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Abstract

Background: Low socio-economic position (SEP) is a risk factor for multiple health out-

comes, but its molecular imprints in the body remain unclear.

Methods: We examined SEP as a determinant of serum nuclear magnetic resonance meta-

bolic profiles in �30 000 adults and 4000 children across 10 UK and Finnish cohort studies.

Results: In risk-factor-adjusted analysis of 233 metabolic measures, low educational at-

tainment was associated with 37 measures including higher levels of triglycerides in

small high-density lipoproteins (HDL) and lower levels of docosahexaenoic acid (DHA),

omega-3 fatty acids, apolipoprotein A1, large and very large HDL particles (including

levels of their respective lipid constituents) and cholesterol measures across different

density lipoproteins. Among adults whose father worked in manual occupations, associ-

ations with apolipoprotein A1, large and very large HDL particles and HDL-2 cholesterol

remained after adjustment for SEP in later life. Among manual workers, levels of gluta-

mine were higher compared with non-manual workers. All three indicators of low SEP

were associated with lower DHA, omega-3 fatty acids and HDL diameter. At all ages, chil-

dren of manual workers had lower levels of DHA as a proportion of total fatty acids.

Conclusions: Our work indicates that social and economic factors have a measurable im-

pact on human physiology. Lower SEP was independently associated with a generally

unfavourable metabolic profile, consistent across ages and cohorts. The metabolites we

found to be associated with SEP, including DHA, are known to predict cardiovascular dis-

ease and cognitive decline in later life and may contribute to health inequalities.

Key words: Socio-economic status, education, occupation, metabolomics, life course, metabonomic, lipoproteins

Introduction

Disadvantaged socio-economic position (SEP) is associated

with increased risk of mortality and morbidity, including

cardiovascular disease (CVD), diabetes, cancers and

frailty, based on extensive and robust evidence.1,2

However, the gradient in SEP and health is only partly

explained by intermediate risk factors (e.g. smoking and

adiposity).1,2 Recently, research using biomarkers has ex-

plored the biological mechanisms through which SEP may

get ‘under the skin’ and influence disease risk. An analysis

Key Messages

• This is the largest study to date investigating metabolic differences by socio-economic position (SEP) and the first to

apply nuclear magnetic resonance metabolomics.

• We find that socio-economic disadvantage is associated with a metabolic profile that is predictive of disease risk, in-

cluding cardiovascular disease, and may underlie health inequalities.

• Metabolic associations with SEP were independent of potentially mediating risk factors or dietary indicators, and con-

sistent across age, cohort and SEP indicator used.

• In children, metabolic associations with SEP were observed from age 7 years and, in adults, associations between

childhood SEP and metabolic measures were robust to adjustment for SEP in later life.

• The metabolic profile associated with SEP is potentially modifiable and highlights the importance of policies that im-

prove conditions for socio-economically disadvantaged people, including during early life.
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of multiple physiological systems found that biomarkers

related to the inflammatory and metabolic systems appear

to be particularly influenced by SEP.3 Increased levels of

the inflammatory marker C-reactive protein (CRP) have

been reported across multiple studies in association with

SEP,4 whereas elevations in cardiometabolic markers such

as glucose, triglycerides and blood pressure have also been

reported with neighbourhood socio-economic deprivation,

becoming apparent by the age of 15 years.5 Agnostic analy-

ses using omics technologies, which provide broad cover-

age of multiple biological pathways, may identify new

mechanisms, as SEP has also previously been linked to epi-

genetic6 and transcriptomic7 markers. For example, a

study of maternal education and DNA methylation in the

cord blood of newborns identified the hypermethylation of

probes located in SULF1—a gene that plays an important

role in embryogenesis, among other functions.8

Metabolomics based on serum nuclear magnetic reso-

nance spectroscopy (NMR) is particularly suitable for epi-

demiological study as the platform provides a highly

reproducible and quantified measurement of metabolites

indicative of processes including lipid metabolism, fluid

balance, glycolysis, liver function and inflammation.9 It

provides higher-resolution information over traditional li-

poprotein measures by allowing a breakdown of lipopro-

tein subclasses in terms of size, density and composition.

The platform has been used to identify markers predictive

of mortality,10 CVD,11–13 diabetes,14 dementia15 and can-

cer,16 and profile multiple non-communicable disease

(NCD) risk factors.17–19 Thus, NMR metabolomics can be

used as a tool to develop new hypotheses on the molecular

consequences of socio-economic adversity. The richer char-

acterization of biological differences facilitated by the si-

multaneous measurement of multiple markers may identify

specific processes that underlie associations between SEP

and health, providing potential targets for policy

interventions.

In the present study, we have investigated the serum

NMR metabolic profiles associated with SEP among al-

most 30 000 adults participating in 10 prospective cohorts,

in both Finland and the UK. Whereas Finland has lower

levels of income inequality than in the UK,20 both coun-

tries experience relatively similar gradients in health by

SEP.21 We examined and compared profiles associated

with three indicators: father’s occupation, education level

and current/last occupation, representative of SEP during

childhood, early adulthood and later life, respectively. To

explore the metabolome in children, we used repeat meas-

urements among >3000 children, investigating the time

points at which SEP-associated metabolic profiles become

apparent.

Methods

Study population

The study included six British cohorts participating in the

UCL-LSHTM-Edinburgh-Bristol (UCLEB) Consortium22: the

MRC National Survey of Health and Development (NSHD),

the Caerphilly Prospective Study (CaPS), the British Women’s

Heart and Health Study (BWHHS), the Southall and Brent

Revisited Study (SABRE), the Whitehall-II study (WHII) and

the UK Collaborative Trial of Ovarian Cancer Screening

Longitudinal Women’s Cohort (UKCTOCS). Two studies

from Finland were included: the 1966 Northern Finnish Birth

Cohort (NFBC1966) and the Young Finns Study (YFS). In

addition, we included the British Avon Longitudinal Study of

Parents and Children, which included samples from fathers

(ALSPACDADS), mothers (ALSPACMUMS) and children

(ALSPACKIDS), sampled at ages 7, 15 and 17 years.

ALSPACDADS and ALSPACMUMS were considered as dif-

ferent cohorts and analysed separately, since recruitment,

follow-up clinics and sampling were conducted on separate

occasions. We included all participants with data on SEP and

metabolomics available. A description of the cohort studies

with references and cohort-specific inclusion criteria are

available in the Supplementary Material, available as

Supplementary data at IJE online.

Ethical approval for each cohort study was obtained

from the Local Research Ethics Committees. Informed

consent for the use of data collected via questionnaires and

clinics and analysis of biological samples was obtained

from all participants.

SEP indicators and covariates

Educational level was a binary indicator when comparing

those with up to secondary-level schooling only with those

with further or higher education. To examine childhood

SEP, we used the occupation of the fathers of participants,

classified as a manual vs non-manual. To examine adult-

hood SEP, we used the current or last occupation of partici-

pants, again classified as manual vs non-manual. Whitehall-

II, as an occupational cohort, was the exception: the dichot-

omous occupation variable comprised the lowest three pay

grades (clerical and support staff, e.g. messengers, porters,

telephonists, typists) vs higher pay grades. Coding of covari-

ates in each cohort is given in the Supplementary Material,

available as Supplementary data at IJE online.

Metabolomic assessment

A high-throughput nuclear magnetic resonance (NMR)

spectroscopy metabolomics platform was used to quantify

up to 233 lipid and metabolite measures (Supplementary
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Table 3, available as Supplementary data at IJE online)

from serum/plasma samples, including standard clinical

lipids, 14 lipoprotein subclasses and individual lipids, mul-

tiple fatty acids, glucose and various glycolysis precursors,

ketone bodies and amino acids.9,23 Details of this platform

have been published previously.24

Statistical analysis

To reduce bias and allow better comparison between basic

and risk-factor-adjusted models, missing values from avail-

able covariates and metabolites were imputed (see

Supplementary Material, available as Supplementary data

at IJE online for details). All metabolic measures were log-

transformed to achieve normal distributions and then

mean centred and unit-variance scaled. For each SEP indi-

cator, we performed metabolome-wide association scans

separately in each cohort using the omics package.25 A lin-

ear model was constructed for each metabolic measure, us-

ing the measure as the dependent variable and the SEP

indicator as the independent variable. Advantaged SEP (i.e.

further/higher education or non-manual work) was used as

the referent category. We performed both basic (sex, eth-

nicity, age, marital status) and risk-factor adjustments [ba-

sic, plus body mass index (BMI), alcohol use, smoking,

physical inactivity, diabetes and hypertension] to estimate

the effect of SEP independently of other NCD risk factors.

Where available, we additionally adjusted for diet (meat,

fish, fruit and vegetable consumption). Results in adult

cohorts were combined through random-effects meta-

analyses using the metafor package.26 For analyses in

ALSPAC children, we present analyses adjusted for equiva-

lent covariates, risk factors and diet (age, marital status of

parents, ethnicity, BMI, parental smoking, alcohol use by

mother during pregnancy, systolic blood pressure, physical

activity and consumption of meat, fish, fruit and vegeta-

bles). The statistical significance threshold was set at a 5%

false-discovery rate (FDR), using the Benjamin-Hochberg

correction. All analyses were conducted in R version 3.6.0.

Results

Cohort information

Table 1 shows the characteristics of the participants from

all cohorts, with further covariate information given in

Supplementary Tables 1 and 2, available as Supplementary

data at IJE online. Available metabolic measures in each

cohort (ranging from 220 to 233) are shown in

Supplementary Table 3.

Education level

Education level (comparing those with up to secondary-

level schooling only with those with further or higher edu-

cation) was associated after correction for 5% FDR with

123 metabolic measures in adults (meta-analysis of 10

cohorts, N¼ 28 233, Figure 1 and Supplementary Table 4,

available as Supplementary data at IJE online) in basic

models (adjusted for age, sex, ethnicity and marital status).

Table 1 Cohort information

Cohort Na Mean age

(years) 6 SD

%

Male

% Father

manual

worker

% Up to

secondary

education only

% Manual

worker

Avon Longitudinal Study of Parents and Children

(Children, ALSPACKIDS)

3922b 7, 15 and 17 49 37 NA NA

Northern Finland Birth Cohort 1966 (NFBC1966) 5653 31.2 6 0.3 48 69.1 45.9 34.7

Young Finns Study (YFS) 1467 37.8 6 5 46 51.3 34 23.4

Avon Longitudinal Study of Parents and Children

(Mothers, ALSPACMUMS)

3937 47.2 6 7.7 0 48.7 15.5 27.1

MRC National Survey of Health and Development (NSHD) 1738 50 49 49 75.2 26.5

Southall And Brent REvisited Study (SABRE) 3133 52.3 6 7.2 85 72.9 65.9 69.6

Avon Longitudinal Study of Parents and Children

(Fathers, ALSPACDADS)

1201 53.3 6 5.3 100 44.8 12.1 30

Whitehall-II Study (WHII) 5340 55.6 6 5.9 72 42.3 35.8 11.9

Caerphilly Prospective Study (CaPS) 1175 61.7 6 4.4 100 NA 74.8 66.6

UK Collaborative Trial of Ovarian Cancer Screening

Longitudinal Women’s Cohort (UKCTOCS)

2806 64.7 6 6.3 0 NA 46.6 NA

British Women’s Heart and Health Study (BWHHS) 3521 68.8 6 5.5 0 77.1 63 33.4

aNumbers included in analysis with education (for adults) or father’s occupation (children).
bShows number in analysis at age 7 years. N in analysis of ALSPACKIDS at 15 years¼ 2459 and at 17 years¼ 2287.
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In models further adjusted for BMI, alcohol use, smoking,

sedentary lifestyle, hypertension and diabetes, 37 metabo-

lites remained associated after FDR correction (Figure 2

and Supplementary Table 4, available as Supplementary

data at IJE online): among those with up to secondary-

level schooling only, the degree of unsaturation of fatty

acids; absolute levels of docosahexaenoic acid (DHA) and

omega-3 fatty acids; and ratios of conjugated linoleic acid,

omega-6, DHA, omega-3 and polyunsaturated fatty acids

to total fatty acids were lower, whereas the ratio of mono-

unsaturated fatty acids to total fatty acids was higher.

High-density lipoprotein (HDL) particles were generally

smaller, with lower levels of large and very large HDL par-

ticles with resultant reductions in levels of their respective

Figure 1 Association of low educational attainment with metabolites in basic-adjustment analysis. Meta-analysis of the Northern Finland Birth Cohort

1966, Young Finns Study, Avon Longitudinal Study of Parents and Children (mother and father studies only), National Survey of Health and

Development, Southall And Brent REvisited Study, Whitehall-II Study, Caerphilly Prospective Study, UK Collaborative Trial of Ovarian Cancer

Screening Longitudinal Women’s Cohort and British Women’s Heart and Health Study cohorts. Abbreviations of metabolic measures are shown in

Supplementary Table 3, available as Supplementary data at IJE online. Analyses compared those with up to secondary schooling only with those

with further/higher education (referent category). Orange- and blue-coloured bars show direct and inverse associations, respectively, that pass FDR

correction.
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lipid constituents. Lower levels of cholesterol measures

(as a percentage of the total lipids) were observed across

multiple lipoprotein fractions, including esterified choles-

terol in medium HDL, large HDL and extremely large

very-low-density lipoproteins (VLDL); free cholesterol in

intermediate-density lipoprotein (IDL) and very small

VLDL; and total cholesterol in medium HDL, large

HDL, medium-low-density lipoprotein and very small

VLDL. Apolipoprotein A1 levels were lower whereas the

absolute and percentage levels of triglycerides in small

HDL were higher among those with up to secondary-level

schooling.

Figure 2 Association of low educational attainment with metabolites in risk-factor-adjusted analysis. Meta-analysis of the Northern Finland Birth

Cohort 1966, Young Finns Study, Avon Longitudinal Study of Parents and Children (mother and father studies only), National Survey of Health and

Development, Southall And Brent REvisited Study, Whitehall-II Study, Caerphilly Prospective Study, UK Collaborative Trial of Ovarian Cancer

Screening Longitudinal Women’s Cohort and British Women’s Heart and Health Study cohorts. Abbreviations of metabolic measures are shown in

Supplementary Table 3, available as Supplementary data at IJE online. Analyses compared those with up to secondary schooling only with those

with further/higher education (referent category). Orange- and blue-coloured bars show direct and inverse associations, respectively, that pass FDR

correction.
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Associations were generally consistent across cohorts

(Figure 3), with heterogeneity (I2) for FDR-significant fea-

tures after risk-factor adjustment ranging from 0 to 80%

(mean 41%) (Supplementary Table 4, available as

Supplementary data at IJE online). We observed higher

levels of glycoprotein acetyls, an established marker of

chronic inflammation,27 across most cohorts, except for

YFS, where the opposite direction of association was ob-

served. However, the association with glycoprotein acetyls

did not pass FDR correction in the overall risk-factor-

adjusted meta-analysis.

Contribution of diet

To assess the contribution of diet, we compared risk-

factor-adjusted models of education level with and without

additional adjustment for dietary variables (fruit, vegeta-

ble, meat and fish consumption) in eight cohorts

Figure 3 Risk-factor-adjusted associations of low educational attainment with selected metabolites by cohort and in overall meta-analysis. Analyses

compared those with up to secondary schooling only with those with further/higher education (referent category). NFBC66, Northern Finland Birth

Cohort 1966; YFS, Young Finns Study; ALSPACMUMS and ALSPACDADS, Avon Longitudinal Study of Parents and Children (mother and father stud-

ies, respectively); NSHD, National Survey of Health and Development; SABRE, Southall And Brent REvisited Study; WHII, Whitehall-II Study; CaPS,

Caerphilly Prospective Study; UKCTOCS, UK Collaborative Trial of Ovarian Cancer Screening Longitudinal Women’s Cohort; BWHHS, British

Women’s Heart and Health Study.
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(NFBC1966, YFS, ALSPACMUMS, NSHD, SABRE,

ALSPACDADS, WHII and CaPS, N¼21 906) with dietary

data available. Little attenuation (<10%) was observed for

most measures (66%) assessed. The largest attenuations

upon further adjustment for diet were observed for levels

of DHA (17%), omega-3 fatty acids (20%) and degree of

unsaturation of fatty acids (21%) (Figure 4 and

Supplementary Table 5, available as Supplementary data

at IJE online). Sixteen measures, including DHA and HDL

measures, remained FDR-significant after the diet and risk-

factor adjustment within these eight cohorts

(Supplementary Table 5, available as Supplementary data

at IJE online). In the NSHD cohort, the association with

DHA after adjustment for calculated DHA intake or use of

fish-oil supplements was not appreciably different from

estimates using fish intake as the dietary covariate.

Figure 4 Associations of low educational attainment with metabolites in risk-factor-adjusted analyses. Figure shows all associations that pass correc-

tion for a 5% false-discovery rate in risk-factor-adjusted analyses in all 10 adult cohorts. Blue squares show estimates from the meta-analysis of all 10

adult cohorts. Red circles show estimates from meta-analysis in eight cohorts only (excluding UK Collaborative Trial of Ovarian Cancer Screening

Longitudinal Women’s Cohort and British Women’s Heart and Health Study). Green diamonds show risk-factor-adjusted estimates additionally ad-

justed for diet, in the same eight cohorts (which had dietary data available). Analyses compared those with up to secondary schooling only to those

with further/higher education (referent category).
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Comparison of SEP indicators

Current or last occupation (comparing manual to non-

manual work) was associated after FDR correction (in nine

studies: NFBC1966, YFS, ALSPACMUMS, NSHD,

SABRE, ALSPACDADS, WHII, CaPS and BWHHS,

N¼ 26 323) with 92 metabolic measures in basic models

(Supplementary Figure 1 and Supplementary Table 6,

available as Supplementary data at IJE online). In risk-

factor-adjusted models, eight measures remained signifi-

cant: among those who worked in manual occupations, the

degree of saturation of fatty acids; levels of DHA and

omega-3 (as absolute values and as ratios to fatty acids);

the average diameter of HDL particles; and esterified cho-

lesterol levels in extremely large VLDL were lower,

whereas levels of glutamine were higher (Supplementary

Figure 2 and Supplementary Table 6, available as

Supplementary data at IJE online).

Having a father who was a manual worker (compared

with having a father who was a non-manual worker) was

associated (in eight cohorts: NFBC1966, YFS,

ALSPACMUMS, NSHD, SABRE, ALSPACDADS, WHII

and BWHHS, N¼ 21 805) with 58 measures in basic mod-

els (Supplementary Figure 5, available as Supplementary

data at IJE online). In risk-factor-adjusted models

(Supplementary Figure 6 and Supplementary Table 7,

available as Supplementary data at IJE online), 27 meas-

ures remained associated after FDR correction among

those whose father worked in manual occupations includ-

ing lower levels of phosphatidylcholines and total cholines;

apolipoprotein A1; conjugated linoleic acid; DHA; omega

3 fatty acids; large and very large HDL lipid measures;

HDL and HDL-2 cholesterol; and HDL-particle average

diameter and higher levels of ratios of monounsaturated

and saturated fatty acids to total fatty acids.

Figure 5 shows metabolic measures associated after

FDR correction with three SEP indicators (father’s occupa-

tion, education level and current or last occupation) lim-

ited to the eight cohorts with all SEP indicators available.

In basic-adjustment meta-analyses (Figure 5A), 49 (41% of

FDR-corrected-significant) measures were associated with

all SEP indicators, 21 (18%) additional measures were as-

sociated with both education and occupation, and 7 (6%)

additional measures were associated with both education

and father’s occupation. In risk-factor-adjusted meta-anal-

yses (Figure 5B), four measures (DHA; ratio of DHA to

fatty acids; omega-3 fatty acids; and HDL diameter, 10%

of significant) reached FDR-corrected significance with all

SEP indicators, three (8%) measures (including ratio of

omega-3 fatty acids to total fatty acids; unsaturation de-

gree; and percentage of esterified cholesterol in extremely

large VLDL) reached FDR-corrected significance with

both education and occupation, and 10 (26%) measures

reached FDR-corrected significance with both education

and father’s occupation (including lipid components and

particle number in large and very large HDL). Thirteen

measures were unique to father’s occupation, seven meas-

ures were unique to education level and two measures

were unique to current occupation (glutamine and citrate)

after FDR correction in these eight cohorts (Figure 5B).

Associations with confidence intervals are displayed in

Figure 5C and Supplementary Table 7, available as

Supplementary data at IJE online.

Figure 6 shows the associations by cohort for selected

metabolites with father’s occupation and current/last occu-

pation, and associations were generally consistent across

cohorts. However, positive associations between manual

work and citrate were not observed in the cohorts covering

the oldest ages.

Life-course SEP model

To assess the importance of early-life SEP independently of

mid- and later-life SEP, we compared risk-factor-adjusted

models of father’s occupation, with and without adjust-

ment for education level and current occupation. Of the 27

features associated with father’s occupation in the risk-

factor-adjusted models, 6 features (apolipoprotein A1,

large and very large HDL particles, HDL and HDL-2 cho-

lesterol, and HDL-particle diameters) remained signifi-

cantly lower among those whose father was a manual

worker, upon further adjustment for education level and

current occupation.

Early-life SEP (father’s occupation) in ALSPAC

children

Figure 7 and Supplementary Table 8, available as

Supplementary data at IJE online, show differences in met-

abolic profile by father’s occupation (manual/non-manual)

among children in the ALSPAC cohort at ages 7, 15 and

17 years, in fully adjusted analysis. At all ages, children of

manual workers had lower levels of DHA as a proportion

of total fatty acids. At age 7, children of manual workers

also had lower levels of amino acids histidine, phenylala-

nine, tyrosine, isoleucine, leucine and valine; lower levels

of DHA and omega-3 fatty acids; and higher levels of

monounsaturated fatty acids as a proportion of total fatty

acids. At age 15 years, children of manual workers also

had lower levels of DHA and omega-3 fatty acids (as both

absolute and ratio measures) and lower levels of free cho-

lesterol as a percentage of very large HDL, and higher lev-

els of phospholipids as a percentage of large HDL. At age

17 years, children of manual workers also had generally
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Figure 5 Associations of father’s occupation, educational level and current/last occupation with metabolites in meta-analyses. Note that the meta-

analysis was limited to eight cohorts [Northern Finland Birth Cohort 1966, Young Finns Study, Avon Longitudinal Study of Parents and Children

(mothers and fathers only), National Survey of Health and Development, Southall And Brent REvisited Study, Whitehall-II Study, and British

Women’s Heart and Health Study cohorts] with all SEP indicators available. N for father’s occupation analysis¼ 21 805, N for education analy-

sis¼24 252, N for current/last occupation analysis¼ 25 112. Analyses compared disadvantaged (up to secondary schooling only or manual work) to

advantaged SEP (referent category). (A) Venn diagrams showing overlap in metabolic measures associated after false-discovery-rate correction with

the three socio-economic position (SEP) indicators after basic adjustment. (B) As for (A) but for risk-factor adjustments. (C) Estimates and 95% confi-

dence intervals for each SEP indicator in risk-factor-adjusted analyses.
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Figure 6 Associations of father’s occupation and current/last occupation with selected metabolites by cohort and in overall meta-analysis in risk-fac-

tor-adjusted analyses. Note that measurements of conjugated linoleic acid were available for four cohorts only. Analyses compared manual to non-

manual workers (referent category). NFBC66, Northern Finland Birth Cohort 1966; YFS, Young Finns Study; ALSPACMUMS and ALSPACDADS, Avon

Longitudinal Study of Parents and Children (mother and father studies, respectively); NSHD, National Survey of Health and Development; SABRE,

Southall And Brent REvisited Study; WHII, Whitehall-II Study; CaPS, Caerphilly Prospective Study; UKCTOCS, UK Collaborative Trial of Ovarian

Cancer Screening Longitudinal Women’s Cohort; BWHHS, British Women’s Heart and Health Study.
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smaller HDL particles and lower levels of lipid measures

(including total particle number) in large and extra-large

HDL and higher levers of total and esterified cholesterol as

a percentage of total lipids in very large HDL.

Discussion

In an analysis of almost 30 000 adults across 10 UK and

Finnish cohorts, we observed that SEP has a strong associa-

tion with the serum NMR metabolome. In a basic-

adjustment meta-analysis, almost half of the metabolic fea-

tures measured were significantly different by education

level—an indicator of early-adulthood SEP achieved prior

to metabolomic assessment. Whereas these differences

were mainly driven by the social patterning of NCD risk

factors such as BMI, in adjusted analysis, we observed edu-

cation to be independently associated with multiple meta-

bolic measures. We examined three indicators that,

although correlated, represent SEP during the childhood,

early and later adulthood periods of the life course.

Whereas most identified metabolites were significantly as-

sociated with more than one SEP indicator, other measures

appeared to be uniquely associated with SEP at a specific

life period. The work adds to a growing body of biomarker

studies exploring ‘biological embodiment’28 suggesting

that social and economic factors have a measurable impact

on human physiology.

As hypothesized, given the role of SEP as an indepen-

dent risk factor for CVD, premature mortality and multi-

ple other health endpoints, lower SEP was associated

(independently of NCD risk factors) with a generally

unfavourable metabolic profile that may contribute to

health inequalities. The observed lipoprotein profile of

lower levels of large HDL particles and smaller average

HDL-particle size has been associated with conditions in-

cluding obesity,18 subclinical atherosclerosis9 and incident

type 2 diabetes,19 whereas, among the lipoprotein sub-

classes, large HDL particles provided the strongest predic-

tion of stroke11 and CVD events in three prospective

population-based cohorts.11,13 Among specific lipid con-

stituents of lipoproteins, the profile of higher levels of tri-

glycerides in small HDL, lower levels of cholesterol in

medium and large HDL, and higher levels of cholesterol in

IDL and VLDL observed among those of low SEP are also

among the most predictive lipoprotein measures of risk of

CVD and stroke.11

Levels of DHA and omega-3 fatty acids were lower

among those of low SEP, whether assessed through father’s

occupation, education level or current occupation. Omega-

3 fatty-acid levels in humans are the sum of eicosapentae-

noic acid and DHA, with docosapentaenoic acid being pre-

sent at much lower concentrations.29 Higher circulating

levels of DHA are associated with lower risk of future

CVD events 13 and positive health effects of omega-3 fatty

acids have been observed for conditions including type 2

diabetes, arthritis, depression and cognitive decline.15,29

Reported fish consumption was strongly associated with

DHA in our data (p< 10-16) and adjustment for fish con-

sumption attenuated the association between education

and circulating DHA levels by 17%. Although attenuation

may be greater with more accurate dietary assessment, the

consistency of associations and the relatively modest level

of attenuation observed suggests that factors other than

differences in dietary habits may play a role in the associa-

tion with SEP. Other studies have reported that dietary

and supplement sources of DHA explain �60% of varia-

tion in measured levels in blood30 and factors such as re-

duced synthesis or greater utilization may be relevant.

The health benefits of omega-3 fatty acids are likely

linked to their anti-inflammatory actions29 and many stud-

ies have linked lower SEP with a heightened inflammatory

state.4 We observed raised levels of the inflammatory

marker glycoprotein acetylation in relation to low SEP in

most cohorts. The ‘status-syndrome’ hypothesis proposes

that psychosocial stress related to position in social hierar-

chies may contribute to health inequalities, through, for

Figure 7 Risk-factor- and diet-adjusted associations between father’s oc-

cupation and metabolites measured at three time points (7, 15 and

17 years) in the children from the Avon Longitudinal Study of Parents

and Children. Bars show 95% confidence intervals. Metabolites dis-

played are associated with father’s occupation after false-discovery-rate

correction of at least one time point. Analyses compared father being a

manual worker to non-manual worker (referent category).
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instance, repeated activation of the hypothalamic–pitui-

tary–adrenal axis and resultant dysregulation of the meta-

bolic and other systems.31 Multiple studies have reported

associations between DHA and omega-3 fatty-acid levels

and markers of stress systems,32 which have been suggested

to represent a vicious circle,32 with low omega-3 fatty-acid

levels having subtle effects on diverse pathways leading to

a pro-inflammatory state and a chronically heightened

stress response. In turn, the physiological-stress response

may lower circulating omega-3 fatty acid, through, for in-

stance, the mobilization, lipolysis, oxidation and synthesis

of fatty acids. Other studies have noted that work-related

stress33 is associated with lipoproteins and other metabolic

parameters.

Glutamine levels were higher among manual workers

compared with those among non-manual workers.

Glutamine is the most abundant amino acid in blood and an

important precursor of glucose during fasting. Similarly, cit-

rate, an important metabolite involved in energy turnover,

was raised among manual workers, although these associa-

tions were not apparent among cohorts with older, mainly

retired participants. There was little evidence for an associa-

tion of these metabolites with the other indicators of SEP,

suggesting that factors relating to specific work conditions

may influence their levels. In a previous study, glutamine

was associated with a 6-year incidence of high carotid in-

tima–media thickness (a marker of subclinical atherosclero-

sis).12 Whereas a smaller average diameter of HDL particles

was observed with all SEP indicators in the present study,

associations with large and very large HDL particles (and

their lipid constituents) were weaker and did not reach sta-

tistical significance with current/last occupation level, sug-

gesting that the social environment in earlier life periods is

more important for these measures. Furthermore, associa-

tions were generally somewhat stronger with very large

HDL measures with childhood SEP (father’s occupation),

whereas the large HDL measurements were generally stron-

ger with early-adulthood SEP (education level). We found

lower levels of apolipoprotein A1, the main protein constit-

uent of HDL and a crucial actor in lipid metabolism, associ-

ated with childhood SEP, independently of later SEP

measures. This suggests a shift in lipoprotein metabolism

during the early-life period.

Among children in the ALSPAC cohort, lower levels of

DHA as a proportion of total fatty acids were apparent at

all time points starting from the age of 7 years. The SEP

profile observed in adults of smaller average HDL-particle

size and lower levels of large and extra-large HDL particles

appeared to develop from age 7 and became apparent (i.e.

statistically significant) by the age of 17 years. Uniquely,

we observed lower levels of multiple, mainly essential,

amino acids with low SEP at age 7 years. These differences

may only be observed at age 7 due to a higher protein de-

mand from faster growth rate at this age and may contrib-

ute to the lower height in children with low SEP.34

However, these findings should be replicated in other child

cohorts.

The large sample size across multiple cohorts represent-

ing ages across the life course increases the generalizability

of the study and allows assessment of the consistency of

results across cohorts. However, we only included cohorts

based in the UK and Finland, and it is known that the

effects of SEP can differ according to the social and eco-

nomic contexts.4 Generally, we observed similar profiles of

SEP in the Finnish and UK cohorts, despite the different so-

cial environments in these countries, such as resulting from

welfare policies.21 An exception was for glycoprotein ace-

tyls where an opposite direction of association was ob-

served with education level in YFS. A previous study has

indicated differences in absolute differentials in CRP be-

tween SEP groups according to the income inequality of

the country,4 although direct comparison between the

countries is difficult in this study due to the generally youn-

ger age distribution in the Finnish cohorts.

Other strengths and limitations including the use of

multiple indicators of SEP including those experienced

prior to metabolomic assessment, thereby limiting reverse

causality, and assessment of independent effects of SEP by

adjusting for multiple risk factors and dietary variables.

However, not all SEP indicators and dietary variables were

available in each cohort, limiting complete cross-cohort

comparison, and the dietary variables were relatively

coarse due to the necessity for using comparable indica-

tors. Due to the large number of metabolites and the meta-

analytical framework used, we applied the ‘difference

method’ to estimate the proportion of effect that may be

mediated through covariates such as diet. It should be

noted that this approach may not be appropriate in situa-

tions where there is interaction between exposure and me-

diator or non-linear effects and more advanced methods

such as counter-factual modelling may be preferred.35 The

metabolomic platform employed has limited sensitivity

compared with mass-spectrometry-based platforms and, as

such, is biased towards products of lipid metabolism pre-

sent at relatively high concentrations. However, NMR pro-

vides the considerable advantage of high reproducibility

and absolute quantification, making it suitable for use in

large-scale, multi-cohort epidemiological studies.

In conclusion, we have identified a consistent metabolic

profile associated with disadvantaged SEP, independently

of other disease risk factors. These metabolic differences

between people from different socio-economic circumstan-

ces may partly underlie inequalities in health, particularly

in CVD.
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13. Würtz P, Havulinna AS, Soininen P et al. Metabolite profiling

and cardiovascular event risk: a prospective study of three

population-based cohorts. Circulation 2015;131:774–85.

14. Mahendran Y, Cederberg H, Vangipurapu J et al. Glycerol and

fatty acids in serum predict the development of hyperglycemia

and type 2 diabetes in Finnish men. Diabetes Care 2013;36:

3732–38.

15. van der Lee SJ, Teunissen CE, Pool R et al. Circulating metabo-

lites and general cognitive ability and dementia: evidence from

11 cohort studies. Alzheimers Dement 2018;14:707–22.

16. Sirniö P, Väyrynen JP, Klintrup K et al. Decreased serum apoli-

poprotein A1 levels are associated with poor survival and sys-

temic inflammatory response in colorectal cancer. Sci Rep 2017;

7:5374.
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