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Abstract

The motivation to study location-domination comes from find-
ing objects in sensor networks. In this paper, we consider location-
domination of both single vertices and sets of vertices in cycles and
paths. In many cases, optimal codes, i.e. codes with the smallest
cardinalities, are found.

1 Introduction

Let G = (V, E) be a simple connected and undirected graph with V' as the
set of vertices and E as the set of edges. Let u and v be vertices in V. If u
and v are adjacent to each other, then the edge joining v and v is denoted
by wv. The distance d(u,v) is the number of edges in any shortest path
between u and v. For the rest of the paper, assume that r is a positive
integer. We say that u r-covers v if the distance d(u,v) is at most r. The
ball of radius r centered at u is defined as

B, (u) ={z eV | d(u,z) <r}.
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Furthermore, if X is a subset of V', then we define

B.(X) = B.().

reX

A non-empty subset of V is called a code, and its elements are called
codewords. Let C C V be a code. An I-set (or an identifying set) of the
subset X of V' with respect to the code C' is defined as

I(C;X) = I(X) = B.(X)NnC.

If X ={z xo,...,2}, then we denote in short I.(X) = I.(z1,x2,...,x¢).

Let X and Y be subsets of V. The symmetric difference of X and Y is
defined as X AY = (X \Y)U (Y \ X). We say that the vertices u and v
are r-separated by a code C C V (or by a codeword of C) if the symmetric
difference I,.(u) A I.(v) is non-empty.

We say that C C V is an r-locating-dominating code in G if for all
u,v € V\ C we have I,.(u) # 0 and I,.(u) # I.(v). In other words, C is
an r-locating-dominating code in G if each non-codeword is r-covered by a
codeword of C and each pair of non-codewords are r-separated by C. This
definition is due to Slater [13] in the case r = 1 and due to Carson [2] when
r > 2. Furthermore, Honkala et al. [10] introduced two generalizations of
r-locating-dominating codes, which instead of single vertices consider sets
of vertices. These definitions are as follows:

Definition 1.1. Let r and ¢ be positive integers. A code C C V is (r, < £)-
locating-dominating of type A — (r, < £)-LDA for short — in G if for all
X, Y CVsuchthat X #Y, |X| </l and |Y| < ¢ wehave XNC #YNC
or I.(X) # L.(Y).

The second variant is similar to the previous definition. However, now
we only consider subsets of V' \ C.

Definition 1.2. Let r and ¢ be non-negative integers. A code C' C V is
(r, < £)-locating-dominating of type B — (r, < ¢)-LDB for short — in G
if for all X, Y C V \ C such that X # Y, |X| < £ and |Y| < ¢ we have
1.(X) # L(Y),

Notice that the definition of (r, < £)-locating-dominating codes of type
A and type B both reduces to the one of r-locating-dominating codes when
¢ = 1. Tt is also clear that an (r, < f)-locating-dominating code of type A
is always an (r, < ¢)-locating-dominating code of type B.

The smallest cardinalities of an (r, < ¢)-locating-dominating code of
type A and type B in a finite graph G are denoted by M(Lanl})(G) and

M (LTZ% (@), respectively. Notice that there always exist an (r, < £)-locating-

dominating code of type A and type B in G. An (r, < ¢)-locating-dominating



code of type A or type B attaining the smallest cardinality is called optimal.
The smallest cardinality of an r-locating-dominating code in G is denoted
in short by MLP(G).

Locating-dominating codes are also known as locating-dominating sets
in the literature. The locating-dominating codes have been studied in vari-
ous papers such as [6, 7, 9, 10, 12, 15, 16]. For other papers on the subject,
we refer to the Web site [11]. Moreover, location-domination in cycles and
paths have been examined in [1, 3, 4, 5, 8, 13, 14].

Assume throughout the paper that n is an integer such that n > 3. A
cycle C,, = (Vi,, Ey,) is a graph such that the set of vertices V,, = {v; | i €
Z,} and the set of edges

En = {vivi-‘rl ‘ i= 07 13 s, — 1} U {vn—lv()}'

For the rest of the paper, we assume that the indices of v; € V,, are calcu-
lated modulo n. Hence, the set of edges can be written as E,, = {v;v;41 |1 €
Zy}. Similarly, we define a path P,, = (V,,, E!)) as a graph with the set of
vertices V,, as above and the set of edges FE/, = E,, \ {vn_1v0}. (Notice that
the problems concerning location-domination in paths of length one or two
are trivial.)

In what follows, in Section 2, we first recall some known results on 7-
locating-dominating codes in cycles and paths. Then we proceed with some
improvements on these results. In Section 3, we consider (r, < ¢)-locating-
dominating codes of type A in C, and P,,. Finally, in Section 4, we study
(r, < £)-locating-dominating codes of type B in C,, and P,.

2 On r-locating-dominating codes in C, and

Pr

We first present useful characterizations of the r-locating-dominating codes
in cycles and paths. For this, we need the concept of C-consecutive vertices
introduced in [1]. Let ¢ and j be positive integers. We say that (v;,v;) is
a pair of C-consecutive vertices in C, if v;,v; € V,, \ C and v, € C either
forallk=i+1,i+2,...,j—1lorforallk=j7+1,5+2,...,i— 1. In the
case of paths, we again say that (v;,v;) is a pair of C-consecutive vertices
if v;,v; € V;, \ C and all the vertices between v; and v; belong to C'.

Now we are ready to present the following characterization, which is
introduced in [1, Remark 3], for r-locating-dominating codes in paths.

Lemma 2.1 ([1]). A code C C 'V, is r-locating-dominating in Py, if and
only if (1) each vertex u € V, \ C is r-covered by a codeword of C' and (ii)
for each pair (u,v) of C-consecutive vertices in P, the vertices u and v are
r-separated by a codeword of C'.



Similar result for r-locating-dominating codes in cycles have been shown
in [5].

Lemma 2.2 ([5]). A code C C 'V, is r-locating-dominating in C,, if and
only if
(i) each vertex uw € V, \ C is r-covered by a codeword of C,

(ii) each pair (u,v) of C-consecutive vertices in C, is r-separated by C
and

(iii) there exists at most one vertex u € V,, \ C such that I.(u) = C.

The smallest cardinalities of 1-locating-dominating codes in P,, and C,
have been solved by Slater in [13] and [14]. In particular, he showed that
MEP(C,) = M1(P,) = [2n/5]. For general r, we have the following lower
bounds for the smallest cardinalities in C,, and P, by Bertrand et al. [1]:

MEP(C,) > | 5] (1)
and . el
MEPp) 2 | @)

In [8], it is shown that the lower bound (2) is always attained when r = 2,
ie. MEP(P,) = [(n+1)/3] for all n. Moreover, in [4], the exact values of
MEP(P,) and MEP(P,) are determined. In particular, it is proved that
also in these cases the lower bound can be attained when n is large enough.
By [4], the exact values of MLP(P,) are known when 3 < n < 7r + 3.
Furthermore, the following theorem (in [4]) shows that the lower bound (2)
can always be attained when r > 5 and n is large enough. This result
settles a conjecture stated in [1, Conjecture 1].

Theorem 2.3 ([4]). Ifr > 5 andn > 3r+2+3(2r+1)((r—3)(2r+1)+r),
then

e = 5]

3

In [5], the following analogous result has been shown in the case of
cycles.

Theorem 2.4 ([5]). Letr > 5 andn > 12r+5+42r((r—3)(6r+3)+3r+3).
(i) If n # 3 (mod 6), then MLP(C,) = [n/3].
(ii) If n =3 (mod 6), then n/3 < MEP(C,) <n/3+1.



The exact values of MfP(C,) are determined in [3]. In particular, it
is shown that for n > 6 if n = 3 (mod 6), then MLP(C,) = n/3 + 1, else
MEP(C,) = [n/3]. In [5], the exact values of MEP(C,) and MFP(C,,) are
solved. Moreover, as in the case when r = 2, it is proved that if n = 3
(mod 6), then we have MIP(C,) = n/3 +1 and MIP(C,) = n/3 + 1.
Hence, it is conjectured that in the case (ii) of Theorem 2.4 we actually
have MIP(C,) =n/3 +1 for any r.

Theorem 2.4 can be improved when 7 is odd in the sense that the results
in the cases (i) and (ii) hold when n = (r?) instead of the previous bound
n = Q(r3). The proof of the following theorem (omitted here) can be found
in Appendix.

Theorem 2.5. Let n > 6r + 1+ (r — 1)(3r + 3) and r be an odd integer
such that r > 5.

(i) If n # 3 (mod 6), then MEP(C,) = [n/3].
(ii) If n =3 (mod 6), then n/3 < MEP(C,) <n/3+1.

3 On (r,< ¢)-LDA codes in C, and P,

In this section, we are going to consider (r, < ¢)-locating-dominating codes
of type A in cycles and paths when ¢ > 2. If £ > 3, then an (r, < £)-LDA
code in any cycle or path trivially contains all the vertices of the considered
graph. Indeed, if C is an (r, < £)-LDA code in C,, (n > 3) and v; is a vertex
such that v; € V, \ C, then {’L}i_l,vi,’l}i+1} NnC = {Ui—lavi—i-l} N C and
I.(vi—1,v,vi41) = In(vi—1,v;11) (a contradiction). The reasoning in the
case of paths is analogous.

Assume then that £ = 2. The following lemma gives a useful character-
ization of (r, < £)-LDA codes in cycles.

Lemma 3.1. A code C C V,, is (r, < 2)-locating-dominating of type A in
Cyp, if and only if the following conditions are satisfied:

(i) ifv; € V, \ C, then v;_, € C and vy, € C.

(i) if sets X, Y C V,, of size at most two are such that X NC =Y NC
and I(X) =L(Y)=C, then X =Y.

Proof. Let first C' be an (r, < 2)-locating-dominating code of type A. Now
the condition (ii) immediately follows. Assume then that v; € V,,\ C. Since
{vi—1,v;} N C = {v;—1} N C, the symmetric difference of I,.(v;—1,v;) and
I.(v;_1) is non-empty. Therefore, the vertex v;1, belongs to C. Analo-
gous reasoning implies that also v;_, € C. Thus, the condition (ii) is also
satisfied.



Assume now that C' is a code satisfying the conditions (i) and (ii). By
the definition, C' is an (r, < 2)-LDA code in C,, if each set X C V,, of size
at most two is uniquely determined by the sets X NC and I.(X). Let then
X C V, be a set of size at most two. Clearly, if |[X N C| = 2, then X is
uniquely determined (X = X N C).

Assume then that X N C = 0. If [(X) = C, then X is uniquely
determined by the condition (ii). Assume then that I,.(X) # C. Now, by
the condition (i), there exists a vertex v; € I.(X) such that v;_1 ¢ B, (X).
Furthermore, by (i), it can be concluded that v;y, € X. Similarly, there
exists v; € I.(X) such that v;; ¢ B,(X). This implies that v;_, € X. (It
is possible that v;4, = v;_,.) Thus, the set X can be uniquely determined
(using the available information). The case when |X N C| =1 is similar to
the previous one. In conclusion, C' is an (r, < 2)-LDA code in C,,. O

A characterization similar to the previous lemma can also be presented
in the case of paths. The proof is analogous to the one of the previous
lemma.

Lemma 3.2. A code C C V,, is (r, < 2)-locating-dominating of type A in
Pr. if and only if the following conditions are satisfied:

(i) {vo,v1,...,vr—1} and {Vn—r, UVn—ry1,...,Un_1} are subsets of C.
(ii) if v; € Vi, \ C, then vi—, € C and vy, € C.

For future considerations, we say that a code T' C V is a transversal of
a graph G = (V, E) if for each edge e = uv € F the vertex u or the vertex
v belongs to T. A transversal is also sometimes called a vertex cover [17,
p. 102] or an edge-covering set [18] of G.

Let then ¢ be a positive integer. Define graphs CE"vt) = (Vp, Fy) and
'P(’”,t) = (Vp, E}), where F,, = {vjviys | @ € Zp} and F) = {vvi4: | 0 <
1 <n—t—1}. Now we are ready to present the following lower bound on
(r,< 2)-LDA codes in cycles.

Theorem 3.3. For all integers n > 3 and r > 1, we have

LDA > n _
M(T,SQ) (Cn) = ng(Tﬂ n) ’VQng(T, n)—‘ .

Proof. Let C be an (r,< 2)-locating-dominating code of type A in C,.
By Lemma 3.1 (i), C is a transversal of Cén,r)' The graph Cén’r) con-
sists of ged(r,n) disjoint cycles on n/ged(r,n) vertices, where ged(r,n)
stands for the greatest common divisor of r and n. For each cycle of
length n/ged(r,n), the minimum cardinality of a transversal is clearly

[n/(2gcd(r,n))]. Therefore, the claim immediately follows. O



The previous lower bound can be attained when n > 6r 4 3 as is shown
in the following theorem.

Theorem 3.4. For all integers n > 6r + 3 and r > 1, we have

LDA _ n
M(T’,SZ) (Cn) - ng(Ta ’ﬂ) ’72ng(7", ’I’L)—‘ :

Proof. Let d = ged(r,n) and n’ = n/d. The graph C/ consists of d

(n,r)
disjoint cycles on n’ vertices. For all ¢ € Zy define

T, = {vitjr | 0<j<n'—1,jis even}.

Furthermore, define
d—1
T=JT.
i=0

By the construction, T is a transversal of C/ o and the number of ver-
tices in T is equal to ged(r,n)[n/(2gcd(r,n))]. Therefore, T satisfies the
condition (i) of Lemma 3.1.

Let us then show that there does not exist a set X C V,, such that
|X| < 2 and I.(X) = T. If X is such a set, then there exist vertices
Vi, Vit € Vi, such that vy, vy, ¢ B,.(X) (since n > 2(2r + 1) + 2r + 1).
This leads to a contradiction since at least one of the vertices v; and v,
belongs to T'. Thus, T is an (r, < 2)-locating-dominating code of type A in
Ch. O

Consider then (r, < 2)-locating-dominating codes of type A in paths. If

3 < n < 2r, then by Lemma 3.2 (i) we obtain that M(LTD<‘3) (Pn) = n. The
following theorem solves the problem in the remaining cases.

Theorem 3.5. Let n = qr + p, where ¢ > 2 and 0 < p <r —1. Then we
have

LDA g1 q
M. <o) (Pn) = p LQJ +(r—p) bJ +r.

Proof. Let C be an (r, < 2)-locating-dominating code of type A in P,,. The
graph Pén,r) consists of p and r — p disjoint paths on ¢ + 1 and ¢ vertices,
respectively. Since C satisfies the conditions (i) and (ii) of Lemma 3.2, the
number of codewords in the previous paths of length ¢+ 1 and ¢ is at least
[(g+1)/2] + 1 and [g/2] + 1, respectively. Therefore, we have

ez (|52 +1) + 0 -n (2] +1).

For the construction attaining the previous lower bound, we define

Ti:{’l)i+jr|0S7:+j,r§n71ajiseven}7



where 7 is an integer such that 0 < i < r — 1. Furthermore, define

r—1

T= U ;U {Un—ra Un—r+1y--- avn—l}-
1=0

By Lemma 3.2, T is an (r, < 2)-LDA code in P,,. Furthermore, it is straight-
forward to verify that the number of codewords of T is equal to the previous
lower bound. Thus, the claim follows. O

4 On (r,<{)-LDB codes in C, and P,

In this section, we are going to consider (r, < ¢)-locating-dominating codes
of type B in cycles and paths when ¢ > 2. With small n (compared to
r), the smallest cardinalities of (r,< ¢)-LDB codes in cycles and paths
are easy to determine. Indeed, if 3 < n < 2r + 1, then we clearly have

MEPB (C,) = n —1 for all r. Furthermore, if 3 < n < r + 1, then we

(r,<0)
immediately obtain M(I;D<% (Pn) = n—1 for all r. Let us then consider

more closely the case with ¢ = 2.
The following lemma gives a useful characterization of (r, < 2)-LDB
codes in cycles.

Lemma 4.1. A code C CV,, is (r, < 2)-locating-dominating of type B in
Cyp, if and only if the following conditions are satisfied:

(i) if (u,v) is a pair of C-consecutive vertices in Cy,, then the sets I.(u)\
I.(v) and I.(v) \ I.(u) are both non-empty.

(i) if sets X, Y C V, \ C of size at most two are such that I.(X) =
I.(Y)=C, then X =Y.

Proof. Let first C' be an (r, < 2)-locating-dominating code of type B in
Cy. Clearly, the condition (ii) is now satisfied. Let then (u,v) be a pair of
C-consecutive vertices. Since I.(v) # I.(u,v), we have I,.(u) \ I (v) # 0.
Similarly, we have I,.(v)\ I, (u) # 0. Hence, the condition (i) is also satisfied.

Assume then that C' C V,, satisfies the conditions (i) and (ii). By the
definition, C is an (r, < 2)-LDB code in C, if each set X C V,, \ C of size
at most two is uniquely determined by the set I,.(X). Let then X C V,,\ C
be a set of size at most two. If I,.(X) = C, then X is uniquely determined
by the condition (ii).

Assume then that I,.(X) # C. Let now u be the leftmost vertex of
I.(X). Tt is straightforward to determine that there exists a unique pair
(v, w) of C-consecutive vertices such that u € I,.(v) \ I.(w). Hence, by the
condition (i), v belongs to the set X. Similarly, for the rightmost vertex v’
of I.,(X), there exists a unique pair (v',w’) of C-consecutive vertices such



that «’ € I.(w’) \ I,(v"). Therefore, by (i), w’ belongs to the set X. Thus,
the set X can be uniquely determined (using only the I-set I,.(X)). In
conclusion, C is an (r, < 2)-LDB code in C,,. O

A characterization similar to the previous lemma can also be presented
in the case of paths.

Lemma 4.2. A code C C 'V, is (r,< 2)-locating-dominating of type B in
Pr if and only if the following conditions are satisfied:

(i) sets{vo,v1,...,v,} and{vp—r_1,Un—r,...,0n—1} both contain at least
r codewords of C.

(i) if (u,v) is a pair of C-consecutive vertices in P, then the sets I.(u)\
I.(v) and I.(v) \ I-(u) are both non-empty.

Proof. Let C be an (r, < 2)-locating-dominating code of type B in P,,. Let
us first show that {vg,v1,...,v,} always contains at least r codewords of
C. TIf this is not the case, then there exist two vertices v; € V,, \ C and
v; € Vo \ C such that 0 < ¢ < j < r. This leads to a contradiction
since now I,.(v;) = I, (v;,v;). Analogous arguments can also be applied to
{Un—r—1,Vpn—pry...,Un_1}. Hence, the condition (i) is satisfied. The proof
of the condition (ii) is similar to the one of Lemma 4.1.

In order to show that C is an (r,< 2)-LDB code in P, if the condi-
tions (i) and (ii) are satisfied, we again refer to the proof of Lemma 4.1. O

The characterization of Lemma 4.1 gives rise to the following lower
bound.

Theorem 4.3. For all integers n > 3 and r > 1, we have

LDB n
M 25)(Cn) > b-‘ .
Proof. Let C be an (r, < 2)-locating-dominating code of type B in C,,. By
Lemma 4.1 (i), each pair of C-consecutive vertices has to be r-separated by
at least two codewords. On the other hand, each codeword of C' can clearly

r-separate at most two pairs of C-consecutive vertices. Therefore, we have
2|C| > 2(n —|C]). Thus, the claim immediately follows. O

The following theorem shows that the lower bound can be attained when
n > 4r + 5.

Theorem 4.4. For all integersn > 4r +5 and r > 1, we have

M e = 5]



Proof. For the construction, define first
C={v; | i €Zy,iis even}.

For any pair (u,v) of C-consecutive vertices, we have |B,(u) \ B,(v)| > 2
and |B;(v) \ By(u)| > 2. Therefore, we obtain that I,.(u) \ I-(v) # 0 and
I.(v) \ I-(u) # 0. Hence, the condition (i) of Lemma 4.1 is satisfied. Since
n > 2(2r + 1) + 3, there does not exist X C V,, \ C such that | X| < 2 and
I.(X) = C. Therefore, the condition (ii) of Lemma 4.1 is satisfied. Thus,
the claim follows. O

The following theorem provides a lower bound for the size of (r, < 2)-
LDB codes in paths.

Theorem 4.5. For all integers n > 3 and r > 1, we have
n+r—1
Mg e = [

Proof. Let C be an (r, < 2)-locating-dominating code of type B in P,,. By
Lemma 4.2 (ii), each pair of C-consecutive vertices has to be r-separated
by at least two codewords. On the other hand, each codeword of C' can
clearly r-separate at most two pairs of C-consecutive vertices. Moreover,
each codeword belonging to {vg,v1,...,v.} or {Un_r_1,Vn—r, .., Un_1}
can r-separate at most one pair of C-consecutive vertices. Therefore, by
Lemma 4.2 (i), we have

2(1C) =2r)+2r >2(n—|C|—-1).
Thus, the claim immediately follows. O

Let us then consider constructions for (r, < 2)-LDB codes in paths. First
assume that r = 1. By the previous theorem, the smallest cardinality of a
(1, < 2)-locating-dominating code of type B in P, is at least [n/2]. The
following results, which show that the lower bound can always be attained,
are straightforward to verify using Lemma 4.2:

e If n > 3 and n is odd, then
{vi|0<i<n-—1,1iiseven}
is a (1,< 2)-LDB code in P,, with [n/2] codewords.

e If n = 4k, where k is an integer such that k& > 1, then

k—1

C = |J{vair1,vai12}

=0

is a (1, < 2)-LDB code in P,, with [n/2] codewords.

10



e If n = 4k+2, where k is an integer such that k£ > 1, then CU{vgp41}
is a (1, < 2)-LDB code in P, with [n/2] codewords.

In conclusion, we have M(LLDS]%)(PR) = [n/2] for any n.

In general, for each r, we have an infinite family of n such that
MRS (Pn) = [(n 47 —1)/2]. Indeed, by Lemma 4.2,

k

U{Uzi(r+1)+17 V2i(r+1)42s5 - - - 7v2i(r+1)+r+1}
i=0

is an (r, < 2)-locating-dominating code of type B in P, where k > 1 is an
integer and n = (2k + 1)(r + 1) + 2. Moreover, the size (k+1)(r + 1) of the
code attains the lower bound of Theorem 4.5.

Let ¢ > 3. Consider then (r,< f¢)-locating-dominating codes of type
B in cycles and paths. In comparison to the (r, < £)-locating-dominating
codes of type A, these codes are not trivial. The following theorem provides
optimal (r, < ¢)-LDB codes in cycles.

Theorem 4.6. Let n and ¢ be integers such that n > 2r +2 and ¢ > 3.
o Ifn#r+1 (mod 2r+2), then M(LT%% (Cpn) = [rn/(r+1)].
o Ifn=r+1 (mod 2r + 2), then M(LT%%(CYL) =[rn/(r+1)]+1.

Proof. Let C be an (r, < f)-locating-dominating code of type B in C,.
Let then (v;,v;) and (vj,vg) (v; # vk) be pairs of C-consecutive ver-
tices. (If such pairs of C-consecutive vertices do not exist, then the num-
ber of non-codewords is at most two and the lower bound immediately
follows.) The total number of codewords in {viy1,vit2,...,vj-1} and
{Vj+1,Vj42,...,05-1} is at least 2r since I, (v;,v;,vk) # Ir(vi,vr). The
number of such triples of non-codewords is equal to n — |C|. On the other
hand, each codeword can associate with at most two of such triples. There-
fore, we have
2|C| = 2r(n—|C|).

Hence, we have |C| > [rn/(r + 1)]. Moreover, using the previous no-
tations, we obtain that if n is divisible by » + 1 and |C| = rn/(r + 1),
then the sum of the number of codewords in {vit1,vi42,...,v,-1} and
{vj41,vj42,...,vk_1} is equal to 2r.

Let n = 2¢q(r + 1) + p, where ¢ and p are integers such that ¢ > 1 and
0 < p < 2r+ 1. The lower bound obtained above can now be written as
follows:

2qr + fo<p<r
LDB qr +p SP>
My<p)(Cn) = { 2gr +p—1 otherwise.

11



Assume that 0 < p < r. Let then D; C V,, be a code such that

qg—1
Vi \ D, = U {02(r+1)m ’U2(r+1)i+r+2}'
i=0
The number of codewords in D; is equal to 2¢qr + p. For each vertex
v € V,, \ Dy there exists a codeword u such that v is r-covered by u and
u is not r-covered by any other non-codeword. Indeed, vy(y41yi41 and
Va(r4+1)i4+r+1 are such codewords for va(,41); and va(,q1)itr42, respectively.
Therefore, Dy is an (r, < £)-LDB code in C,,.
Assume then that r+2 < p < 2r + 1. Let Dy C V,, be a code such that

Vi \ D2 = (V;, \ D1) U {v2q(r41) }-

Similarly as above, it can be shown that Ds is an (r, < ¢)-LDB code in C,
with 2¢r + p — 1 codewords.

Finally, assume that p = r + 1. Let us then show that in this case
the lower bound can be increased by one. Let C be an (r,< ¢)-LDB
code in C, (attaining the lower bound) with (2¢ 4+ 1)r codewords. No-
tice that the number of non-codewords is now equal to 2¢ + 1. Without
loss of generality, we may assume that vy € V,, \ C. Let then (v;,vp),
(vo,v;) and (vj;,vr) be pairs of C-consecutive vertices. By the considera-
tions in the first paragraph of the proof, the total number of codewords
in {v1,ve,...,vj_1} and {vj11,vj49,...,v5-1} is equal to 2r. Denote the
number of codewords in {vi,v2,...,v;—1} by s. Then the number of code-
words in {vj41,vj42,...,vk—1} is equal to 21 — s. Therefore, by continuing
in the same way through all the triples, we obtain that the number of
codewords in {v;t1,viq2,...,v_1} is equal to s. On the other hand, since
{v1,v2,...,vj_1} = s, we have [{vit1,vi+2,...,v_1}] = 2r —s. Hence, we
have s = r. This leads to a contradiction since now I,.(v;, vo, vj) = I (v;, v;).
Thus, we have M@ﬂ% (Cn) > [rn/(r+1)]+1. On the other hand, it can be
verified (as in the pr_evious cases) that a code D3 satisfying V,,\ D3 = V,,\ D1
is an (r, < £)-LDB code in C,, with 2¢gr + p = [rn/(r + 1)] + 1 codewords.
Hence, the claim follows. O

The following theorem provides optimal (r, < ¢)-LDB codes in paths
when ¢ > 3.

Theorem 4.7. Let n and { be integers such that n > r + 2 and £ > 3.
Then we have

MEZ P = [

r+1

Proof. Let C be an (r, < ¢)-locating-dominating code of type B in P,,. For
the lower bound, first denote

Vn\C: {Uilavi27"'7vik}7
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where 0 < iy < iy < -+ <ip <n—1and k =n —|C|. Further, denote

A(Uil) = {'UO,’U]_, L avilfl} U {Ui1+17vi1+2) ceey Uigfl}a

A('Uik) = {Uik_1+17vik_1+27 e 7Uik71} ) {vik+1yv¢k+2, ce 7vn71} and

Avi;) = {0i; 415 Vi 42 -+ 5 Vi -1y UV 01, Vi 42, -+ 5 Vi 1)
where 2 < j < k — 1. Finally, denote a; = |{vg,v1,...,v;;,—1}| and
ar, = {Vip+1,Vip+25---sVn—1}|. Since the sets I,.(v;,,v;,) and I.(v;,) are

not equal, we obtain that |A(v;,)| > r and if a3 = 0, then |A(v;, )| > r + 1.
Analogous arguments also hold for A(v;, ). Now, using similar reasoning
as in the proof of Theorem 4.6, we have |A(v;;)| > 2r when 2 < j <
k — 1. On the other hand, each codeword belongs to at most two sets
A(v;) (1 < j < k) except the ones belonging to {vg,v1,...,v; -1} and
{Vi,+1,Vip+2, -+, Un—1}, which are only contained in one such set. There-
fore, the following inequality is obtained:

2(IC| — a1 — ag) + a1 + ax > 2r + f(a;) + f(ag) + 2r(n — |C| — 2),

where f(0) =1 and f(a) = 0 for any positive integer a. Hence, we have

rin—1)+1
Mg P = |

r+1

Let n = (2g + 1)(r + 1) 4+ p, where ¢ and p are integers such that ¢ > 0
and 0 < p < 2r + 1. The lower bound obtained above can now be written
as follows:

(2¢4+1)r+p ifo<p<i
MEZR(P) >4 ¢+ 1)r+p—1 if2<p<r+2
2¢+Dr+p—2 ifr+3<p<2r+1.

Assume first that 0 < p < 1. Let then D; C V,, be a code such that

q—1

Vo \ D1 = {v1} U U {V2(r41)idr 41, V2(r1)it2r 43}
i=0

The number of codewords in D is equal to (2¢ + 1)r + p. Similarly to the
proof of Theorem 4.6, it can be shown that Dy is an (r, < £)-LDB code in P,
attaining the lower bound. Assume then that 2 <p <r+ 2. Let Dy C V,
be a code such that V,,\ Dy = (V,,\ D1) U{v(2g41)(r+1) }- Similarly as before,
it can be shown that Dy is an (r, < £)-LDB code in P, with (2¢+1)r+p—1
codewords. Finally, assume that r +3 < p < 2r + 1. Then it can be shown
that a code D3 C V,, satisfying V;, \ D3 = (Vi \ D2) U{v(2g41)(r+1)4r+2) I8
an (r, < ¢)-LDB code in P,, with (2¢ + 1)r + p — 2 codewords. O
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Appendix

In what follows, we present the proof of Theorem 2.5. Let > 5 be an odd
integer and s be a non-negative integer. Define

(r—1)/2

K(s)= |J {vst2irverariail-
i=0

Using Lemma 2.2, it is straightforward to verify that K(0) is an r-locating-
dominating code in Cs,, C3,11, C3r42 and Cs,43 with 7+1 codewords. It can
also be shown that K'(s) = K(s) U {vst+3r4+2} is an r-locating-dominating
code in Cs,45 with 7 + 2 codewords when s = 0. Define then

(r—>5)/2
L(s) = K(s)U U {Vs+3r+242is Vstsrt2+2i} U {VUstar, Usisr—1}
i=0
and
(r—3)/2
L'(s) = K(s) U U {Vst3rt212i, Vsrsriotai} U{Vsisrin )
i=0

Again, by Lemma 2.2, L(0) and L’(0) are r-locating-dominating codes in
Cer and Cgpry1 with 2r and 2r + 1 codewords, respectively.

In what follows, we are going to present constructions of r-locating-
dominating codes in cycles C,, depending on the length n modulo 6. In
particular, we show that MIP(C,) < n/3+ 1 if n = 3 (mod 6) and
MEP(C,) < [n/3] otherwise.

Let p and g be non-negative integers. Let then m = m’+p-6r+q(3r+3),
where m’ = 3r, m’ =3r +1, m’ = 3r + 2 or m’ = 3r + 3. Define

p—1 q
Cr=|JL(i-6r)u|JE(p-6r+i(3r+3)).
1=0 =0

The code C is r-locating-dominating in C,, since the codes K(0) and L(0)
are r-locating-dominating in C,,. and Cs,, respectively. (Indeed, since K (s)
is also a part of L(s), the I-sets of all vertices are analogous in both cases.)

Notice that the greatest common divisor of 6r and 3r + 3 is equal to 6.
Therefore, if n is an integer such that n > m’ + (r — 1)(3r 4+ 3) and n = m’
(mod 6), then there exist such p and ¢ that n = m’ + p - 6r + ¢(3r + 3).
Thus, if n is an integer such that n > m/4 (r—1)(3r+3) and n = 0,3,4 or
5 (mod 6), then by the previous construction M P (C,) <n/3+1ifn =3
(mod 6) and MEP(C,) < [n/3] otherwise.
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Let then m = 3r+ 5+ p- 6r + ¢(3r + 3). Define then

p—1 g—1
Co=|JL(i-6r)u|JE(p-6r+i3r+3) UK (p-6r+q(3r+3)).
=0 =0

Again, using similar arguments as above, it can be shown that C5 is an
r-locating-dominating code in C,, with [m/3] vertices. Thus, if n is an
integer such that n > 3r +5+ (r — 1)(3r + 3) and n = 2 (mod 6), then by
the previous construction M*P(C,) < [n/3].

Finally, let then m = 6r + 1+ p - 6r + ¢(3r + 3). Define

p—1 qg—1
Cs=|JLGi-6r)u | E(p-6r+i(3r+3) UL (p-6r+q(3r+3)).
1=0 1=0

Again, using similar arguments as above, it can be shown that C5 is an
r-locating-dominating code in C,, with [m/3] vertices. Thus, if n is an
integer such that n > 6r +1+ (r —1)(3r +3) and n =1 (mod 6), then by
the previous construction M*P(C,) < [n/3].

Combining the previous results with the lower bound (1), we immedi-
ately obtain Theorem 2.5.
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