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Abstract: The stem cell marker and RNA-binding protein Musashi-1 is overexpressed in endometrio-
sis. Musashi-1-siRNA knockdown in Ishikawa cells altered the expression of stem cell related genes,
such as OCT-4. To investigate the role of both human Musashi homologues (MSI-1 and MSI-2) in the
pathogenesis of endometriosis, immortalized endometriotic 12-Z cells and primary endometriotic
stroma cells were treated with Musashi-1- and Musashi-2-siRNA. Subsequently, the impact on cell
proliferation, cell apoptosis, cell necrosis, spheroid formation, stem cell phenotype and the Notch sig-
naling pathway was studied in vitro. Using the ENDOMET Turku Endometriosis database, the gene
expression of stem cell markers and Notch signaling pathway constituents were analyzed according
to localization of the endometriosis lesions. The database analysis demonstrated that expression of
Musashi and Notch pathway-related genes are dysregulated in patients with endometriosis. Musashi-
1/2-double-knockdown increased apoptosis and necrosis and reduced stem cell gene expression,
cell proliferation, and the formation of spheroids. Musashi silencing increased the expression of
the anti-proliferation mediator p21. Our findings suggest the therapeutic potential of targeting the
Musashi–Notch axis. We conclude that the Musashi genes have an impact on Notch signaling and the
pathogenesis of endometriosis through the downregulation of proliferation, stemness characteristics
and the upregulation of apoptosis, necrosis and of the cell cycle regulator p21.

Keywords: Musashi; Notch; stem cells; endometriosis; apoptosis; HES-1; KLF-4; Notch-2; SOX-2;
ALDH

1. Introduction

Endometriosis is defined by the presence of endometrium-like tissue outside the
uterine cavity associated with stroma. Between 6% and 10% of women of reproductive age
are affected. Endometriosis is an estrogen-dependent condition with chronic inflammatory
characteristics [1]. Typical symptoms include dysmenorrhea, dyspareunia, as well as other
pain symptoms linked to certain localizations of endometriotic lesions and subfertility [1,2].
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Established treatment options include surgical removal of lesions and hormonal ther-
apy. Both options do not guarantee the healing of the condition and can be associated with
significant side effects, such as adhesion formation and hypoestrogenic symptoms [1–3].
The pathogenesis of endometriosis has been the subject of recent research. There seems to
be a role for retrograde menstruation, coelomic metaplasia, lymphovascular metastasis and
the embryonic rest theory in the development of endometriosis. The underlying molecu-
lar mechanisms still remain unclear and are complex, including the dysregulation of the
endocrine milieu, chronic inflammation, aberrant angiogenesis and the dysregulation of
factors associated with invasive growth [1]. Recent research points at an altered endome-
trial stem cell function as an additional pathogenetic route that is compatible with the
classical concepts of endometriosis [4–6]. Notch signaling has been shown to be a relevant
stemness-related pathway in endometriosis. It is more active in deep infiltrating endometri-
otic lesions of patients than in controls [5]. Glandular notch-1 expression is upregulated in
the eutopic endometrium of patients suffering from deep infiltrating endometriosis com-
pared with the endometrium of an endometriosis-free in vitro fertilization collective [7]. In
contrast to this, another study found decreased notch signaling in the eutopic endometrium
of women with endometriosis, resulting in impaired decidualization [8]. Notch activation
was linked to progesterone resistance in endometriotic lesions [9] and to angiogenesis in a
mouse model [10].

The Notch pathway is modulated by Musashi proteins, RNA binding proteins that act
as translational repressors [11,12]. Musashi exists in two variants, Musashi-1 (MSI-1) and
Musashi-2 (MSI-2). Both variants regulate the stem cell character of somatic and germ cells
through effects on differentiation, survival, proliferation, and therapeutic resistance [13,14].
MSI-1 has been demonstrated to modulate development of endometrial cancer [15] and
to be significantly upregulated in endometriotic tissue [6]. The dual knockdown of MSI-1
and MSI-2 in ovarian and breast cancer cells led to attenuation of stemness and therapy
resistance [16,17]. As these data suggest a potential mechanistic involvement of Musashi
proteins in endometriosis, the aim of this study is to elucidate the effect of MSI-1 and MSI-2
knockdown on endometriosis development in vitro.

2. Results
2.1. Expression of Notch Signaling- and Stemness-Related Genes in Endometriosis

To analyze the gene expression of our genes of interest in endometriotic tissue, the
ENDOMET Turku Endometriosis Database [18] was used. We performed database analyses
in up to 576 endometriotic samples of ectopic lesions of endometriosis patients and up
to 82 healthy control samples. The expression of different genes of the Notch signaling
pathway (MSI-1, MSI-2, numb, Notch receptors, Notch-dependent transcription factors Hes,
Hey and stemness markers LIFR, KLF-4, SOX-2) were first analyzed for their expression
in different tissue types and different types of endometriotic lesions. Comparing the gene
expression in the peritoneum and endometrial tissue of endometriosis patients and controls,
the database analysis showed that the gene expression depends on the analyzed tissue,
and that it is differentially altered between patients and controls (Figure 1a). Specifically,
the expression of MSI-1, MSI-2, of the transcription factor HES-2 and the cell cycle regu-
lator p21 are significantly reduced in patients with endometriosis according to the data
(Figure 1). In contrast, the transcription factor HES-1 is overexpressed in patients with
endometriosis compared to the healthy samples (Figure 1e). The dysregulated expression
of the Musashi genes and Notch signaling constituents suggests that they may contribute
to the pathogenesis of endometriosis.
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Figure 1. Gene expression analysis with the ENDOMET Turku Endometriosis Database. (a) The 
expression of the analyzed genes is depending on the tissue origin (peritoneum vs. endometrial 
tissue). The Musashi-1 expression (b), the Musashi-2 expression (c), the p21 expression (d) and the 
HES-2 expression (f) are in general decreased in endometriotic tissue compared to the healthy ones. 
The expression of the transcription factor HES-1 is increased in endometriotic cells compared to the 
healthy samples (e). For the gene expression of HES-2 and MSI-2 82, samples of healthy tissue and 
576 samples of patients with endometriosis were analyzed. A total of 41 healthy samples were 
analyzed for the gene expression of HES-1 and HES-2 and 287 endometriotic samples for the MSI-1 
and 288 samples for the HES-1 expression. (** p < 0.01, error bars = SD). 

2.2. Loss of Musashi-1 and -2 Function Inhibits Cell Proliferation and Promotes Apoptosis and 
Necrosis in Endometriotic 12-Z Cells and Primary Endometriotic Stroma Cells  

As previously shown, the number of cells expressing the stem-cell-related gene MSI-
1 is increased in endometriotic tissue compared to healthy endometrium [6]. According 
to the previous results, Musashi expressing progenitor cells could play an important role 
in the pathogenesis of endometriosis. To demonstrate the role of Musashi in endometriotic 
tissue at the functional level, we employed the siRNA technology to silence MSI-1 and 
MSI-2 in 12-Z cells and primary endometriotic stroma cells. Both homologs of Musashi 
were simultaneously downregulated to exclude potential compensatory effects [16,17]. 
Prior to analyses, the efficiency of the siRNA mediated double knockdown of MSI-1 and 
MSI-2 12-Z cells was controlled by a RT-PCR analysis, confirming the knockdown 
efficiency of 61% for MSI-1 and 62% of MSI-2 in 12-Z cells, for 60% for MSI-1 and 63% for 
MSI-2 in patient 1 primary cells and for 80% of MSI-1 and 67% of MSI-2 in patient 2 
primary cells compared to control si-RNA transfected cells (Figure 2a–c). The results, thus, 
confirmed the successful siRNA double-knockdown of MSI-1 and MSI-2 expression in 12-
Z cells and patients’ cells.  

 

Figure 1. Gene expression analysis with the ENDOMET Turku Endometriosis Database. (a) The
expression of the analyzed genes is depending on the tissue origin (peritoneum vs. endometrial
tissue). The Musashi-1 expression (b), the Musashi-2 expression (c), the p21 expression (d) and the
HES-2 expression (f) are in general decreased in endometriotic tissue compared to the healthy ones.
The expression of the transcription factor HES-1 is increased in endometriotic cells compared to
the healthy samples (e). For the gene expression of HES-2 and MSI-2 82, samples of healthy tissue
and 576 samples of patients with endometriosis were analyzed. A total of 41 healthy samples were
analyzed for the gene expression of HES-1 and HES-2 and 287 endometriotic samples for the MSI-1
and 288 samples for the HES-1 expression. (** p < 0.01, error bars = SD).

2.2. Loss of Musashi-1 and -2 Function Inhibits Cell Proliferation and Promotes Apoptosis and
Necrosis in Endometriotic 12-Z Cells and Primary Endometriotic Stroma Cells

As previously shown, the number of cells expressing the stem-cell-related gene MSI-1
is increased in endometriotic tissue compared to healthy endometrium [6]. According to
the previous results, Musashi expressing progenitor cells could play an important role in
the pathogenesis of endometriosis. To demonstrate the role of Musashi in endometriotic
tissue at the functional level, we employed the siRNA technology to silence MSI-1 and
MSI-2 in 12-Z cells and primary endometriotic stroma cells. Both homologs of Musashi
were simultaneously downregulated to exclude potential compensatory effects [16,17].
Prior to analyses, the efficiency of the siRNA mediated double knockdown of MSI-1 and
MSI-2 12-Z cells was controlled by a RT-PCR analysis, confirming the knockdown efficiency
of 61% for MSI-1 and 62% of MSI-2 in 12-Z cells, for 60% for MSI-1 and 63% for MSI-2 in
patient 1 primary cells and for 80% of MSI-1 and 67% of MSI-2 in patient 2 primary cells
compared to control si-RNA transfected cells (Figure 2a–c). The results, thus, confirmed
the successful siRNA double-knockdown of MSI-1 and MSI-2 expression in 12-Z cells and
patients’ cells.
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Figure 2. Confirmation of Musashi-knockdown in 12-Z cells and patient-derived endometriotic
stroma cells. siRNA-mediated knockdown of MSI-1 and MSI-2 in 12-Z cells (a), patient 1 primary
cells (b), and patient 2 primary cells (c) lead to the significant transcriptional downregulation of MSI-1
and MSI-2. * p < 0.05, ** p < 0.01, n > 3, error bars = SD.

We next studied the impact of Musashi knockdown on several cellular phenotypes
relevant to the pathogenesis of endometriosis. The influence of the Musashi double knock-
down on metabolic activity as a readout of cell viability of 12-Z and primary cells was
measured with MTT-Assay. The data showed that Musashi double knockdown had an
influence on cell survival. The cells which were treated with MSI-1- and MSI-2-siRNA
showed a reduced cell viability compared to the control-siRNA treated cells. The 12-Z
cells showed a significant reduction in cell viability by 20%. Patient 1 cells showed a
decreased cell viability by 28% and patient 2 cells on 14% (Figure 3a–c). Accordingly, the
Musashi double knockdown in 12-Z cells and the cells of patient 1 resulted in an increased
apoptosis and necrosis rate. The number of apoptotic cells was increased from 5.94% to
6.59% and the number of necrotic cells from 3.72% to 5.01 % in the 12-Z cells (Figure 3d,e).
The proportion of apoptotic cells in patient 1 cells significantly increased from 18% to 22%
and the proportion of necrotic cells from 29% to 37% (Figure 3f,g). The cells of patient 2
showed a similar increase apoptosis and necrosis rate in three of four experiments (results
not shown).

2.3. Loss of Musashi-1 and -2 Function Affects the Formation of 3D Spheroids

The impact of the Musashi double knockdown on the formation of spheroids as
readout of stem-cell-related properties was analyzed using the hanging drop method. The
spheroid size was measured and analyzed on day 4 and 7. The images in Figure 4a show
that the 12-Z cells as well as the primary cells were capable of self-organizing into spheroids.
Spheroids consisted of a solid core and were surrounded by a more diffuse margin of cells.
The center and diffuse edge were analyzed separately in the knockdown experiments. The
morphology of the spheroids was similar, but the 12-Z spheroids were larger than the
primary stromal cell spheroids and the edge around the center of the 12-Z spheroids was
more diffuse than in primary cells spheroids. To exclude cell counting errors, the size of
the spheroids was measured in three different, independent experiments. Image J-based
quantification revealed that the Musashi-double-knockdown cells showed a significantly
reduced formation of the spheroids with a smaller size on day 4 and day 7 in the center and
the diffuse edge around the center of the spheroid in 12-Z cells and patient 1 and patient 2
cells (Figure 4b–d).
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Figure 3. Musashi-double-knockdown effect on cell viability and apoptosis and necrosis rate. siRNA
mediated knockdown of MSI-1 and MSI-2 in 12-Z cells (a), patient 1 cells (b), and patient 2 cells (c)
lead to a significant downregulation of the cell viability (n > 3, * p < 0.05, ** p < 0.01). (d) Representative
example of the impact of Musashi double knockdown caused an increased number of apoptotic cells
by 2.01% and necrotic cells by 1.22% in 12-Z cells. (f) In the representative example, the apoptotic rate
increased through the Musashi double knockdown from 20.79% to 28.20% and the necrosis rate from
25.68% to 31.36% in patient 1 cells. The 12-Z cells (e) showed an increased apoptotic and necrotic rate
in each experiment, but according to viability no significance was detected. Patient 1 cells (g) showed
a significant increase in the apoptotic and necrotic rate through Musashi double knockdown. (n = 3,
* p < 0.05, ** p < 0.01, error bars = SD).
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Figure 4. Impact of Musashi double knockdown on spheroid formation by endometriotic cells. (a)
Images of spheroids of 12-Z, patient 1 and patient 2 cells on day 4 and day 7, which were formed by
using the hanging drop method. (b) The 12-Z control spheroids were significantly larger compared to
the Musashi-double-knockdown spheroids (n = 13, students t-test). (c) The patient 1 control spheroids
were significantly larger on day 4 and day 7 in the center and edge of the spheroid compared to the
Musashi-double-knockdown spheroids (n = 13, students t-test). (d) The patient 2 control spheroids
showed a significantly larger size on day 4 and day 7 in the center compared to the Musashi-double-
knockdown spheroids. The edge of the Musashi double knockdown was reduced (n = 13; Student’s
t-test). For all figures in the panel * p < 0.05, ** p < 0.01, error bars = SD.

2.4. Loss of Musashi-1 and -2 Function Inhibits ALDH-Activity and Reduces the Side Population

To further analyze the impact of Musashi double knockdown on stem cell characteris-
tics, the 12-Z cells were analyzed for ALDH activity and their SP phenotype as surrogate
markers of a stem cell phenotype [4,19,20]. After incubation of the 12-Z cells with a flu-
orescent ALDH substrate in the presence or absence of the inhibitor DEAB followed by
flow cytometry, Musashi double knockdown leads to a reduction in ALDH positive cells
as presented in the representative example (Figure 5a). Through Musashi double knock-
down, the pool of ALDH positive 12-Z cells was significantly reduced to 91.8% (Figure 5).
Stem cells express a high level of ATP-binding cassette transporter proteins for example
ABCG/Brcp, which are able to exclude the fluorescent dye Hoechst 33,342 from the cells,
allowing for characterizing the side population phenotype via flow cytometry [19]. In a
representative example, the 12-Z cells were detected to contain 2.36% SP cells and Musashi
double knockdown reduced this population to 0.65% (Figure 5b). The ABC transporter
inhibitor verapamil was used as a control to identify SP cells [19]. The quantitative analysis
of three independent experiments revealed a significant reduction in the side population
upon Musashi double knockdown by about 50% (Figure 5).
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Figure 5. Musashi double knockdown affects stem cell characteristics. (a) The impact of the Musashi
double knockdown on the ALDH activity of the 12-Z cells as a readout of stem cell activity is shown
in the representative example in which the ALDH positive cell population was reduced by 8.66%. (b)
Flow cytometry reveals a decreased side population (SP), a surrogate stem cell marker, after Musashi
double knockdown. The side population cells are detected in gate R2. One sample was treated with
verapamil, which inhibits ABC transporters. The side population of the verapamil treated cells in this
representative example was 1.49% (left panel). The cells treated with the control si-RNA show 2.36%
of cell in the side population (central panel). Musashi double knockdown reduced the side population
to 0.6%. The downregulation of side population was 1.71%. (c) Quantitative analysis showed that
Musashi double knockdown reduces the proportion of the ALDH positive cells to 91.8% (n = 3,
* p < 0.05, error bars = SEM). (d) The impact of Musashi double knockdown on the SP phenotype was
quantitatively analyzed and found to be reduced to 53.2% compared to controls (n = 3, * p < 0.05,
error bars = SD).
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2.5. siRNA Induced Double-Knockdown of Musashi-1 and -2 Leads to Altered Expression of
HES-1, KLF-4, HES-2 and Notch-2 in Endometriotic Cells

To analyze a potential mechanism behind the altered phenotype of endometriotic cells
due to Musashi double knockdown, the RT-qPCR of genes involved in Notch signaling
(Notch-1, Notch-2, Notch-3, HES-1, HES-2, HEY-1, and HEY-2), in maintaining stem cell
functions (KLF-4, OCT-4, and SOX-2) and in the pathogenesis of endometriosis (LIFR, Tert,
IFITM1, and FOXA2) [1] was analyzed (Figure 6). Musashi double knockdown induced
an upregulation of HES-2 in 12-Z and primary patient cells (2.54-fold in 12-Z, 2.48-fold in
patient 1, 2.02-fold in patient 2). The mRNA expression of the transcription factors HES-1
and KLF-4 was significantly reduced through Musashi double knockdown in 12-Z cells
(0.84-fold in 12-Z) and the mRNA expression of the Notch-2 receptor is highly significantly
downregulated (0.84-fold 12-Z). In 12-Z cells, the expression of the transcription factor
SOX-2 was significant upregulated (1.44-fold in 12-Z) (Figure 6a). The mRNA expression of
HES-2 (2.48-fold in patient 1) was upregulated in patient 1 primary cells after treatment
with MSI-1- and -2-si-RNA (Figure 6b). The downregulation of MSI-1 and MSI-2 in the
primary cells of patient 2 cells repressed the expression of HES-1 (0.81 fold in patient 2) and
of LIFR (0.7-fold in patient 2). The transcription factors HES-2 (2.02-fold in patient 2), HEY-1
(2.24 fold patient 2) and HEY-2 (2.14-fold patient 2) were upregulated through double-
knockdown (Figure 6c). In 12-Z, patient 1 and patient 2 cells, no significant changes were
detected for the factors Notch-1, Notch-3, Numb, OCT-4 and TERT. The transcription factor
HES-2 was constantly upregulated in the investigated cells by Musashi double knockdown.

HES-1 is an important Notch-dependent transcription factor that has been linked
to epithelial–mesenchymal transition, cell proliferation, migration, and invasion in en-
dometriosis [21,22]. As HES-1 was downregulated on mRNA level, we investigated the
HES-1 expression at the protein level via flow cytometry. HES-1 expression was downregu-
lated in 12-Z cells after MSI-1- and MSI-2-si-RNA double knockdown compared to control
siRNA treated cells (Figure 7a). In primary cells, the HES-1 expression was always indi-
vidually downregulated, but the combined analysis did not lead to a significant resolution
due to high viability (Figure 7b–d).

Musashi double knockdown reduced the mRNA expression of Notch-2 in 12-Z cells
(Figure 6a). According to the findings, the protein expression of Notch-2 in 12-Z cells was
analyzed via flow cytometry and found to be significantly downregulated in 12-Z cells,
following Musashi double knockdown (Figure 8a).

To control the influence of Musashi double knockdown on the expression of further
proteins possibly related to the observed phenotypic changes, Western blotting was per-
formed with FOXA2-, Notch-3- and p21WAF1/CIP1-antibodies in the 12-Z and primary cells.
Consistent with previous data on Ishikawa endometrial carcinoma cells subjected to MSI-1
siRNA knockdown [15], the cell cycle regulator p21WAF1/CIP1 was upregulated in MSI-1
and -2 depleted 12-Z cells compared to controls (Figure 8b and Supplement) [23]. In the
case of Notch-3 and FOXA2, no consistent difference in protein expression was observed
(Figure 8c,d and Supplementary Materials).
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Figure 6. siRNA-mediated double knockdown of Musashi-1 and -2 expression results in significant
alterations in stemness-related gene expression in 12-Z cells and primary endometriotic cells. 12-Z
cells and primary cells were treated with MSI-1- and MSI-2-si-RNA or negative control si-RNA and
48 h after transfection, the mRNA expression of Notch signaling relevant genes and stem cell markers
was analyzed via RT-PCR. (a) siRNA mediated the double knockdown of MSI-1 and MSI-2 results in
a significant downregulation of KLF-4, HES-1, and Notch-2 and in a significant upregulation of HES-2
in 12-Z cells (n = 21). (b) In patient 1 cells, Musashi double knockdown leads to an upregulation
of HES-1 expression (n = 15). (c) Downregulation of Musashi-1 and Musashi-2 in patient 2 cells
represses the expression of the LIF-receptor and transcription factor HES-1 and increases expression
of the transcription factors HES-2, HEY-1 and HEY-2 (n = 15). For all pictures in panel * p < 0.05,
** p < 0.01, error bars = SD.
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Figure 7. Musashi-depletion affects the expression of HES-1 protein. Musashi double knockdown
effects HES-1-protein-expression. The 12-Z cells were transfected and 48 h later the flow cytometry
analysis of HES-1 expression followed (a). The right panel shows a representative flow cytometry,
and the left panel shows quantitative analysis of the 4 independent experiments that were performed
(n = 4, ** p < 0.01). The impact of Musashi double knockdown on the HES-1 protein expression of
patient 1 (b), patient 2 (c). and patient 3 (d) cells were also analyzed via flow cytometry. Downregu-
lation of HES-1 was observed in all experiments of patient 1, 2 and 3, but due to high viability, no
significant reduction was shown. On the left panel, the quantitative analysis is presented, and the
right panel shows a representative flow cytometry (n = 3).
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Figure 8. Impact of Musashi double knockdown on the protein expression of pathogenetic factors.
(a) Flow cytometric analysis of protein expression of Notch-2 in endometriotic cells. Musashi double
knockdown leads to a reduction in Notch-2 protein expression to a level of 84.5% in 12-Z cells (n = 3).
(b) Quantitative analysis of Western blot results and the impact of Musashi double knockdown on
the protein expression of p21 ((b), n = 5), FOXA-2 ((c), n = 4) and Notch-3 ((d), n = 3) (* p < 0.05, in
12Z cells. ** p < 0.01, error bars = SD).
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3. Discussion

In this in vitro study, we investigated the effect of a Musashi double knockdown on
stem cell properties, apoptosis, necrosis, cell viability and gene expression of members of the
Notch signaling pathway. The findings of this study demonstrate that the Musashi proteins,
which are up regulated in endometriosis [6], act as a functional modulator of endometriotic
processes. Other studies have shown that the Notch pathway partly controls the endocrine
and antiangiogenic aspects and stem cell properties of endometriotic tissue [24]. As Musashi
activates Notch signaling through the post-transcriptional regulation of Numb [11], it could
be assumed that Notch signaling is downregulated through Musashi double knockdown
via siRNA transfection. According to the results of the ENDOMET database, the expression
depends on the localization of the endometriotic lesions. Based on the upregulation of the
Musashi proteins in endometriotic cells, a Musashi double knockdown was performed
using siRNA. The positive effects of Musashi double knockdown have already been shown
in breast and ovarian cancer cells, in which the Musashi knockdown induces apoptosis
and reduces cell proliferation [16,17]. The surviving fraction in a colony formation assay
was also reduced in estrogen-receptor positive breast cancer cells through Musashi double
knockdown [25].

The exact pathogenesis of endometriosis is still not completely known. The patho-
genesis of endometriosis is complex [1]. In accordance with the stem cell theory, different
stem cell markers are more highly expressed in endometriotic tissue than in normal en-
dometrium [1,26,27]. While our data establish a novel contribution of the MSI–Notch
signaling pathway to pathogenetic processes, such as cell proliferation and stemness, as a
possible prerequisite for persistent growth of ectopic lesions, other factors, such as altered
immune surveillance resulting in chronic inflammation, are also part of the complex patho-
genesis [1]. Through a MSI-1 knockdown, pluripotency-associated transcription factors,
such as OCT-4, were downregulated at the mRNA level in the 12-Z cell line. The 12-Z
cells express the Notch-1 receptor, Notch-4 receptor [13] and several stem cell markers,
such as OCT-4, KLF-4, MSI-1, and SOX-2 [4], and have shown a positive ALDH activity
and a positive side population phenotype [4]. Therefore, this cell line appears well-suited
for analyzing stemness-associated phenotypes in endometriosis. Previous studies have
furthermore shown that cells derived from endometriotic tissue with a side population
phenotype are able to reconstitute the tissue of patients with endometriosis in an in vivo
model [20]. Through Musashi double knockdown, the side population and the ALDH
activity were significantly reduced, which relates to a downregulation of stemness char-
acteristics. According to the findings, the cell viability and the formation of spheroids
are also reduced through Musashi double knockdown. The downregulated cell viability
through Musashi double knockdown also assumes a reduction in stem cell properties.
Stem cells normally show an unlimited potential of proliferation [1,19,28]. In breast and
endometrial cancer cells, a Musashi-1 knockdown downregulated proliferation and stem
cell gene expression and increased the expression of the anti-proliferation mediator p21 and
apoptosis [15]. Similar effects were observed upon Musashi double knockdown in breast
and ovarian cancer cells [16,17,25]. Consistently, the effects of the Musashi-1 knockdown
on p21 were also shown through Musashi double knockdown in the 12-Z cells, as there
was an upregulation of p21 protein expression.

The transcription factor HES-1 is a part of the hairy and enhancer of split family, which
are with the HEY-family part of the Notch target genes. HES-1 is overexpressed in patients
with endometriosis [9]. In our study, Musashi double knockdown led to a downregulation
of the expression of HES-1 on the mRNA and protein levels.

The results assume a participation of the Notch pathway on the pathogenesis of
endometriosis. Notch signaling is more active in patients suffering from deep infiltrating
endometriosis [5,7]. Notch-2 expression was reduced in 12-Z cells on mRNA and protein
level through Musashi double knockdown. It was shown that the expression of Notch-1
receptor and Numb are increased in endometriotic tissue, indicating a possible role of this
pathway in disease pathogenesis [7].
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A limitation of this study is that we only investigated the different aspects in an
in vitro system. However, our investigations with the spheroids have benefits compared to
the 2D cell culture [29]. Previous studies showed that 12-Z cells are able to self-organize
into spheroids and show a larger formation, sometimes exhibiting slightly branching
morphology compared to St-T1b and endometriotic stroma cells [30,31]. In our study,
Musashi double knockdown led to a reduced size of the area of the center and the edge of
the spheroids in 12-Z and primary cells, which agrees with the reduced proliferation and
reduced stem cell phenotype.

One limitation of this in vitro study is that the primary cells are derived from the
stromal compartment and the 12-Z cells are from the epithelial compartment [30–32]. The
different results of the gene expression on mRNA levels could be explained by the different
origin of the epithelial 12-Z-cells and the stromal endometriotic primary cells. Another
explanation could be the different localizations of the biopsies from the patient cells and
the different stages of the disease.

In the epithelial 12-Z cells, the transcription factor SOX-2 was significantly upregulated
through Musashi double knockdown. Previous studies showed that, in endometriotic tissue,
SOX-2-positive cells are more frequent than in healthy control endometrium [33]. Other
stemness related genes, such as REX-1, Nanog and OCT-4, are also increased expressed
in women with ovarian endometriosis compared to normal endometrium [34]. SOX-2,
KLF-4, c-Myc and OCT-4 are called the Yamanaka factors, which are able to reprogram
differentiated cells into a pluripotent state [35]. KLF-4 was decreased through Musashi
double knockdown in 12-Z cells. KLF-4 can also act as a tumor suppressor depending on
the localization. Its expression depends on p21 [36]. It was shown in epidermal stem cells
(of zebrafish) that KLF-4 promotes the cell proliferation by repressing p53 expression and
preventing cdkn1a/p21 induction [37]. It is also part of the regulation of pathogenetically
relevant processes, such as proliferation, apoptosis [38] and cell differentiation [39]. In
endometriotic cells, KLF-4 expression is epigenetically regulated by microRNA miR-200b,
resulting in altered stemness and proliferation [40].

In patient 2 primary cells, the expression of the LIF-receptor was decreased through
the knockdown. LIF, which is part of the interleukin-6-family of cytokines, binds to the
LIF-receptor and is able to induce a signal regarding pluripotency in murine embryonic
stem cells [41]. The LIF-R was reduced in 12-Z cells and patient-derived endometriotic
stroma cells after the treatment with gamma secretase inhibitor (GSI), assuming that it
may cause unwanted fertility-related side effects [24]. As Musashi double knockdown
leads to similar results, the unwanted fertility-related side effects could also be assumed,
potentially restricting Musashi inhibition to the perspective treatment of non-fertility
associated symptoms in endometriosis patients, or to postmenopausal patient subgroups.
Notably, GSI is a reagent inhibiting proteolytic activation of notch signaling [24].

As only a few members of the Notch signaling pathway were inhibited by the Musashi
double knockdown, a multimodal way of silencing the Notch pathway could be considered
for an even more therapeutic effect in future studies. For example, other therapeutic targets,
such as fruit- and vegetable-derived natural compounds modulating the Notch pathway,
were already considered [42].

In conclusion, the MSI-1 and MSI-2 double knockdown has an impact on cell survival,
stem cell traits and the proliferation of endometriotic cells. The present study underlines
the potential role of MSI-1 and MSI-2 as therapeutic targets in endometriosis. Overall, these
data suggest that the Notch signaling pathway has an important role in the pathogenesis of
endometriosis.

4. Materials and Methods
4.1. Materials

Media, fetal calf serum (FCS), and tissue culture supplies were obtained from Gibco
BRL/Thermo Fisher (Waltham, MA, U.S.A.). Unless stated otherwise, all chemicals were
from Sigma (Deisenhofen, Germany).
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4.2. Cell Culture

The immortalized human endometriotic cell line 12-Z [32] was used as a suitable
model system for studying an endometriotic stem cell phenotype [4,24]. The cell line was
kindly provided by Prof. Anna Starzinski-Powitz (Goethe-University, Frankfurt, Germany).
The 12-Z cells originate from a biopsy of a peritoneal endometriotic lesion of a 37-year-old
patient. For immortalization, the SV40-T-Antigen served as an inhibitor of apoptosis. They
were cytokeratin-positive, estrogen receptor alpha and beta and progesterone receptor
positive and aromatase P450 positive [32]. As the 12-Z cells are characterized by adherent
growth and a confluent monolayer, the cells had to be split two times a week. The primary
endometriotic stroma cells were obtained from three different patients with endometriosis
undergoing laparoscopy at Münster University Hospital between October 2012 and March
2014. The patient 1 cells (OP-5) were obtained from an endometriotic lesion in the rectovagi-
nal septum with a rASRM II score of a 35-year-old patient with multiple lesions in different
locations. The patient 2 primary cells (OP-10) originated from a peritoneal superficial
endometriotic lesion of the pelvic sidewall with an rASRM Score III of a 19-year-old patient.
The patient 3 primary cells (OP-7) are from an endometriotic lesion of the uterine serosa of
a 39-year-old woman. The endometriotic deposit was classified as rASRM II. The study was
carried out in accordance with the Declaration of Helsinki and approved by the local ethics
commission (Ethikkommission der Ärztekammer Westfalen-Lippe und der Medizinischen
Fakultät der WWU; approval no. 1 IX Greb 1 from 19 September 2001, updated 2012). All
participants gave written informed consent. No renumeration was offered to the patients to
enter or continue the study. The isolation of the primary cells was performed as previously
described [42]. The 12-Z cells and the primary endometriotic stroma cells were cultured
in high glucose DMEM with 10% FCS and 1% penicillin/streptomycin. The cells were
cultured in a humidified atmosphere of 5% CO2 at 37 ◦C.

4.3. siRNA Transfection

One day before siRNA transfection, the cells were plated in six-well plates and incu-
bated for 24 h at 37 ◦C to reach a confluency of 70–80%. The cells were either transfected
with 10 nM each of MSI-1 (S8980) and MSI-2 siRNA (S42757) or negative control siRNA #1
(ThermoFisher Scientific, Waltham, MA, U.S.A.) in OPTI-MEM media (Life Technologies,
Grand Island, NE, U.S.A.) via lipotransfection with Dharmafect® reagent (Thermo Fisher
Scientific, Waltham, MA, U.S.A.). After 24 h of incubation, OPTI-MEM media were replaced
by a DMEM culture medium. Then, 24 h after media change, the cells were used for further
experiments.

4.4. RNA Isolation and Reverse Transcription for cDNA Synthesis

Forty-eight hours after transfection, mRNA isolation was performed according to
the supplier’s protocol, using the InnuPREP® RNA mini kit (Analytik Jena AG, Jena,
Germany). cDNA synthesis was carried out according to the supplier’s protocol, using
the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA,
U.S.A.). Reverse transcription was performed on a TGradient thermocycler (Biometra,
Göttingen, Germany).

4.5. Quantitative TaqMan Real-Time PCR

To control the Musashi knockdown efficiency, quantitative RT-PCR was performed
using the ROX Probe Master Mix dTTP (Takyon™, cat. No. UF-RPMT-C0701, Eurogenetec,
Seraing, Belgium). Per well, 20 ng cDNA were used. The RT-PCR was performed with
the Peqlab Peqstar 96Q (VWR, Darmstadt, Germany) with 1 cycle at 50 ◦C for 2 min and
then 40 cycles at 95 ◦C for 15 s and at 60 ◦C for 1 min. For analysis of the gene expression,
actin was used as a housekeeping gene and the data of the target gene expression were
normalized to the actin gene. The fold change was calculated using the Ct-values and
2-∆∆Ct-method. The used pre-designed TaqMan gene expression systems are listed in the
Supplementary Table S1.
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4.6. Quantitative SYBR Green RT-PCR

For gene expression analysis, quantitative RT-PCR was performed using ROX SYBR®

Master Mix blue dTTP (Takyon™, cat. No. UF-RSMT-B0701, Eurogenetec, Seraing, Belgium)
and the primers listed in Table S2 in the Supplement. For the RT-PCR, 25 ng cDNA were
used per well. For the RT-PCR, the Peqlab Peqstar 96Q (VWR, Darmstadt, Germany)
was used. As a housekeeping gene, actin was used, and the fold change was determined
using the 2-∆∆Ct-method and the Ct value. As a program for the RT-PCR, four different
stages were used for one cycle. The first cycle was performed at 50 ◦C for 2 min, following
40 cycles of 15 s at 95 ◦C and of 1 min at 60 ◦C.

4.7. Western Blotting

Protein lysates for Western blotting were extracted from cultured cells 48 h after the
siRNA transfection by using RIPA buffer as previously described [43]. A total of 20–30 µg
of protein per lane were separated and loaded on a 10% tris-polyacrylamide gel and
electrophoresed at 0.02 A for 15 min and 0.04 A for 60 min. The proteins were transferred to
a Hybond nitrocellulose membrane (GE Healthcare, Munich, Germany) at 16 V for 50 min.
The protein lanes and molecular weights were estimated by using Ponceau-S solution
(Sigma-Aldrich® Life Science, Taufkirchen, Germany). The membrane was blocked for
1 h with 2.5% non-fat dry milk and afterwards incubated for 16 h at 4 ◦C with one of the
primary antibodies in Table S3 in the Supplement diluted in 10 mL 5% BSA. The membrane
was washed 3x for 5 min with Tris-buffered saline and then incubated for 1 h with the
depending secondary antibody (listed in Table S3 in the Supplement). After washing, the
membrane 3x for 5 min with Tris-buffered saline, the membrane was incubated with an ECL
reaction mix (SuperSignal® West Pico Chemiluminescent Substrate by Thermo Scientific,
Rockford, IL, U.S.A.). The signal was detected by the FlowMax. The membranes were
stripped with 0.2 M NaCl (pH = 13.3), washed with H2O, and blocked for 1 h with 2.5%
non-fat dry milk, before being re-incubated with the next primary antibody.

4.8. Cell Viability/Proliferation Assay

Metabolic activity was assessed by MTT assay. The cells were seeded in 96-well plates
48 h after transfection. Then, 144 h after transfection, the cells were treated with methylthi-
azolyldiphenyltetrazolium bromide (MTT) as previously described [4]. The measurements
were performed 24 h after the treatment at 495 nm on a VersaMax™ microplate reader
(Molecular Devices, San Jose, CA, U.S.A.). Data are shown as a percentage of the absorption
of the MSI-1 and MSI-2-treated cells over the control.

4.9. Flow Cytometric Measurement of HES-1 and Notch-2 Expression

The cells were removed from the well plates 48 h after transfection with 2 mmol/L
EDTA in Ca2+/Mg2+-free PBS buffer and afterwards centrifuged for 5 min and 1200 rpm.
In the case of Notch-2, 20 µL of a directly labelled antibody was used (BD Pharmingen, San
Jose, CA, U.S.A.) to stain 1 × 106 cells suspended in 100 µL PBS supplemented with 5%
BSA. Cells were stained for 20 min in the dark, followed by addition of 900 µL PBS/BSA.
Afterwards, flow cytometric measurement was performed. To quantify HES-1 expression,
1 × 106 cells were washed with BD Perm/Wash Buffer (BD Pharmingen, San Jose, CA,
U.S.A.) and centrifuged for 5 min at 1200 rpm. Afterwards the cells were incubated at
4 ◦C for 20 min with 250 µL BD Cytofix/Cytoperm™ (BD Pharmingen, San Jose, CA,
U.S.A.). After washing the cells with BD Perm/Wash Buffer and centrifugation for 5 min
and 1200 rpm, the samples were incubated with 20 µL of the primary antibody HES-1
(Santa Cruz Biotechnology, Santa Cruz, CA, U.S.A.) for 1 h at room temperature in the
dark. A total of 20 µL PE isotype control antibodies or 20 µL BD Perm/Wash Buffer were
added to the staining control samples. The caspase samples and their controls were ready
to be measured: after the addition of 900 µL Perm/Wash Buffer, fluorescence intensity
was detected in FL2. In the case of HES-1, two further washing steps were performed
followed by addition of the secondary anti-mouse antibody Alexa-Fluor 488 (Invitrogen,
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Carlsbad, CA, U.S.A.) to all samples for one hour in the dark. After another two washing
steps, the cells were suspended with 900 µL BD Perm/Wash and measured on a flow
cytometer (CyFlow Space, Sysmex Partec, Münster, Germany). Excitation took place with a
488 nm argon laser and the emission of the fluorescence was measured at 527 nm in FL1
(Alexa 488).

4.10. Aldehyde Dehydrogenase Activity Assay

Furthermore, 24 h after the siRNA transfection with MSI-1 and MSI-2, the activity of
the Aldehyde dehydrogenase (ALDH) was detected by using the ALDEFLUOR assay kit
(STEMCELL Technology, Vancouver, BC, Canada), as previously described [15]. The ALDH
activity was measured using a Cyflow Space cytometer (Sysmec/Partec, Görlitz, Germany)
with a 488 nm argon laser for excitation. The emission of the fluorescence was measured
at 527 nm in FL1. For the quantification of the fluorescence intensity, a quadrant gate was
set in the dotplot of FL1 (x-axis) against side scatter SSC (y-axis) and the ALDH positive
cells could be quantified in Q2 using the FloMax software (Quantum Analysis, Münster,
Germany). The results were shown by the percentage of the mean of the ALDH-positive
cells over the whole cell population. Per sample, 20,000 events were analyzed.

4.11. Side Population Analysis

A side population analysis was performed as previously described [15]. The mea-
surement of side population phenotype is based on the upregulated expression of ABC
transporter protein family members in stem cells. The phenotype corresponds to a surro-
gate marker of stemness. So, 72 h after siRNA transfection, the side population analysis
was performed, using the Hoechst 33,342 dye exclusion technique. A total of 1 × 106 cells
were stained with 5 µg/mL Hoechst 33,342 (Sigma-Aldrich, Saint Louis, MO, U.S.A.) in
DMEM containing 2% FCS at 37 ◦C for 90 min. Afterwards, 2 µg/mL propidium iodide
was added to the cells for the detection of death cells. After the staining, the fluorescence
emissions of the cells were analyzed on a flow cytometer (CyFlow Space, Sysmex Partec,
Münster, Germany) using a 16 mW 375 nm UV laser. The measurement was made with
the FloMax-software for data acquisition (Quantum Analysis, Münster, Germany). The
fluorescence emission was shown as a dot-plot histogram with Hoechst blue on the y-axis
and Hoechst red on the x-axis; the SP-cells reside in gate R2. The Hoechst signals were
slivered using a 610 nm dichronic mirror into FL5 at 665 nm and FL4 at 455 nm.

4.12. Annexin V Apoptosis Assay

For the detection of the apoptosis and necrosis rate, the cells were treated 48 h after
siRNA transfection with the FITC Annexin V Apoptosis Detection Kit 1 (BD Pharmingen™,
BD Biosciences, San Diego, CA, U.S.A.). Apoptosis was determined as detailed by the
manufacturer’s manual. The measurements were performed on a flow cytometer (CyFlow
Space, Sysmex Partec, Münster, Germany) with a 488 nm argon laser. Signals were collected
at 665 nm in FL3 and at 527 nm in FL1. For visualizing and managing the flow data, the
FloMax software (Quantum Analysis, Münster, Germany) was used. A total of 20,000 cells
were analyzed per sample. The apoptotic cells were determined in the fourth quartile
(Q4). Necrotic/late apoptotic cells were annexin V and propidium iodide positive because
of their permeable membrane and presented in quadrants Q1 and Q2. The quadrant Q3
represents the viable cells.

4.13. Hanging Drop Assay

The hanging drop method was used for the generation of spheroids. A total of 20 µL
drops containing 20,000 cells were deposited on the upper lid of a plastic Petri dish. The
bottom of the Petri dish was filled with 10 mL PBS. The drops were incubated at 37 ◦C
and 7.5% CO2 for 7 days. On day 4 and day 7, a photograph of the spheroids was taken
using an Axiovert100 microscope (Carl Zeiss, Jena, Germany) with a 10x objective and
an AxioCam MRc (Carl Zeiss, Jena, Germany) with the program AxioVision (Carl Zeiss,
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Jena, Germany). The experiment was repeated 3 times and per experiment 5 drops were
analyzed. The area of the spheroids was analyzed using ImageJ. The center of the drop and
the halo around the center of the spheroids were measured.

4.14. Statistical Analysis

The experiments were repeated independently at least 3 times with 2–3 biological
replicates per run. The program Microsoft Excel was used for statistical analysis. Data were
expressed as mean values +/−SD. The significance was calculated using the Student’s
unpaired t-test for two samples with unequal variances (heteroskedastic). When reaching p
< 0.05, the results were statistically significant and when p < 0.01 applied, the results were
considered as highly significant.
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