugs, whereas a single mreC mu-

tant (Val46Gly) was resistant to both nalidixic acid and spectino-

mycin but remained susceptible to rifampicin. Mutations in mreC

and mreD, whose products work in concert to determine cell

shape and elongation, did not occur in the presence of phage. In

turn, mutations in marR selected by rifampicin that occurred only

in the presence of phage also resulted in nalidixic acid resistance.

These mutations could therefore explain the increased probabil-

ity of nalidixic acid resistance in the presence of rifampicin. In

addition, we found that phage resistance, associated, in partic-

ular, with mutations in fabR, galU, and ECB RS18465, had a

strong fitness cost as indicated by reduced bacterial growth af-

ter 24-hour culture (88.8% growth of phage sensitive clones) in

the absence of the phage or antimicrobial compounds (ANOVA

for linear model: phage susceptibility, F1,898 = 84.1, P < 0.001)

(Fig. 3C). Together these observations suggest that nalidixic

acid and spectinomycin resistance dynamics were to a large ex-

tent driven by the other two selective agents (rifampicin and

phage) imposing stronger selection through the following three

mechanisms: (i) cross-resistance (i.e., pleiotropic) mutations se-

lected in the presence of rifampicin; (ii) the effect of phage

on the strength of selection for antimicrobial resistance and

the targets of antimicrobial resistance mutations; and (iii) the

loss of the antimicrobial resistance phenotype of specific muta-

tions in a phage-resistant background. Cases (ii) and (iii) may

be related to the strong fitness-impairing consequence of phage

resistance.

MODIFYING EFFECTS OF STRONG SELECTIVE

ENVIRONMENTS LARGELY EXPLAIN DIFFERENCES

BETWEEN TIME-DEPENDENT ENVIRONMENTS

The evolutionary dynamics described above largely determined

differences in low-level resistance levels between the time-

dependent environments. First, rifampicin that was the strongest

selective antimicrobial compound caused resistance to occur as

a function of exposure epoch mainly by selecting for rpoB mu-

tations followed by negative selection post exposure (Figs. 4A

and S8B; rifampicin exposure epoch, P = 0.074; for full results,

see Table S11). Second, nalidixic acid resistance occurred at a
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much lower level in general (Figs. 4B,C and S8A). It occurred as

a function of rifampicin exposure in the absence of phage where

selection by nalidixic acid was weak and rifampicin was selected

for low levels of nalidixic acid cross-resistance by mreC muta-

tions (Figs. 4B and S8A; nalidixic acid exposure epoch, P = 0.48;

rifampicin exposure epoch, P = 0.003; for full results, see Ta-

ble S12). In the presence of phage, however, nalidixic acid re-

sistance was more strongly driven by nalidixic acid exposure se-

lecting for acrR and ECB RS03400 mutations (Figs. 2G, 4C, and

S8B; nalidixic acid exposure epoch, P = 0.007; rifampicin ex-

posure epoch, P = 0.22; for full results, see Table S13). This

is consistent with the bacterial cells experiencing stronger selec-

tion for nalidixic acid resistance in the presence of both phage

and nalidixic acid compared to nalidixic acid alone. Finally, in

line with cross-selection by rifampicin, spectinomycin resistance

level was influenced by both the spectinomycin and rifampicin

exposure epochs, although being mainly determined by the pres-

ence of phage (Figs. 3B and S8C; spectinomycin exposure epoch,

P = 0.012; rifampicin exposure epoch, P < 0.001; phage pres-

ence, P < 0.001; for full results, see Table S14).

A high prevalence of low-level spectinomycin resistance in

the absence of phage accounted for a large proportion of positive

resistance signals in the phenotypic dataset. Because of this, low-

level multidrug resistance (here referring to resistance to mul-

tiple antimicrobial compounds and excluding resistance to the

phage) was more likely to occur in the absence of phage despite

the phage exacerbating selection for rifampicin and nalidixic

acid resistance in the time-invariant single-drug environments. As

nalidixic acid selection was weak, most cases of multidrug resis-

tance were cases of rifampicin-spectinomycin cross-resistance.

Notably, three out of five among the sequenced clones display-

ing resistance to all three agents contained mutations in the cell

shape determining genes mreC and mreD. Although rifampicin

resistance levels began to decay after the rifampicin exposure

epoch, likely owing to a fitness cost of rifampicin resistance (Jin

and Gross 1989; Balbontin et al. 2021), the effect was too weak

to introduce a clear history dependence effect on low-level mul-

tidrug resistance levels. Therefore, differences in the evolutionary

outcome between the time-dependent environments were mostly

accounted for by the following factors: differences in selection

strength between the agents; pleiotropic effects of rifampicin re-

sistance; and modifying effects of phage exposure on antimicro-

bial resistance evolution.

INFERENCE OF ENVIRONMENTAL PAST AND

PREDICTABILITY OF EVOLUTIONARY FUTURE ARE

STRONGEST FOR DRIVER SELECTIVE ENVIRONMENTS

The strong selective environments (rifampicin and phage) largely

accounting for the low-level multidrug resistance landscape, cor-

respondingly, exhibit the strongest predictive power regarding the

past drug exposure and future resistance outcome of the bacterial

populations (Fig. 5A). As expected based on the strong fitness

consequence of phage resistance, machine learning (random for-

est) models were able to predict past phage exposure with high

accuracy based on growth data from end-point clones in the ab-

sence or presence of different levels of the experimental antimi-

crobials. The same data could also be used to train a model to

precisely predict the rifampicin exposure epoch, consistent with

rifampicin resistance levels both decaying after exposure and in-

fluencing the overall resistance phenotypes. Conversely, in line

with expectations, high-accuracy predictive models could not be

constructed for the exposure epoch of the weak selective agent

nalidixic acid or cross-selected agent spectinomycin. These fac-

tors were also seen as modest predictive power of models predict-

ing the full antimicrobial exposure sequence (i.e., environmental

past). Therefore, the ability to infer the past from the current phe-

notypic state is increased by high selection coefficients and strong

fitness effects of resistances and can be obscured by low selection

coefficients and pleiotropy.

We further quantified the mutual information between the

environmental past (antibiotic/phage exposure sequence) and

end-point phenotype (resistance to each antibiotic and phage)

(Fig. 5B). A large value of mutual information between an en-

vironment and a phenotype indicates that knowing one substan-

tially removes uncertainty about the other. Phage and spectino-

mycin exhibited strong mutual information (0.27 [SD 0.03]) and

adding the detail of the antimicrobial exposure order further in-

creased it to 0.51 (SD 0.03). For nalidixic acid and rifampicin,

knowing whether the exposure history had phage or not carried

little information. However, for both compounds, increasing the

detail of the antimicrobial exposure order carried information. In

contrast to the random forest modeling results, we noticed that

the epoch of exposure to rifampicin did not greatly reduce un-

certainty for the individual end-point resistance states. This is

due to the random forest model exploiting both population and

clone data at multiple MIC values—beyond binary (quantitative

OD value instead of 0 for susceptible and 1 for resistant)—as well

as using the joint phenotype, respect to all compounds, as its basis

for predicting (i.e. classifying) the past exposure environment.

Together these results are consistent with the previously re-

ported strongest environment-phenotype links, namely, the re-

lationship between rifampicin and phage exposures and cor-

responding resistances, and the (inverse) relationship between

phage presence and low-level spectinomycin resistance. There-

fore, establishing the relationship between driver environments

(i.e., strong selective agents; here, rifampicin and phage) and phe-

notypic states is critical for understanding and predicting evolu-

tion along time-dependent fitness seascapes.
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Discussion
Inspecting differences in evolutionary dynamics between time-

invariant and time-dependent fitness seascapes, we found that

specific environments drove environment-phenotype links. These

driver environments (here, one subinhibitory antimicrobial, ri-

fampicin, and phage) were characterized by strong selective pres-

sure on the target adaptive trait (rifampicin and phage resistance

at the phenotypic and genetic levels) and pleiotropic effects on

off-target traits (growth ability and susceptibility to the other an-

tibacterial agents, along with related mutational changes). Fur-

thermore, we showed that establishing the driver environments

and their phenotypic consequences is key for predicting evolu-

tion along fitness seascapes. Our data are also consistent with the

order of the driver agents strongly influencing the evolutionary

outcome in time-dependent fitness seascapes compared to the or-

der in general. These findings expand previous findings showing

the importance of a limited number of key drivers in multistressor

environments into a temporal setting (Brennan 2015; Boyd et al.

2016; Brennan et al. 2017). The practical importance of this find-

ing is stressed by the fact that time-dependent fitness seascapes

in real-life scenarios are highly unlikely to contain a set of envi-

ronments identical in terms of the strength of selection and the

strength of epistatic and pleiotropic effects. Therefore, any effort

to construct general laws and models for evolution along fitness

seascapes should account for temporal or environmental differ-

ences in the strengths of these factors.

The driver agents may partly be accounted for by higher

selection pressure. In our study, nalidixic acid that exerted the

smallest selective effect also has the smallest effect on the growth

rate (r) of the bacteria relative to the antibiotic-free environment

(0.88). In contrast, of the driver agents, rifampicin has a strong ef-

fect on bacterial growth at the experimental concentration (0.46),

and the phage is virulent, lysing all susceptible cells and therefore

imposing strong selective pressure. Intriguingly, however, specti-

nomycin has the strongest growth effect (0.36) but did not drive

the system similarly to rifampicin and the phage. This suggests

that also other factors contribute to an agent driving evolution in

a multidrug setup, such as pleiotropic effects of resistance muta-

tions previously documented for rifampicin (Jin and Gross 1989;

Balbontin et al. 2021). It should also be noted that growth in the

antibiotic environment is not the only factor determining selec-

tion pressure but it is also affected by factors such as the fitness

effects of resistance mutations.

Although our experimental setting using sub-MIC selection

(0.5 × MIC) did not mimic therapeutic antimicrobial levels, our

findings have a number of potential implications concerning the

global antimicrobial resistance crisis. First, sub-MIC levels of an-

timicrobials occur in many human-impacted environments such

as wastewater and agricultural environments, as well as in the

concentration gradients within the tissues of medicated humans,

production animals, and pets. In these conditions, depending on

the antimicrobial compound, even very low concentrations can

increase the fitness of resistant cells above that of susceptible

cells, causing positive selection for resistance (Gullberg et al.

2011). Because of weaker selection compared to high antibiotic

levels, mutations producing resistance in such conditions cannot

afford to be coupled with strong fitness costs (Gullberg et al.

2011). This can lead low-antibiotic-level environments to facil-

itate the stepwise evolution of high-resistance, low-fitness-cost

mutants particularly problematic to remove if they spread among

humans or production animals as pathogens (including oppor-

tunistic pathogens) (Baym et al. 2016). Our findings demonstrate

that particular driver agents (here rifampicin) can create low

levels of resistance against multiple drugs even at sub-MICs, a

phenomenon (pervasive pleiotropy causing cross-resistance or

collateral susceptibility) studied previously mainly for high an-

timicrobial levels (Cairns et al. 2017; Rosenkilde et al. 2019;

Liu et al. 2020). This finding expands the scope of the potential

undesired consequences of environmental antimicrobial residues.

Such environments are also highly likely to experience residues

of different antimicrobials over time, creating fitness seascapes

similar to those included in our study setup. Under such condi-

tions, it may be important to establish the historical exposure of

the environment to particular driver agents as part of risk estima-

tion for subsequent antimicrobial contamination.

Second, the driver agents modified the interplay between se-

lection and the epoch length by exacerbating selection and thus

partially removing the desired filtering effect of epochs to resis-

tance evolution. As the driver agents affected resistance evolu-

tion to both directions, assessing their overall impact for a spe-

cific therapy requires experimentation. Clearly, identifying and

testing the impact of such driver agents has potential for ther-

apy optimization and their efficient usage should be studied fur-

ther using eco- evolutionary control theory (Lässig and Musto-

nen 2020). Intriguingly, driver agents do not necessarily need to

be antimicrobials; for instance, the effects of stress environments

can be further modulated by inhibiting global regulators (Jarosz

and Lindquist 2010).

Interestingly, it was recently demonstrated that cellular hys-

teresis whereby transgenerational changes in cellular physiology

induced by one drug alter the bacterial response to a second drug

can influence bacterial evolutionary trajectories in alternating

drug protocols, particularly with rapid (every 12 or 24 hours)

switching (Roemhild et al. 2018). It is conceivable that cellular

hysteresis could have contributed to the evolutionary outcomes in

this study. Because the number of putative resistance mutations

accumulated over exposure to three drugs and phage tended

to be low (two on average), pleiotropic effects of previously
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accumulated mutations are likely to explain only a fraction of

the variance in evolutionary trajectories between time-dependent

protocols. An interesting avenue of future exploration is whether

the driver environments are also more likely to induce cellular

hysteresis. This could contribute to particular drugs functioning

as driver agents in multidrug systems.

Our study also lends general insights into ecological re-

silience critical to understand owing to the climate and biodiver-

sity crisis. Based on our study findings, when organisms evolve in

temporally changing environments, particular environments (es-

pecially stressors) are likely to play a pivotal role in facilitating

or obstructing multi-environmental adaptation relative to the se-

quence of environments alone (Brennan 2015; Boyd et al. 2016;

Brennan et al. 2017). Identifying such key environmental condi-

tions and their off-target effects may be critical in fields such as

nature conservation for preventing population or community col-

lapse and for enhancing their biological resilience. This study and

a recent study with a microbial system (Hiltunen et al. 2018) sug-

gest that strong off-target effects of adaptations to particular envi-

ronments may be commonplace. Therefore, a failure to incorpo-

rate them in ecological and evolutionary predictions can severely

restrict the efficacy of interventions based on them.

Finally, fitness seascapes have been studied both experimen-

tally and theoretically much less than their static counterparts. A

reason behind this gap is the apparent complexities involved—

it is much harder to convince oneself that a particular fitness

seascape constitutes a minimal model worth studying at depth

compared to the canonical models of static landscapes familiar

from textbooks (Gillespie 1992). However, our results show that

experimental work on the topic is both feasible and informative

for future theoretical work. Indeed, the possibility of simplify-

ing evolution under complex seascapes by describing them in

terms of a few driver agents looks theoretically viable, although

the strength of selection and duration of exposure are likely to

considerably impact tractability.
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