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Abstract
We study Sobolev functions defined in unbounded irregular domains in the Euclidean
n-space. We show that there exist embeddings into suitable Orlicz spaces from the
space L1

p, 1 ≤ p < n. It turns out that the corresponding Orlicz function depends on
the geometry of the domain. The results are sharp for L1

1-functions.
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1 Introduction

In this paper we study inequalities

inf
b∈R ‖u − b‖LH (D) ≤ C‖∇u‖L p(D), (1.1)

in unbounded irregular domains D in Rn . Here the target space LH (D) is an
Orlicz space and it depends on the geometry of D. The function u belongs to
L1
p(D) = {

u ∈ L1
loc(D) : |∇u| ∈ L p(D)

}
. Our proof is based on engulfing D by

bounded domains Di from inside. Thus we also study bounded domains and calculate
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the constants for the corresponding inequalities so that their constants do not blow up
as diam(Di ) → ∞.

Although embeddings for functions defined in bounded irregular domains have
been studied systematically, see for example [13,16], unbounded irregular domains
seem to have been studied less, we refer to [10,13].

A classical example of an embedding into an Orlicz space for Sobolev functions
from the Sobolev space W 1,n is in [18]. But also, if the domain is irregular then an
Orlicz space can be a natural target space for functions defined in L1

p as in [6,8]. For
papers where an Orlicz space is a target space when the functions come from another
Orlicz space we refer to [3,4].

To be more precise, we assume that bounded domains Di are ϕ-John domains, that
is, every point can be connected to a central point of the domain by a flexible cone of
the type {(x, x ′) ∈ R×Rn−1 : |x ′| < ϕ(x)}. Here the function ϕ satisfiesweakOrlicz-
type conditions, we refer to Sect. 2. We showed in [7, Theorem 4.4, Theorem 3.5] that
every u ∈ L1

p(Di ), can be estimated pointwise almost everywhere by the modified
Riesz potential of its gradient

|u(x) − uDi | ≤ C
ˆ
Di

|∇u(y)|
ϕ(|x − y|)n−1 dy, (1.2)

and the modified Riesz potential can be estimated pointwise by the maximal operator

H

(ˆ
G

| f (y)|
ϕ(|x − y|)n−1 dy

)
≤ C(M f (x))p, (1.3)

where H is an N -function. This is a generalization of Hedberg’s method [9, Lemma,
Theorem 1]. In the present paper wemodify the definition of ϕ-John domain so that for
t ≥ 1 the function ϕ grows linearly, we refer to (1.4). This definition keeps the class
of uniformly bounded ϕ-John domains invariant but makes it possible to control the
constants in (1.2) and (1.3) when diam(Di ) → ∞. A proper control of the constants
is essential, since bounded domains should engulf the given unbounded domain and
the required result for the unbounded domain is obtained as a limit of the results to
the engulfing bounded domains. Then, we show that N -function H can be calculated
from the geometry of the domain.

The following theorem tells which kind of N -functions we are interested in. These
N -functions can encode and reveal the geometry of the domain.

Theorem 1.1 Let 1 ≤ p < n. Let the continuous, strictly increasing function ϕ :
[0,∞) → [0,∞) be such that ϕ(0) = limt→0+ ϕ(t) = 0 and suppose that ϕ satisfies
the �2-condition and the inequality ϕ(t1)

t1
≤ ϕ(t2)

t2
whenever 0 < t1 ≤ t2. Assume that

there exists α ∈ [1, n/(n − 1)) such that tα/ϕ(t) is increasing for t > 0. If

ψ(t) =
{

ϕ(t) when 0 ≤ t ≤ 1;
ϕ(1)t when t ≥ 1,

(1.4)
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then there exists an N-function H that satisfies the �2-condition, and

H−1(t) ≈ t
1
p −1

ψ
(
t− 1

n

)n−1 for t > 0,

where the implicit constant depends only on n and p.

By Theorem 1.1 we prove as an intermediate step the Sobolev-type inequality (1.1)
for functions defined in bounded ϕ-John domains Di , in Theorem 4.1 (1 < p < n)
and Theorem 4.2 (p = 1). These results seem to be new and they recover some known
results when p = 1. By using these bounded domains’ results we obtain our main
result for unbounded domains.

Theorem 1.2 Assume that the function ϕ satisfies the conditions (1)–(5), with Cϕ = 1
in the condition (4), from the beginning of Sect. 2. Assume that there exists α ∈
[1, n/(n − 1)) such that tα/ϕ(t) is increasing for t > 0. Let the function ψ be defined
as in (1.4). Let D in Rn, n ≥ 2, be an unbounded domain that satisfies the following
conditions:
(a) D = ∪∞

i=1Di , where |D1| > 0;
(b) Di ⊂ Di+1 for each i;
(c) each Di is a bounded ϕ-cigar John domain with a constant cJ .

Let 1 ≤ p < n. Let H be an N-function from Theorem 1.1. Then there exits a constant
C such that the inequality

inf
b∈R ‖u − b‖LH (D) ≤ C‖∇u‖L p(D),

holds for every u ∈ L1
p(D). Here the constant C depends only on n, p, C�2

H , C�2
ϕ , cJ ,

and diam(D1).

We give examples in Example 4.5. Finally in Sect. 5 we show that the target space
cannot be a Lebesgue space in general.

2 John Domains

Throughout the paper we let the function ϕ : [0,∞) → [0,∞) satisfy the following
conditions

(1) ϕ is continuous,
(2) ϕ is strictly increasing,
(3) ϕ(0) = 0,
(4) there exists a constant Cϕ ≥ 1 such that

ϕ(t1)

t1
≤ Cϕ

ϕ(t2)

t2

whenever 0 < t1 ≤ t2,
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(5) ϕ satisfies the�2-condition i.e. there exists a constantC
�2
ϕ ≥ 1 such that ϕ(2t) ≤

C�2
ϕ ϕ(t) for every t > 0.

We write

ψ(t) =
{

ϕ(t) if 0 ≤ t ≤ 1;
ϕ(1)t if t ≥ 1.

(2.1)

Now, if ϕ satisfies the conditions (1)–(5), then ψ does, too, and the constant in (4) is
the same for the functions ϕ and ψ , that is Cϕ = Cψ .

The definition of a bounded John domain goes back to John [12, Definition, p. 402]
who defined an inner radius and an outer radius domain, and later this domain was
renamed as a John domain in [14, 2.1].

We extend the definition of John domains followingVäisälä [17, 2.1] in the classical
case. Let E in Rn , n ≥ 2, be a closed rectifiable curve with endpoints a and b. The
subcurve between x , y ∈ E is denoted by E[x, y]. For x ∈ E we write

q(x) = min

{
�
(
E[a, x]

)
, �
(
E[x, b]

)}
,

where �
(
E[a, x]) is the length of the subcurve E[a, x].

Definition 2.1 A bounded or an unbounded domain D inRn is a ϕ-cigar John domain
if there exists a constant cJ > 0 such that each pair of points a, b ∈ D can be joined
by a closed rectifiable curve E in D such that

Cig E(a, b) =
⋃{

B

(
x,

ψ(q(x))

cJ

)
: x ∈ E\{a, b}

}
⊂ D

where B(x, r) is an open ball centered at x with a radius r > 0 and the function ψ is
defined as in (2.1).

The set Cig E(a, b) is called a cigar with core E joining a and b. We point out
that if D is a ϕ-cigar John domain with ϕ(t) = t p, p ≥ 1, then it is a ϕ-cigar John
domain with ϕ(t) = tq for every q ≥ p. For the case ψ(t) = ϕ(t) = t for all t ≥ 0,
in Definition 2.1, we refer to [17, 2.1] and [15, 2.11 and 2.13]. Note that it is crucial
that the length of the curve does not depend on the distance between the end points
a and b. In bounded uniform domains the length of the cigar depends on |a − b| but
they are much more regular than our cigar John domains, see [15].

If D is a bounded domain then the following definition from [7, Definition 4.1] for
a ψ-John domain gives an equivalent definition to a bounded ϕ-cigar John domain.

Definition 2.2 A bounded domain D inRn , n ≥ 2 , is a ψ-John domain if there exist
a constants 0 < α ≤ β < ∞ and a point x0 ∈ D such that each point x ∈ D can be
joined to x0 by a rectifiable curve γ : [0, �(γ )] → D, parametrized by its arc length,
such that γ (0) = x , γ (�(γ )) = x0, �(γ ) ≤ β, and
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ψ(t) ≤ β

α
dist

(
γ (t), ∂D

)
for all t ∈ [0, �(γ )].

The point x0 is called a John center of D and γ is called a John curve of x .

Remark 2.3 (1) If the function ψ is defined as in (2.1) with the function ϕ, then a
bounded domain is a ψ-John domain if and only if it is a ϕ-John domain.
(2) If ψ(t) = t , then our definition for bounded ψ-John domains coincides with the
definition of the classical John domains. If ψ(t) = tλ, λ ≥ 1 then our definition for
bounded ψ-John domains coincides with the definition of the flexible cone condition
in [2].

Theorem 2.4 Let D be a bounded domain. If D is a ψ-John domain then D is a ϕ-
cigar John domain. On the other hand, if D is a ϕ-cigar John domain with a constant
cJ , then D is a ψ-John domain with constants

α =
ψ
(

1
4cJ

ψ
(
1
4 diam(D)

))

cJϕ(1)Cϕ(ϕ(1) + 1)
, β = max

{
2, α,

cJ diam(D)

ϕ(1)

}
. (2.2)

Note that when diam(D) → ∞, then α → ∞ with the same speed as diam(D).

Proof Assume first that D is a ψ-John domain with a John center x0. Let a, b ∈ D
and let the John curves γ1 and γ2 connect them to x0, respectively. We may assume
that a, b ∈ D\B(x0, dist(x0, ∂D)), since inside the ball the points can be connected
by two straight lines going via the center of the ball B(x0, dist(x0, ∂D)). Let E be a
curve from a to b given by γ1 and γ2. Then,

Cig E(a, b) =
⋃

t∈(0,�(γ1)]
B

(
γ1(t),

αψ(t)

β

)
∪

⋃

t∈(0,�(γ2)]
B

(
γ2(t),

αψ(t)

β

)
⊂ D

and thus D is a ϕ-cigar John domain.
Assume then that D is a ϕ-cigar John domain. Let us carefully choose a suitable

John center so that the center is not too close to the boundary of D. Let x, y ∈ D such
that |x − y| ≥ 1

2 diam(D). Let E be a core of a John cigar that connects x and y. Then
the length of E is at least 1

2 diam(D). Let x0 be the center of E . Then

dist(x0, ∂D) ≥ ψ( 14 diam(D))

cJ

and we choose

r =
ψ
(
1
4 diam(D)

)

2cJ
. (2.3)

Hence B(x0, 2r) ⊂ D. From now on this r and the point x0 are fixed in this proof.
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Fig. 1 The cigar from a to x0
(the solid line), the core E (the
dotted line) and a new carrot (the
dashed line)

If a ∈ B(x0, 2r), then it can be clearly joint to x0 by a line segment and the claim
is clear.

For everya ∈ D\B(x0, 2r) there exists a curve E such that the cigarCig E(a, x0) ⊂
D (Fig. 1). Let �(E) be the length of E , then �(E) ≤ 2 or by Definition 2.1 and (2.1)

diam(D) ≥ 2
ψ(�(E)/2)

cJ
= 2

ϕ(1)�(E)

2cJ
,

i.e. �(E) ≤ max
{
2, cJ diam(D)

ϕ(1)

}
≤ β.

Note that the total length of E is at least 2r and the length of E inside the ball
B(x0, r) is at least r and thus for the points in E ∩ ∂B(x0, r) the distance to the
boundary is at least ψ(r/2)/cJ . Let us choose that

M = ψ(β)

ψ(r/2)
= ϕ(1)β

ψ(r/2)
. (2.4)

Since r ≤ �(E) ≤ β and ψ is increasing, we have M ≥ 1.
Let z0 ∈ E be the first point from a that satisfies z0 ∈ ∂B(x0, r). We denote by γ

the function so that E is parametrized by its arc length such that γ (0) = a, γ (t0) = z0
and γ (�(E)) = x0. We replace E[z0, x0] by the radius of the ball B(x0, r), if needed.
This new arc is written as E ′. Note that �(E ′) ≤ �(E).

Since M ≥ 1 we have for t ∈ (0, 1
2�(E)) that

ψ(t)

M
≤ ψ(t) = ψ

(
q(γ (t))

)
. (2.5)

By the choice of M in (2.4) we have

ψ(t)

M
≤ ψ

( r
2

)
(2.6)

for all t . On the other hand, for t ∈ ( 12�(E), t0) the inequality q(γ (t)) ≥ r/2 holds.
Hence, by (2.6)

ψ(t)

M
≤ ψ

(
q(γ (t))

)
(2.7)
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for t ∈ ( 12�(E), t0), too. These estimates (2.5) and (2.7) give

⋃

t∈(0,�(E ′))
B

(
γ (t),

ψ(t)

McJ

)
\B(x0, r) ⊂ Cig E(a, x0).

By (2.6)we haveψ(t) ≤ Mψ(r/2). By the definition ofψ wehaveψ(r/2) ≤ ϕ(1)r/2
if r ≥ 2, and by condition (4) the inequalityψ(r/2) ≤ Cϕϕ(1)r/2 holds if 0 < r < 2.
Since Cϕ ≥ 1, we obtain

ψ(t) ≤ Mϕ(1)Cϕr/2

for all t ∈ (0, t0). Since ϕ(1) might be less than one, we estimate

ψ(t) ≤ MCϕ(ϕ(1) + 1)r/2.

This inequality and the inclusion B(x0, 2r) ⊂ D yield that

⋃

t∈(0,�(E ′))
B

(
γ (t),

ψ(t)

MCϕ(ϕ(1) + 1)cJ

)
⊂ D .

Thus, by (2.4)

ψ(t) ≤ MCϕ(ϕ(1) + 1)cJ dist(γ (t), ∂D) = cJϕ(1)Cϕ(ϕ(1) + 1)β

ψ(r/2)
dist(γ (t), ∂D).

This means that we may choose α = ψ(r/2)
cJϕ(1)Cϕ(ϕ(1)+1) . By using (2.3) we obtain the

final α. To be sure that α ≤ β we may choose β to be larger if it is necessary. Thus,
D is a ψ-John domain with α and β given in (2.2). ��

3 Pointwise Estimates

We proceed to prove pointwise estimates for domains which are not classical John
domains.

We note that by the condition (4) of ϕ

ψ(t) ≤ Cϕϕ(1)t for all t ≥ 0. (3.1)

We recall a covering lemma from [7, Lemma 4.3] which is valid for a bounded
ϕ-John domain.

Lemma 3.1 [7, Lemma 4.3] Let ϕ satisfy the conditions (1)–(5). Let ψ : [0,∞) →
[0,∞) be defined as in (2.1). Let D in Rn , n ≥ 2 , be a bounded ψ-John domain
with John constants α and β. Let x0 ∈ D be the John center. Then for every x ∈
D\B(x0, dist(x0, ∂D)) there exists a sequence of balls

(
B(xi , ri )

)
such that B(xi , 2ri )
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is in D for each i = 0, 1, . . . , and for some constants K = K (α, dist(x0, ∂D), β, ϕ),
N = N (n), and M = M(n)

• B0 = B
(
x0,

1
2 dist(x0, ∂D)

)
;

• ψ(dist(x, Bi )) ≤ Kri , and ri → 0 as i → ∞;
• no point of the domain D belongs to more than N balls B(xi , ri ); and
• |B(xi , ri ) ∪ B(xi+1, ri+1)| ≤ M |B(xi , ri ) ∩ B(xi+1, ri+1)|.

Proof The proof is in [7, Lemma 4.3]. We recall only the proof of the inequality
ψ(dist(x, Bi )) ≤ Kri , since we have to show that constant K does not blow up when
diam(D) → ∞.

Let x ∈ D\B(x0, dist(x0, ∂D)). Let γ be a John curve joining x to x0, its arc length
written as l. We write B ′

0 = B
(
x0,

1
4 dist(x0, ∂D)

)
and consider the balls B ′

0 and

B
(
γ (t),

1

4
dist

(
γ (t), ∂D ∪ {x})

)
, where t ∈ (0, l).

By the Besicovitch covering theorem, there is a sequence of closed balls B ′
1, B

′
2, . . .

and B ′
0 that cover the set {γ (t) : t ∈ [0, l]}\{x} and have a uniformly bounded

overlap depending on n only. We write B(xi , ri ) = 2B ′
i for every i = 0, 1 , 2 , . . .,

where xi = γ (ti ), ti ∈ (0, l), r0 = 1
2 dist(x0, ∂D), and ri = 1

2 dist
(
xi , ∂D ∪ {x}).

By the fact that ϕ is an increasing function and by the definition of ψ-John domain
we obtain

ψ(dist(x, B0)) ≤ ψ(l) ≤ ψ(β) ≤ Cϕϕ(1)β ≤ cβr0
dist(x0, ∂D)

.

Let us suppose then that i ≥ 1. If ri = 1
2 dist(xi , x), then by (3.1) we obtain

ψ(dist(x, B(xi , ri ))) ≤ Cϕϕ(1) dist(x, B(xi , ri )) ≤ 2Cϕϕ(1)ri .

If ri = 1
2 dist(xi , ∂D), then the fact that ϕ is increasing and the definition of a ψ-John

domain give

ψ(dist(x, B(xi , ri ))) ≤ ψ(dist(x, xi )) ≤ ψ(ti ) ≤ β

α
dist(γ (ti ), ∂D) ≤ 2β

α
ri .

��
Remark 3.2 (1) The constant K in the previous lemma can be chosen to be K =
max{ cβ

dist(x0,∂D)
, 2Cϕϕ(1), 2β

α
}.

(2) If D is aϕ-cigar Johndomain and the John center has been chosen as inTheorem2.4,
then
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β

dist(x0, ∂D)

≤
max

⎧
⎨

⎩
2,

ψ

(
1

4cJ
ψ

(
1
4 diam(D)

))

cJCϕϕ(1)(ϕ(1)+1) ,
cJ diam(D)

ϕ(1)

⎫
⎬

⎭

1
2cJ

ψ
(
1
4 diam(D)

) →max

{
1

2cJCϕ(ϕ(1)+1)
,

8c2J
ϕ(1)2

}

and

β

α
=

max

⎧
⎨

⎩
2,

ψ

(
1

4cJ
ψ

(
1
4 diam(D)

))

cJCϕϕ(1)(ϕ(1)+1) ,
cJ diam(D)

ϕ(1)

⎫
⎬

⎭

ψ

(
1

4cJ
ψ

(
1
4 diam(D)

))

cJCϕϕ(1)(ϕ(1)+1)

→ max

{

1,
16c3JCϕ(ϕ(1) + 1)

ϕ(1)2

}

as diam(D) → ∞.

We recall the following definitions. Let G be an open set of Rn . We denote the
Lebesgue space by L p(G), 1 ≤ p < ∞. By L1

p(G), 1 ≤ p < ∞, we denote
those locally integrable functionswhose first weak distributional derivatives belongs to
L p(G), that is, L1

p(G) = {
u ∈ L1

loc(G) : |∇u| ∈ L p(G)
}
. ByW 1,p(G), 1 ≤ p < ∞,

we denote those functions from L p(G) whose first weak distributional derivatives
belongs to L p(G), that is, W 1,p(G) = {u ∈ L p(G) : |∇u| ∈ L p(G)}.

Theorem 2.4 and Lemma 3.1 give the following pointwise estimate which we recall
from [7, Theorem 4.4].

Theorem 3.3 Let ϕ satisfy the conditions (1)–(5). Let ψ : [0,∞) → [0,∞) be as
defined in (2.1). Let D inRn , n ≥ 2 , be a bounded ϕ-cigar John domain with a John
constant cJ . Then there exists a finite constant C and x0 ∈ D such that for every
u ∈ L1

1(D) and for almost every x ∈ D the inequality

∣∣u(x) − uB(x0,dist(x0,∂D))

∣∣ ≤ C
ˆ
D

|∇u(y)|
ψ
(|x − y|)n−1 dy

holds. Here C = c

(
n, cJ ,Cϕ,C�2

ϕ , ϕ(1),min

{
diam(D), 1

})
.

We recall the definitions of N -functions and Orlicz spaces.

Definition 3.4 A function H : [0,∞) → [0,∞) is an N -function if

(N1) H is continuous,
(N2) H is convex,
(N3) limt→0+ H(t)

t = 0 and limt→∞ H(t)
t = ∞.
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Continuity and limt→0+ H(t)
t = 0 yield that H(0) = 0.

Convexity yields that H(t)
t ≤ H(s)

s for 0 < t < s and thus H is a strictly increasing
function.

By the notation f � g we mean that there exists a constant C > 0 such that
f (x) ≤ Cg(x) for all x . The notation f ≈ g means that f � g � f .
Two N -functions H and K are equivalent, which iswritten as H � K , if there exists

m ≥ 1 such that H(t/m) ≤ K (t) ≤ H(mt) for all t > 0. Equivalent N -functions
give the same space with comparable norms. We point out that H � K if and only if
for the inverse functions H−1 ≈ K−1.

We assume that H satisfies the �2-condition, that is, there exists a constant C
�2
H

such that

H(2t) ≤ C�2
H H(t) for all t > 0. (3.2)

The constant C�2
H is called the �2-constant of H .

Let G in Rn be an open set.
We study the Orlicz space LH (G) which means the space of all measurable func-

tions u defined on G such that

ˆ
G
H
(
λ|u(x)|

)
dx < ∞

for some λ > 0.
The Orlicz space LH (G) equipped with the Luxemburg norm

‖u‖L�(G) = inf

{
λ > 0 :

ˆ
G

�

( |u(x)|
λ

)
dx ≤ 1

}

is a Banach space.
Let G in Rn be an open set. Assume that f ∈ L1(G). The centered Hardy–

Littlewood maximal operator is defined as

M f (x) = sup
r>0

 
B(x,r)

| f (y)χG(x)| dx,

where the function f χG is understood to be zero in the complement of G. We recall
the following theorem from [7, Theorem 3.5] which is applied to the function f χG .

Theorem 3.5 Let ϕ satisfy the conditions (1)–(5). Letψ : [0,∞) → [0,∞) be defined
as in (2.1). Let 1 ≤ p < n be given. Suppose that there exists a continuous function
h : [0,∞) → [0,∞) such that

∞∑

k=1

(2−k t)n

ψ(t2−k)n−1 ≤ h(t) for all t > 0 . (3.3)
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Let δ : (0,∞) → [0,∞) be a continuous function and let H : [0,∞) → [0,∞) be
an N-function satisfying the �2-condition. Suppose that there exists a finite constant
CH such that the inequality

H
(
h(δ(t))t + ψ(δ(t))1−n(δ(t))n(1− 1

p )
)

≤ CHt
p (3.4)

holds for all t > 0. Let G in Rn be an open set. If ‖ f ‖L p(G) ≤ 1, then there exists a
constant C such that the inequality

H

(ˆ
G

| f (y)|
ψ(|x − y|)n−1 dy

)
≤ C(M f (x))p (3.5)

holds for every x ∈ G. Here the constant C depends on n, p, Cϕ , CH , and the
�2-constants of ϕ and H only.

Our goal is to find a formula which would give all suitable functions H . Examples
of some of these functions were given in [7, Section 6].

Here we do the preparations to find H . Assume that there exists α ∈ [1, n/(n − 1))
such that tα/ϕ(t) is increasing for t > 0. This yields that tα/ψ(t) is increasing, too.
Under this condition inequality (3.3) holds: Since

(2−k t)n

ψ(t2−k)n−1 = (2−k t)n

(2−k t)α(n−1)
· (2−k t)α(n−1)

ψ(t2−k)n−1

≤ (2−k t)n−α(n−1) tα(n−1)

ψ(t)n−1 = 2−k(n−α(n−1)) tn

ψ(t)n−1 ,

we have

∞∑

k=1

(2−k t)n

ψ(t2−k)n−1 ≤ C(n, α)
tn

ψ(t)n−1 , where C(n, α) = 2α(n−1)

2n − 2α(n−1)
.

Let us define the functions h and δ such that

h(t) = C(n, α)
tn

ψ(t)n−1 and δ(t) = t−
p
n for all t > 0.

Then,

h(δ(t))t+ψ(δ(t))1−n(δ(t))n(1− 1
p ) = h

(
t−

p
n

)
t + ψ

(
t−

p
n

)1−n (
t−

p
n

)n(1− 1
p )

= C(n, α)t−p

ψ
(
t−

p
n

)n−1 t + t1−p

ψ
(
t−

p
n

)n−1 = (C(n, α) + 1)t1−p

ψ
(
t−

p
n

)n−1 .
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Fig. 2 The function F is not
necessary convex

If we choose

F−1(t) = (C(n, α) + 1)(t1/p)1−p

ψ
(
(t1/p)−

p
n

)n−1 = (C(n, α) + 1)t
1
p −1

ψ
(
t− 1

n

)n−1

and assume that the inverse function of F−1 exists, that is (F−1)−1 =: F exists, then

h(δ(t))t + ψ(δ(t))1−n(δ(t))n(1− 1
p ) = F−1(t p)

and thus

F
(
h(δ(t))t + ψ(δ(t))1−n(δ(t))n(1− 1

p )
)

= F
(
F−1(t p)

)
= t p.

Unfortunately, there is a problem with this function F to be a suitable function H ;

namely, the function F is not necessary convex. For example, if n = 2, ϕ(t) = t
3
2 ,

and p = 1.9, then the function F is not convex, see Fig. 2. The angle at the point
(1, F−1(1)) comes from the angle of ψ at the point (1, ψ(1)). Our main theorem,
Theorem 1.1 in Introduction, corrects this point: we show that there exists an N -
function H that is equivalent with F .

Proof of Theorem 1.1 Let us write that

F−1(t) = t
1
p −1

ψ
(
t− 1

n

)n−1

for t > 0 and F−1(0) = 0. Let us first show that F−1 is strictly increasing. We recall
that if ϕ satisfies condition (4), then ψ does too, and the constant is the same for both
functions. We have
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F−1(t) = t
1
p −1+ n−1

n

⎛

⎝ (t− 1
n )

ψ
(
t− 1

n

)

⎞

⎠

n−1

= t
1
p − 1

n

⎛

⎝ (t− 1
n )

ψ
(
t− 1

n

)

⎞

⎠

n−1

.

Since p < n the function t �→ t
1
p − 1

n is strictly increasing. Since the function t �→ t− 1
n

is strictly decreasing, condition (4) with Cϕ = 1 yields that t �→ (t− 1
n )/ψ(t−1/n) is

strictly increasing. These together yield that F−1 is strictly increasing.
This yields that the function F exists and is strictly increasing.
Let us show that limt→0+ F−1(t) = 0. Since p < n we obtain

lim
t→0+ F−1(t) = lim

t→0+
t
1
p −1

ψ
(
t− 1

n

)n−1 = lim
t→0+ ϕ(1)1−nt

n−1
n + 1

p −1 = 0.

Let us show that limt→∞ F−1(t) = ∞. Since t/ϕ(t) is decreasing, by the condition
(4), and by p < n we obtain

lim
t→∞ F−1(t)= lim

t→∞
t
1
p −1

ψ
(
t− 1

n

)n−1 = lim
t→∞ t

1
p − 1

n

⎛

⎜
⎝

t− 1
n

ψ
(
t− 1

n

)

⎞

⎟
⎠

n−1

≥ lim
t→∞

t
1
p − 1

n

ϕ(1)n−1 =∞.

We have shown that F−1 : [0,∞) → [0,∞) is bijective.
Let us then study the condition

F(s)

s
<

F(t)

t
for 0 < s < t . (3.6)

Since F−1 is a strictly increasing bijection, inequality (3.6) is equivalent to

s

F−1(s)
<

t

F−1(t)
.

Since tα/ϕ(t) is increasing, then ϕ(t)/tα is decreasing andψ(t)/tα is decreasing, too.
We note that 1 − α(n−1)

n > 0, since α < n
n−1 . We obtain

s

F−1(s)
= s2−

1
p ψ

(
s− 1

n

)n−1 = s2−
1
p − α(n−1)

n

⎛

⎜
⎝

ψ
(
s− 1

n

)

(
s− 1

n

)α

⎞

⎟
⎠

n−1

= s
1− 1

p +1− α(n−1)
n

⎛

⎜
⎝

ψ
(
s− 1

n

)

(
s− 1

n

)α

⎞

⎟
⎠

n−1

< t
1− 1

p+1−α(n−1)
n

⎛

⎜
⎝

ψ
(
t− 1

n

)

(
t− 1

n

)α

⎞

⎟
⎠

n−1

= t

F−1(t)

and thus inequality (3.6) holds.
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Let us then show that F−1(cs) ≥ 2F−1(s) for all s ≥ 0 with c = 2
np
n−p . The

inequality F−1(cs) ≥ 2F−1(s) is equivalent to

2
ψ

(( 1
cs

) 1
n

)n−1

( 1
cs

)1− 1
p

≤
ψ

(( 1
s

) 1
n

)n−1

( 1
s

)1− 1
p

.

By the condition (4) of ϕ and the inequality p < n, we obtain

2
ψ

(( 1
cs

) 1
n

)n−1

( 1
cs

)1− 1
p

= 2

⎛

⎜⎜
⎝

ψ

(( 1
cs

) 1
n

)

( 1
cs

) 1
n

⎞

⎟⎟
⎠

n−1

(
1

cs

) n−1
n −1+ 1

p

=

⎛

⎜⎜
⎝

ψ

(( 1
cs

) 1
n

)

( 1
cs

) 1
n

⎞

⎟⎟
⎠

n−1

(
1

s

) n−1
n −1+ 1

p

≤

⎛

⎜⎜
⎝

ψ

(( 1
s

) 1
n

)

( 1
s

) 1
n

⎞

⎟⎟
⎠

n−1

(
1

s

) n−1
n −1+ 1

p =
ψ

(( 1
s

) 1
n

)n−1

( 1
s

)1− 1
p

.

The inequality F−1(cs) ≥ 2F−1(s) yields that F satisfies the �2-condition. Let us
write F(t) = s. Then F−1(s) = t . Since F is increasing, we have

F(2t) = F(2F−1(s)) ≤ F(F−1(cs)) = cs = cF(t).

Since F satisfies �2-condition it is finite everywhere and hence (3.6) yields that
F(0) = lims→0+ F(s) = 0 and lims→∞ F(s) = ∞. Since ψ is continuous, we
find that F−1 is continuous on (0,∞) and hence also F is continuous on (0,∞) and
moreover on [0,∞).

Hästö has shown in [11, Proposition 3.1] that if f : [0,∞) → [0,∞) is left-
continuous, f (0) = lims→0+ f (s) = 0, lims→∞ f (s) = ∞ and x �→ f (x)/x is
increasing, then f is equivalent to a convex function. We obtain that F is equivalent
to a convex function H . Here the implicit constant depends only on the constant in
the �2-condition, that is, it depends only on n and p.

Using limt→0+ F−1(t) = 0 and the bijectivity, we obtain

lim
t→0+

F(t)

t
= lim

t→0+
t

F−1(t)
= lim

t→0+

t ψ

(( 1
t

) 1
n

)n−1

( 1
t

)1− 1
p

= lim
t→0+ ϕ(1)n−1t1−

1
p+1−n−1

n =0
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and thus also limt→0+ H(t)
t = 0. This gives that H is right continuous at the origin.

Since F satisfies �2-condition so does H and thus it is finite everywhere. Thus by
convexity the function H is continuous on [0,∞).

Since ϕ(t)/tα is decreasing and α < n
n−1 , we obtain

lim
t→∞

F(t)

t
= lim

t→∞
t

F−1(t)
= lim

t→∞ t2−
1
p ϕ
(
t−

1
n

)n−1

= lim
t→∞ t2−

1
p− α(n−1)

n

⎛

⎜
⎝

ϕ
(
t− 1

n

)

(
t− 1

n

)α

⎞

⎟
⎠

n−1

≥ lim
t→∞ t1−

1
p +1− α(n−1)

n

(
ϕ (1)

1α

)n−1

= ∞.

Since the functions F and H are equivalent, this yields that limt→∞ H(t)
t = ∞. Thus

we have shown that the function H satisfies the conditions (N1)–(N3). ��
Remark 3.6 Later it is crucial that

H−1(t) ≈ t
1
p −1

ψ
(
t− 1

n

)n−1 = t
1
p −1

ϕ(1)n−1
(
t− 1

n

)n−1 = ϕ(1)1−nt
n−p
np

for 0 < t ≤ 1. Namely, for every ϕ the function H satisfies H(t) ≈ t
np
n−p whenever

0 < t ≤ 1.

Example 3.7 Functions ϕ(t) = tα/ logβ(e+ 1/t), α ∈ [1, n
n−1 ) and β ≥ 0, satisfy the

assumptions of Theorem 1.1.

Theorems 1.1 and 3.5 yield the following result.

Theorem 3.8 Let D be an unbounded or a bounded domain in Rn, n ≥ 2. Let 1 ≤
p < n. If H is the function from Theorem 1.1 and ‖ f ‖L p(D) ≤ 1, then there exists a
constant C such that the pointwise estimate

H

(ˆ
D

| f (y)|
ψ(|x − y|)n−1 dy

)
≤ C(M f (x))p

holds for every x ∈ D. Here, M f is the Hardy–Littlewood maximal operator of f and
the constant C depends on n, p, and the �2-constant of H only.

As a corollary we obtain from Theorems 3.3 and 3.8:

Corollary 3.9 Let 1 ≤ p < n. Let the function H be as in Theorem 1.1. If D is a
bounded ϕ-cigar John domain with a constant cJ , then there exit a constant C and a
point x0 ∈ D such that the pointwise estimate

H
(∣∣u(x) − uB(x0,dist(x0,∂D))

∣∣) ≤ C(M |∇u|(x))p
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holds for all u ∈ L1
p(D) with ‖∇u‖L p(D) ≤ 1 and for almost every x ∈ D. Here the

constant C depends on n, p, CH , C
�2
H , C�2

ϕ , cJ , ϕ(1) and min
{
diam(D), 1

}
only.

4 On Embeddings

Corollary 3.9 is essential in the proofs of the following Theorems 4.1 and 4.2.

Theorem 4.1 (Bounded domain, 1 < p < n) Assume that ϕ satisfies the conditions
(1)–(5), Cϕ = 1 in the condition (4), and there exists α ∈ [1, n/(n − 1)) such that
tα/ϕ(t) is increasing for t > 0. Let ψ be defined as in (2.1). Let D ⊂ Rn, n ≥ 2, be
a bounded ϕ-cigar John domain with a constant cJ . Let 1 < p < n. Then there exists
an N-function H, that satisfies �2-condition and

H−1(t) ≈ t
1
p −1

ψ
(
t− 1

n

)n−1 for all t > 0 ,

and there exists a constant C < ∞ such that the inequality

‖u − uD‖LH (D) ≤ C‖∇u‖L p(D),

holds for every u ∈ L1
p(D). Here the constant C depends on n, p, C�2

H , C�2
ϕ , cJ and

min{diam(D), 1} only.
Proof Theorem2.4 implies thatD is a boundedψ-Johndomain.Let x0 be a Johncenter.
Let us denote B = B(x0, dist(x0, ∂D)). Assume that ‖∇u‖L p(D) ≤ 1. Corollary 3.9
yields that H

(∣∣u(x) − uB
∣∣) ≤ C(M |∇u|(x))p, where the constant C depends on n,

p, C�2
H , C�2

ϕ , cJ , and min{1, diam(D)} only. By integrating over D and using the fact
that the maximal operator is bounded whenever 1 < p < n, we obtain that

ˆ
D
H
(∣∣u(x) − uB

∣∣) dx ≤ C
ˆ
D
(M |∇u|(x))p dx ≤ C

ˆ
D

|∇u(x)|p dx ≤ C .

This yields that the inequality ‖u − uB‖LH (D) ≤ C holds for every u ∈ L1
p(D) with

‖∇u‖L p(D) ≤ 1. If ‖∇u‖L p(D) = 0 then the function is a constant function and the
claim holds. Otherwise we apply this inequality to the function u/‖∇u‖L p(D) and
obtain that ‖u − uB‖LH (D) ≤ C‖∇u‖L p(D).

We may assume w.l.o.g. that ‖∇u‖L p(D) �= 0. By the triangle inequality ‖u −
uD‖LH (D) ≤ ‖u − uB‖LH (D) + ‖uB − uD‖LH (D). Here,

‖uB − uD‖LH (D) = |uB − uD| ‖1‖LH (D) ≤ ‖1‖LH (D)

|D| ‖u − uB‖L1(D)

≤ C
‖1‖LH (D)‖1‖LH∗

(D)

|D| ‖u − uB‖LH (D)
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where H∗ is the conjugate function of H and C is the constant in Hölder’s inequality.
It is well known that ‖1‖LH (D)‖1‖LH∗

(D) ≈ |D| see [1, Chapter 2, Theorem 5.2].

Hence, we have shown that ‖u − uD‖LH (D) ≤ C‖∇u‖L p(D) for every u ∈ L1
p(D). ��

Theorem 4.2 (Bounded domain, p = 1) Assume that the function ϕ satisfies the
conditions (1)– (5), Cϕ = 1 in the condition (4), and there exists α ∈ [1, n/(n − 1))
such that tα/ϕ(t) is increasing for t > 0. Let ψ be defined as in (2.1) Let D ⊂ Rn,
n ≥ 2, be a bounded ϕ-cigar John domain with a constant cJ . Then there exists an
N-function H, that satisfies �2-condition and

H−1(t) ≈ 1

ψ
(
t− 1

n

)n−1 for all t > 0 ,

such that the inequality

‖u − uD‖LH (D) ≤ C‖∇u‖L1(D),

holds for some constant C and for every u ∈ L1
p(D). Here the constant C depends

only on n, C�2
H , C�2

ϕ , cJ , and min{1, diam(D)}.
The term min{1, diam(D)} means that the constant depends on the diameter only

for small diameters. For large diameters the constant is independent of the diameter.
��

Proof Let us consider functions u ∈ L1
1(D) such that ‖∇u‖L1(D) ≤ 1. The center ball

B(x0, dist(x0, ∂D)) is written as B. In the proof of Theorem 2.4 we had chosen x0 so
that dist(x0, ∂D) ≥ ψ( 14 diam(D))/cJ . We show that there exists a constant C < ∞
such that the inequality

ˆ
D
H(|u(x) − uB |) dx ≤ C (4.1)

holds whenever ‖∇u‖L1(D) ≤ 1. This yields the claim as in the proof of Theorem 4.1.
Since H is increasing, we first estimate

ˆ
D
H(|u(x) − uB |) dx ≤

∑

j∈Z

ˆ
{x∈D:2 j<|u(x)−uB |≤2 j+1}

H(2 j+1) dx .

Let us define v j (x) = max

{
0,min

{
|u(x) − uB | − 2 j , 2 j

}}
for all x ∈ D. If x ∈

{x ∈ D : 2 j < |u(x) − uB | ≤ 2 j+1}, then v j−1(x) ≥ 2 j−1. We obtain

ˆ
D
H(|u(x) − uB |) dx ≤

∑

j∈Z

ˆ
{x∈D:v j (x)≥2 j }

H(2 j+2) dx . (4.2)
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By the triangle inequality we have

v j (x) = |v j (x) − (v j )B + (v j )B | ≤ |v j (x) − (v j )B | + |(v j )B |.

By the (1, 1)-Poincaré inequality in a ball B, [5, Section 7.8], there exists a constant
C(n) such that

|(v j )B | = (v j )B = –
ˆ

B

v j (x) dx ≤ –
ˆ

B

|u(x) − uB | dx

≤ C(n)|B| 1n –
ˆ

B

|∇u(x)| dx ≤ C(n)|B| 1n −1.

We continue to estimate the right hand side of inequality (4.2)

ˆ
D
H(|u(x) − uB |) dx

≤
∑

j∈Z

ˆ
{x∈D:|v j (x)−(v j )B |+C|B|−1≥2 j }

H(2 j+2) dx

≤
∑

j∈Z

ˆ
{x∈D:|v j (x)−(v j )B |≥2 j−1}

H(2 j+2) dx +
∑

2 j−1≤C(n)|B| 1n −1

ˆ
D
H(2 j+2) dx

≤
∑

j∈Z

ˆ
{x∈D:|v j (x)−(v j )B |≥2 j−1}

H(2 j+2) dx +
j0∑

j=−∞

ˆ
D
H(2 j+2) dx,

(4.3)

where j0 = �log(C(n)|B| 1n −1)�.
Assume first that diam(D) is so large that j0 ≤ −2. When t < 1, then ψ(t−1/n) =

ϕ(1)t−1/n by (2.1) and thus

H−1(t) = 1

ψ(t−1/n)n−1 = ϕ(1)1−nt
n−1
n .

Thus for t < 1 we obtain that H(t) ≈ t
n

n−1 . This yields that

j0∑

j=−∞

ˆ
D
H(2 j+2) dx ≈ |D|

�log(C|B| 1n −1)�∑

j=−∞
2

n( j+2)
n−1 ≤ C |D|2 n

n−1 ·�log(C|B| 1n −1)�

≤ C |D||B| n
n−1 ( 1n −1) = C |D||B|−1

≤ C
diam(D)n

(ψ( 14 diam(D))/cJ )n
. (4.4)
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This constant does not blow up when diam(D) → ∞:

diam(D)n

(ψ( 14 diam(D))/cJ )n
→ 4ncnJ

ϕ(1)n
as diam(D) → ∞.

Assume then that diam(D) is small. This yields that for every j0 ∈ Z the sum∑ j0
j=−2 H(2 j+2) is finite and depends on

j0 ≈ log
(
C(n) dist(x0, ∂D)1−n

)
≤ log

(
C(n, cJ )ψ

( 1
4 diam(D)

)1−n
)
.

We obtain

j0∑

j=−∞

ˆ
D
H(2 j+2) dx ≤

−2∑

j=−∞

ˆ
D
H(2 j+2) +

j0∑

j=−2

H(2 j+2) < ∞. (4.5)

Then, we will find an upper bound for the sum

∑

j∈Z

ˆ
{x∈D:|v j (x)−(v j )B |≥2 j−1}

H(2 j+2) dx .

Since ‖∇v j‖L1(D) ≤ ‖∇u‖L1(D) ≤ 1, Corollary 3.9 yields that

∑

j∈Z

ˆ
{x∈D:|v j (x)−(v j )B |≥2 j−1}

H(2 j+2) dx

=
∑

j∈Z

ˆ
{x∈D:H(|v j (x)−(v j )B |)≥H(2 j−1)}

H(2 j+2) dx

≤
∑

j∈Z

ˆ
{x∈D:CM|∇v j |(x)≥H(2 j−1)}

H(2 j+2) dx .

Wechoose for every x ∈ {x ∈ D : CM |∇v j |(x) ≥ H(2 j−2)} a ball B(x, rx ), centered
at x and with radius rx depending on x , such that

C –
ˆ

B(x,rx )

|∇v j (y)| dy ≥ 1

2
H(2 j−1)

with the understanding that |∇v j | is zero outside D. By the Besicovitch covering
theorem (or the 5-covering theorem) we obtain a subcovering {Bk}∞k=1 so that we may
estimate by the �2-conditionof H
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∑

j∈Z

ˆ
{x∈D:|v j (x)−(v j )B |≥2 j−1}

H(2 j+2) dx ≤
∑

j∈Z

∞∑

k=1

ˆ
Bk

H(2 j+2) dx

≤
∑

j∈Z

∞∑

k=1

|Bk |H(2 j+2) ≤
∑

j∈Z

∞∑

k=1

C |Bk |H(2 j+2)

H(2 j−1)
–
ˆ

Bk

|∇v j (y)| dy

≤ C
∑

j∈Z

ˆ
D

|∇v j (y)| dy.

Let E j = {x ∈ D : 2 j < |u(x)−uB | ≤ 2 j+1}. Since |∇v j | is zero almost everywhere
in D\E j and |∇u(x)| = ∑

j |∇v j (x)|χE j (x) for almost every x ∈ D, we obtain

∑

j∈Z

ˆ
{x∈D:|v j (x)−(v j )B |≥2 j−1}

H(2 j+2) dx ≤ C
ˆ
D

|∇u(y)| dy ≤ C . (4.6)

Estimates (4.3), (4.4), (4.5) and (4.6) imply inequality (4.1). ��
Remark 4.3 In Theorem 4.2 the N -function H is the best possible in a sense that
it cannot be replaced by any N -function K that satisfies the �2-condition and
limt→∞ K (t)

H(t) = ∞.
In [7, Theorem 7.2] we have shown that the corresponding embedding in Theo-

rem 4.2 does not hold if

lim
t→0+ tnK

(
1

ϕ(t)n−1

)
= ∞.

This is valid for this function K . By the definitions of H−1 and ψ we obtain that

lim
t→0+ tnK

(
1

ϕ(t)n−1

)
= lim

s→∞
1

s
K

⎛

⎜
⎝

1

ϕ
(
s− 1

n

)n−1

⎞

⎟
⎠ = lim

s→∞
K
(
H−1(s)

)

H
(
H−1(s)

) = ∞,

and thus there does not exists a constant c such that ‖u − uD‖LK (D) ≤ c‖∇u‖L1(D),
for every u ∈ L1

p(D).

Remark 4.4 We refer to the detailed discussion in [6,7] for the fact that our result is
optimal when p = 1.

Next we prove our main theorem.

Proof of Theorem 1.2 The proof follows the idea of the proof of [10, Theorem 4.1]. By
Theorems 4.1 and 4.2 there exists a constant C such that the inequality

‖u − uDi ‖LH (Di )
≤ C‖∇u‖L p(Di ) (4.7)
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holds for each Di and all u ∈ L1
p(D). The constant C does not blow up when the

diameter of Di tends to infinity. In the case 1 < p < n this is clear. In the case p = 1,
we refer to the discussion after (4.4) in the proof of Theorem 4.2. The constant depends
on D1 but this does not cause a problem.

When ‖∇u‖L p(D) ≤ 1 inequality (4.7) yields that there exists a constant C < ∞
such that the inequality

ˆ
Di

H(|u(x) − uDi |) dx ≤ C,

holds; here the constant C is independent of i .
Let us write ui = uDi . The triangle inequality yields that

|ui | ≤ –
ˆ

D1

|u(x) − ui | dx + –
ˆ

D1

|u(x)| dx .

Since Di satisfies inequality (4.7), we have u ∈ LH (D1) ⊂ L1(D1) and thus the
second term is finite. Again, by inequality (4.7) we obtain that

–
ˆ

D1

|u(x)−ui | dx≤ C‖1‖LH∗
(D1)

|D1| ‖u−uDi ‖LH (D1)
≤ C‖1‖LH∗

(D1)

|D1| ‖u−uDi ‖LH (Di )

≤ C‖1‖LH∗
(D1)

|D1| ‖∇u‖L p(Di ) ≤ C‖1‖LH∗
(D1)

|D1| ‖∇u‖L p(D) < ∞.

Thus the real number sequence (ui ) is bounded and hence there exists a convergent
subsequence (ui j ) and b ∈ R such that ui j → b.

Since H is continuous, lim j→∞ χDi j
H(|u(x)−ui j |) = χDH(|u(x)−b|). Fatou’s

lemma and the modular form of (4.7) yield that

ˆ
D
H(|u(x) − b|) dx ≤ lim inf

j→∞

ˆ
D

χDi j
H(|u(x) − ui j |) dx

= lim inf
j→∞

ˆ
Di j

H(|u(x) − ui j |) ≤ lim inf
j→∞ C = C

for every u ∈ L1
loc(D) with ‖∇u‖L p(D) ≤ 1. This yields that there exists a con-

stant C such that the inequality ‖u − b‖LH (D) ≤ C holds for every u ∈ L1
p(D)

with ‖∇u‖L p(D) ≤ 1. The claim follows by applying this inequality to the function
u/‖∇u‖L p(D). ��
Example 4.5 Let the function ϕ be defined as in Theorem 1.2. The following
unbounded domains satisfy the assumptions of Theorem 1.2:

(a) Rn , n ≥ 2.
(b)

{
(x ′, xn) ∈ Rn : xn ≥ 0 and |x ′| < ψ(xn)

}
.
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Fig. 3 Unbounded ϕ-cigar John domain that satisfies the assumptions of Theorem 1.2

(c) R2\({(x, ϕ(x)) ∈ R2 : 0 ≤ x ≤ 1} ∪ {(x,−ϕ(x)) ∈ R2 : 0 ≤ x ≤ 1}).
(d) The undounded domain G constructed in Sect. 5, illustrated in Fig. 3.

5 Lebesgue Space Cannot be a Target Space

In this section we give an example which shows that for certain unbounded ϕ-cigar
John domains the target space cannot be a Lebesgue space. The idea is that at near the
infinity the target space should be Lnp/(n−p) but local structure of the domain may not
allow so good integrability. We assume a priori that the function ϕ has the properties
(1)–(5). Later on we give extra conditions to the function ϕ.

We construct a mushrooms-type domain. Let (rm) be a decreasing sequence of
positive real numbers converging to zero. Let Qm , m = 1, 2, . . . , be a closed cube in
Rn with side length 2rm . Let Pm , m = 1, 2, . . . , be a closed rectangle in Rn which
has side length rm for one side and 2ϕ(rm) for the remaining n − 1 sides. Let Q be
the first quarter of the space i.e. all coordinates of the points in Q are positive. We
attach Qm and Pm together creating ’mushrooms’ which we then attach, as pairwise
disjoint sets, to the side {(0, x2, . . . , xn) : x2, . . . , xn > 0} of Q so that the distance
from the mushroom to the origin is at least 1 and at most 4, see Fig. 3. We assumed
that the function ϕ has the properties (1)–(5), but we have to assume here also that
ϕ(rm) ≤ rm .Weneed copies of themushrooms.By an isometricmappingwe transform
these mushrooms onto the side {(x1, 0, . . . , xn) : x1, x3, . . . , xn > 0} of Q and denote
them by Q∗

m and P∗
m . So again the distance from the mushroom to the origin is at least

1 and at most 4. We define

G = int

(

Q ∪
∞⋃

m=1

(
Qm ∪ Pm ∪ Q∗

m ∪ P∗
m

))

. (5.1)

See Fig. 3. We omit a short calculation which shows that G is a ϕ-cigar John domain.
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Let us define a sequence of piecewise linear continuous functions (uk)∞k=1 by setting

uk(x) :=

⎧
⎪⎨

⎪⎩

F(rk) in Qk,

−F(rk) in Q∗
k ,

0 in Q,

where the function F will be given in (5.2). Then the integral average of uk over G is
zero for each k.

The gradient of uk differs from zero in Pm ∪ P∗
m only and

|∇uk(x)| = F(rm)

rm
, when x ∈ Pm ∪ P∗

m .

Note that

ˆ
G

|∇uk(x)|p dx = 2
ˆ
Pm

(
F(rm)

rm

)p

= 2rm (ϕ(rm))n−1 F(rm)p

r pm
.

We require that
´
G |∇uk(x)|p dx = 1. Hence, we define

F(rm) =
(

r p−1
m

2ϕ(rm)n−1

)1/p

. (5.2)

Let H be an N -function. Then,

inf
b∈R

ˆ
G
H(|uk(x) − b|) dx

≥ inf
b∈R

(
|Qm | · H(|F(rm) − b|) + |Q∗

m | · H(| − F(rm) − b|)
)

≥ rnmH(F(rm)) .

Hence, we have

rnmH(F(rm)) = rnmH

((
r p−1
m

2ϕ(rn−1
m )

)1/p)
≥ rnmH

(
1

2

(
r p−1
m

ϕ(rn−1
m )

)1/p)
.

Thus, there does not exist a positive constant C such that the inequality infb ‖u −
b‖LH (G) ≤ C‖∇u‖L p(G) could hold for all u from the appropriate space if

lim
t→0+ tn H

(
1

2

(
t p−1

ϕ(t)n−1

)1/p)
= ∞.
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Assume that limt→0+ t/ϕ(t) = ∞. If H(t) = tq , then we obtain that the inequality
does not hold if

q ≥ np

n − p
. (5.3)

Assume then that we have a sequence (s j ) of positive numbers going to infinity.
For each s j we may choose points x( j) and y( j) such that the balls B(x( j), s j ) and
B(y( j), s j ) are subsets of the first quadrant and B(x( j), 3s j ) ∩ B(y( j), 3s j ) = ∅.
We define a sequence of continuous functions (v j )

∞
j=1 that are radially linear on

B(x( j), 2s j ) and B(y( j), 2s j ) by setting

v j (x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s
− n−p

p
j in B(x( j), s j ),

−s
− n−p

p
j in B(y( j), s j ),

0 in G\ (B(x( j), 2s j ) ∪ B(y( j), 2s j )
)
.

Now we have

ˆ
G

|∇v j |p dx ≤ Csnj

∣∣∣∣∣∣∣

s
− n−p

p
j

s j

∣∣∣∣∣∣∣

p

≤ C

for some constant C . On the other hand, for any b ∈ R

ˆ
G
H(|v j (x) − b|) dx ≥ Csnj H(|s− n−p

p
j − b|) + Csnj H(| − s

− n−p
p

j − b|)

≥ Csnj H(|s− n−p
p

j |).

Thus, there does not exist a positive constant C1 such that the inequality infb ‖u −
b‖LH (G) ≤ C1‖∇u‖L p(G) could hold for all u from the appropriate space if

lim
s→∞ snH(s− n−p

p ) = lim
s→∞ s

pn
n−p H

(
1

s

)
= ∞.

By choosing H(t) = tq , we obtain that the inequality does not hold if

q <
np

n − p
. (5.4)

If limt→0+ t/ϕ(t) = ∞ and if there were an embedding with the Lebesgue space
Lq as a target space, then by (5.3) we would have q <

np
n−p and by (5.4) we would

have q ≥ np
n−p . Thus the target space cannot be a Lebesgue space. The target space

can be Lq only if limt→0+ t/ϕ(t) < ∞ and in this case q = np
n−p . Note that the limit
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limt→0+ t/ϕ(t) exists since ϕ is increasing and ϕ ≥ 0. If limt→0+ t/ϕ(t) = m > 0,
then there exists t0 > 0 such that 1

2mϕ(t) ≤ t ≤ 2mϕ(t).
We point out that with our assumptions the case limt→0+ t/ϕ(t) = 0 is not possible.

Namely if limt→0+ t/ϕ(t) = 0, then limt→0+ ϕ(t)/t = ∞, and this contradicts with
condition (4).

Thus we have proved the following remarks.

Remark 5.1 Let ϕ satisfy (1)–(5), and assume that limt→0+ t/ϕ(t) = ∞. Let G be the
unbounded ϕ-cigar John domain constructed in (5.1). Let 1 ≤ p < n. Then there do
not exist numbers q ∈ R and C ∈ R such that the inequality

inf
b∈R ‖u − b‖Lq (G) ≤ C‖∇u‖L p(G)

could hold for all u ∈ L1
p(G).

Remark 5.2 Let the function ϕ satisfy conditions (1)–(5). Suppose that limt→0+ t/ϕ(t)
= m ∈ (0,∞). Then, there exists t0 > 0 such that ϕ(t) ≈ t for all t ∈ (0, t0]. Let G
be the unbounded ϕ-cigar John domain constructed in (5.1). Assume that there exist
numbers q ∈ R and C ∈ R such that the inequality

inf
b∈R ‖u − b‖Lq (G) ≤ C‖∇u‖L p(G)

holds for all u ∈ L1
p(G). Then q = np

n−p .
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