
Breaking the Programming Language Barrier
Using Program Visualizations to Transfer Programming Knowledge in One Programming Language to

Another

Johannes Holvitie, Teemu Rajala, Riku Haavisto, Erkki Kaila, Mikko-Jussi Laakso and Tapio Salakoski
Department of Information Technology

University of Turku
Turku, Finland

{jjholv,temira,rahaav,ertaka,milaak,sala}@utu.fi

The transition from one programming language to another is
an issue, which usually needs to be addressed in programming
curricula, as the learning is typically started with syntactically
easier languages. This study explores the possibility to use a
short interactive tutorial with visualization exercises to ease the
transition from Python to Java.

In the experiment, the students first took a pre-test to measure
their earlier programming knowledge with Python. After that,
they used the tutorial with visualization exercises for 45
minutes. The tutorial and the exercises were designed to
underline the syntactical and structural differences between
Python and Java. Finally, the students answered to post-test,
which contained questions similar to pre-test, but in Java.

The results indicate, that the students were able to obtain
similar program comprehension skills in Java that they
previously had with Python. Moreover, the students seem to
think that using such tutorials is highly beneficial in the
transition. Hence, we conclude, that ViLLE can be effectively
used to ease the transition from one language to another.

Keywords: program visualization, language transition,
programming education

I. INTRODUCTION

The decision of the first programming language taught is
not easy: the pressure to use commercially successful
languages is high, mainly because of the industry support
and demands. The problem with industrial strength
languages is that they tend to be overly complex and usually
carry a large syntactical baggage of definitions and structures
that are required for them to fulfill the standards in software
development.

However, there are easier languages to start with,
languages designed with aesthetics and ease of readability in
mind. Pseudo languages and Python, for example, are
examples of languages where the confusing syntactical
features have been hidden by replacing them with structures
that are easier to comprehend, even for novices. Table 1
holds an example of simple ‘Hello world’ program written in
both, Java and Python. The Python version doesn’t contain
the syntactical baggage of Java (including class and method
definitions, accessibility keywords and semicolons).

Even if an easier-to-comprehend language is used in the
introductory courses, the transition to more complex industry
standard languages awaits. Understanding and being able to
use commercially successful language(s) is essential in any
programming curriculum: the students need to perceive and
understand the intrigue details that can be used as an
advantage to gain the most performance and control over the
execution, and to properly understand all the underlying
principles of the chosen implementation method and
technique.

The transition from one language to another should be
made as effortless as possible. Providing information and
examples about the similarities and differences in core
constructs, as well as about the logical differences in syntax,
the gradual transition could be made easily. In this paper, we
present an experiment, where the students are introduced to a
new language by using a short intensive tutorial with visual
and interactive programming exercises.

II. RELATED WORK
Studies on moving from one programming language to

another are scarce. However, several studies provide
valuable information on choosing a programming language

TABLE I. HELLO WORLD PROGRAM IN JAVA AND PYTHON

Java Python
public class HelloWorld{
 public static void main(String[] args){
 System.out.println("Hello world!");
 }
}

print "Hello world!"

2012 12th IEEE International Conference on Advanced Learning Technologies

978-0-7695-4702-2/12 $26.00 © 2012 IEEE

DOI 10.1109/ICALT.2012.186

116

for the purposes of teaching various programming concepts.
However, the inevitable transition from one language to
another is rarely discussed.

The effect of first programming language on later
“programming career” has been studied by McIver [2] and
Wexelblat [3]. They conclude that programming style,
coding technique and program code quality are affected by
this choice, and that the decision is one that should not be
made lightly.

McIver & Conway [4] discuss this decision of choosing
the first language by studying the characteristics of
introductory programming languages. They present three sets
of seven criteria containing the observed pedagogical
problems of studied languages, design principles for creating
introductory languages and criteria for evaluating existing
languages for teaching introductory programming.

Java and Python are commercially popular languages
often used in teaching. Grandell et al. [5] found Python to be
better suited in introductory programming than Java, due to
its lighter syntactical baggage. The use of Python allowed
them to teach more advanced topics in the introductory
course. Additionally, the comparison made by Laakso et al.
[1] between Java and a pseudo-language (a subset of Python)
showed that the syntactic weight of Java is a disadvantage in
the first stages of learning programming.

However, selecting an easily understandable

programming language may have its downsides. Oldham [6]
reports a study where Python was adopted in college
introductory level programming teaching. Python is an easily
understandable language and it primarily follows the Object-
Orientation (OO) paradigm. Though it is generally
considered excellent as an introductory language, its usage is
limited. Python's narrow set of abilities to restrict data access
make teaching data hiding – a core feature of OO – a hard
task and require the usage of get- and set-methods to
demonstrate how for example the class invariant is
maintained.

Lastly, Miller & Ranum [7] report a study where an
introductory programming course utilizing Python was
followed with an advanced course in Java. They observed
that the previous knowledge in Python was clearly beneficial
when several additional OO features enforced by Java were
introduced. They call it the “build on what you know
principal”: The more intricate subjects of Java can be taught
more easily due to students being familiar with most
programming concepts in Python.

III. VILLE
In this section the ViLLE tool is presented. It was used in

the study to provide the visual and interactive tutorial for the
students as well as to gather data. Furthermore, some
features of ViLLE affecting its selection as the platform for

Figure 1. The visualization view in ViLLE

117

the tutorial are presented.
ViLLE is a collaborative education tool (see Figure 1)

developed at the University of Turku. Amongst other
abilities, ViLLE can visualize program execution in various
commercially popular languages or self-defined pseudo
syntaxes. The visualizations include interactive components
engaging the students into the task at hand. The tool was
used in implementing the tutorial due to its features being
designed with language-independency in mind, something
that we can presume to be very valuable in aiding the
transition process. The most important features of ViLLE,
essential to building the tutorial, are described shortly.

Language-independency. ViLLE provides the ability to
view the programming examples and exercises in several
different programming languages and allows the user to
fluently switch between them. The user can concretely
observe the similarities between different languages.

The parallel view. The user is able to simultaneously
observe the execution in two different languages and to see
how similar the program flow is between languages of same
programming paradigm.

Flexible visualization controls. The execution can be
viewed step-by-step both forwards and backwards, or
continuously with adjustable speed.

In addition to the features presumably helping the
transition between programming languages, ViLLE provides
the user with extensive amount of information during the
execution including the states of the variables, explanation
about the program line under execution, and visualizations of
subprogram calls and data structures. For content creators
ViLLE provides editors for defining new pseudo syntaxes as
well as a variety of other types of automatically assessed
exercises.

Further information about ViLLE's features can be found
at http://ville.cs.utu.fi.

IV. PREVIOUS WORK

We have previously researched the usage of ViLLE in
various studies. This section presents some of the most
important results.

ViLLE’s effectiveness was studied in “Introduction to
Information Technology” course in University of Turku. 72
attendees were randomly divided into two groups. Both
groups started the session by answering to pre-test, which
measured their earlier experience and knowledge in
programming. After that, the students used a programming
tutorial independently for 45 minutes. The treatment group
(N=32) could visualize the examples in tutorial with ViLLE,
while the control group (N = 40) used only text based
material. Finally, all students answered to post-test. The
results showed no statistically significant differences
between groups; however, when the earlier programming
experience was taken into account, we found out that the
statistically significant difference between novices and
experienced students disappeared in the treatment group,
while the difference in control group remained. Hence, we
concluded that ViLLE is especially useful for novice
programmers. The study is presented in detail in Rajala et al.
[8].

The study was later extended to contain a third group so
that each group was in different level of engagement (see
Naps et al. [9]). The third group (N=62) could visualize the
execution of example programs with ViLLE, but the
visualization contained no interactive elements (such as
questions about visualization). The results showed that the
statistically significant difference between novices and
experts remained in the third group as well. This confirms
the hypothesis, that visualization tools are only useful if used
in higher levels of engagement. The extended study is
presented in Kaila et al. [11].

We have also studied e.g. the effects of cognitive load of
learning to use the visualization tool (see Laakso et al. [12]),
using the visualization tool collaboratively (Rajala et al.
[13]) and the course long use of such tools (Kaila et al. [10]).
In addition to all the quantitative studies, we have also
conducted qualitative research about the tool: 114 students
answered the survey after collectively using ViLLE to
answer to more than 10,000 exercises. The answers showed
that most of the students think that ViLLE is highly
beneficial for their learning; some of them even preferred
ViLLE over traditional learning methods, such as lectures or
demonstrations. The study is presented in detail in Kaila et
al. [14].

In addition to all the previous studies, we wanted to find
out whether ViLLE can be used to help the transition from
one programming language to another. The syntactical
similarities should be easy to visualize, and as ViLLE
supports a variety of programming languages, it should be
useful in emphasizing and building links between the
similarities of the languages. The study and the results are
reported in the following sections.

V. RESEARCH

The purpose of this study is to find out how effectively
students’ knowledge of basic programming concepts in one
programming language can be transferred to another
language with a short programming session utilizing
visualization exercises.

A. Method
This study was experimental design in which the

treatment was identical to all participants. The only
difference was that the pre- and post-test were in different
programming language; python and java, respectively. The
goal was to transfer student’s existing knowledge from one
programming language to another.

B. Materials
At the beginning of the study participants answered to a

Python pre-test. This was composed of four program tracing
exercises, a structure previously used in the collaboration
study by Rajala et al. [13], covering conditional statements,
loop structures and methods. Additionally, the students were
asked about their previous programming experience in Java.

In the tutorial held between the pre- and post-test the
similarities and differences between different programming
concepts in Python and Java were briefly explained. After
each explanation of a concept the tutorial included links to

118

one or more visualization exercises in ViLLE covering the
explained topic. The programming concepts covered in the
tutorial were: variables, output, conditional statements,
while- and for-loops, and procedures and functions. The
students viewed the interactive exercises in parallel view
mode by default to help them to grasp the similarities of the
two programming languages.

After the tutorial, students answered to the post-test. The
test had the same structure as the pre-test, only this time the
programming language used was Java. Additionally, the
students were asked if they had found ViLLE useful in
transferring their knowledge from Python to Java, and how
useful they found it in learning the various concepts
introduced in the tutorial.

C. Participants
The participants were students who attended the course

held in the high school of Kupittaa, a specialized institute
having a focus on teaching information technology and
media. This instance of the course was held in the spring
semester of 2010, and according to the curriculum it aimed at
enhancing students' programming skills, taking them from
structured programming into the direction of object-
orientation [15].

Following the suggested completion order in the
curriculum, this course is participants’ third or fourth
programming course (first one in Java). Students attending
this course are on their second or third year of studies. Due
to the courses more advanced contents for high school level,
the number of participants was only 10. A small sample size
as this isn't ideal for providing statistical data, but it serves
well as an introduction to the research setup, that we intend
to reimplement with larger group of participants.

D. Procedure
The students had previously taken an introductory

programming course in Python. Due to this course’s focus in
the OO paradigm and Python's impediments in completely
fulfilling all the principles behind it [5][6], the course was
held in Java. In order to transfer their current programming
knowledge in Python to Java a two hour programming
session was arranged. The session was held during the first
lecture of the course.

At the beginning of the session, participants answered to
a Python pre-test measuring their current programming
skills. The students were given 15 minutes to complete the
first phase. In the second phase, the students were introduced
to the similarities and differences between the basic
constructs and syntax in Python and Java with a 45 minute
tutorial. Finally, in the last phase students had 30 minutes
time to answer to a post-test. As previously described in the
materials section, the contents and the structure of this test
were similar to the pre-test, only this time the programming
language was Java. Each exercise was graded on scale from
zero to ten, totaling 40 as the maximum score for both tests.

VI. RESULTS

In this section we present the results of the study in order
to find out an answer to the research question “Can ViLLE

be used to transfer the basic knowledge attained in one
programming language into another, via a short interactive
tutorial?”

The pre-test results are presented in Table 2. Mean and
standard deviation are presented for each question and the
total of all questions.

TABLE II. PRE-TEST SCORES

Question Mean (N=10) Std. Dev. (N=10)
Q1 8.00 3.77
Q2 1.50 3.38
Q3 6.00 4.52
Q4 7.20 3.68
Total 22.70 9.95

The results for the post-test are presented in Table 3. The
post-test followed the structure of the pre-test, the only
difference being the programming language used. The
question numbers correspond to similar question in the pre-
test. Mean and standard deviation for all questions, as well as
the total of all questions are presented.

TABLE III. POST-TEST SCORES

Question Mean (N=10) Std. Dev. (N=10)
Q1 9.00 2.11
Q2 2.00 4.22
Q3 5.20 5.10
Q4 7.10 3.81
Total 23.30 11.03

To find out whether there is a difference in pre- and post-
test results, a pairwise t-test was used between corresponding
questions and the total values. The results are presented in
Table 4.

TABLE IV. PAIRED SAMPLES TEST BETWEEN THE PRE- AND POST-TEST

Question Pre mean
(N=10)

Post mean
(N=10)

p-value

Q1 8.00 9.00 0.42
Q2 1.50 2.00 0.34
Q3 6.00 5.20 0.22
Q4 7.20 7.10 0.96
Total 22.70 23.30 0.80

As seen in the table, no statistically significant
differences can be found between individual questions or in
the total of all questions.

During the post-test, the students were also asked
whether they found ViLLE useful in transition between
programming languages in general, and concerning given
programming topics. The later questions were answered in
scale of 1 to 5, where 1 represents not useful at all, and 5
very useful. The results of the survey are presented in Table
5.

119

TABLE V. USEFULNESS OF VILLE IN TRANSITIONING BETWEEN
LANGUAGES

Concept Mean (N=10) Std. Dev.
(N=10)

Variables & Output 4.20 0.42
Conditional statements 4.00 0.47
While-loops 3.90 0.57
For-loops 3.80 0.63
Methods 3.90 0.88

As seen in Table 5, the students found ViLLE very useful
when transitioning from one language to another. Moreover,
the binary question about ViLLE’s usefulness in general was
unanimously answered with positive opinion.

Cronbach’s Alpha was used to ensure the reliability of
variables in the procedure. The values calculated for pre-test
(0.530) and post-test (0.645) indicate medium to high
reliability.

VII. DISCUSSION

Reviewing the results reveals that there are no
statistically significant differences between the scores in pre-
and post-test. This indicates that the students’ ability to
effectively solve basic program tracing exercises remained at
the same level, even though the questions in the post-test
were presented with syntactically heavier programming
language. It’s notable, that the students had no previous
experience with Java.

The observed effect takes place in all tested areas of
programming. Thus, it seems that the transition from one
programming language to another is possible with a short,
interactive tutorial, as long as the tutorial and especially the
exercises are designed to underline the syntactical
differences and structural similarities of the languages.
Hence, the answer to our research question is positive.
Remarkably, the students only had 45 minutes to use the
tutorial with ViLLE exercises. Hence, it seems that with the
right tools, the transition can be made in relatively short
time.

Students’ opinions seem to confirm the effect of ViLLE:
the binary answers about the usefulness in general were
unanimous and positive. Moreover, ratings given for
usefulness of the tool in specific areas were relatively high
(mean >3.8 in scale of 1 to 5). This correlates with our
previous findings: students seem to think, that ViLLE is
highly beneficial for their learning (Kaila et al. [10]).

VIII. CONCLUSION

We conducted a study about the possibility to use
interactive tutorial with visualization exercises to ease the
transition from one programming language to another. The
results indicate that by using such interactive tutorial – even
for relatively short time – the students can build program
comprehension skills for syntactically much heavier
language. This supports the findings in Laakso [16] that
automatic assessment with immediate feedback can be used
to enhance learning of programming concepts. It is much
more important to understand the ideas behind those
concepts than to learn the syntactical notation. In addition,

this study supports and extends our previous findings:
ViLLE can be used effectively to teach basic programming
concepts.

REFERENCES

[1] Laakso, M-J., Kaila, E., Rajala, T. & Salakoski, T. 2008. Define and
Visualize Your First Programming Language. In Proceedings of
ICALT 2008 - the 8th IEEE International Conference on Advanced
Learning Technologies. July 1st - July 5th, 2008. Santander,
Cantabria, Spain.

[2] McIver, L. The Effect of Programming Language on Error Rates of
Novice Programmers. School of Computer Science, Monash
University.

[3] Wexelblat, R. L. "The Consequence of One's First Programming
Language." In Proceedings of the 3rd ACM SIGSMALL Symposium
and the First SIGPC Symposium on Small Systems. Palo Alto,
California, 1980. pp. 52-55.

[4] McIver L. & Conway D. 2011. Seven Deadly Sins of Introductory
Programming Language Design. Department of Computer Science,
Monash University. Available online:
http://www.csse.monash.edu.au/~damian/papers/PDF/SevenDeadlySi
ns.pdf. Fetched: 25.11.2011.

[5] Grandell et. al. 2006. Why Complicate Things? Introducing
Programming in High School Using Python. Eighth Australasian
Computing Education Conference (ACE2006).

[6] Oldham, J. 2005. What happens after Python in CS1?, Consortium for
Computing Sciences in Colleges. Centre College. Danville, KY.

[7] Miller B. & Ranum D. 2006. Freedom to Succeed: a Three Course
Introductory Sequence Using Python and Java. Consortium for
Computing Sciences in Colleges. Luther College, Decorah IA.

[8] Rajala, T., Laakso, M.-J., Kaila, E. and Salakoski, T. 2008.
Effectiveness of Program Visualization: A Case Study with the
ViLLE Tool. Journal of Information Technology Education:
Innovations in Practice. 7: IIP 15-32.

[9] Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R.,
Hundhausen, C., Korhonen, A., Malmi, L., McNally, M., Rodger, S.
and Velázquez-Iturbide, J. Á. 2002. Exploring the role of
visualization and engagement in computer science education. In
Working Group Reports from ITiCSE on Innovation and Technology
in Computer Science Education, 35, 2, 131-152.

[10] Kaila, E., Rajala, T., Laakso, M.-J. & Salakoski, T. 2010. Long-term
Effects of Program Visualization. In 12th Australasian Computing
Education Conference (ACE 2010), January 18- 22, 2010, Brisbane,
Australia.

[11] Kaila, E., Laakso, M.-J., Rajala, T. & Salakoski, T. 2009. Evaluation
of Learner Engagement in Program Visualization. Appeared in 12th
IASTED International Conference on Computers and Advanced
Technology in Education (CATE 2009), November 22 – 24, 2009, St.
Thomas, US Virgin Islands.

[12] Laakso, M.-J., Rajala, T., Kaila, E. and Salakoski, T. (2008): The
Impact of Prior Experience In Using A Visualization Tool On
Learning To Program. Proceedings of CELDA 2008, Freiburg,
Germany, 129-136.

[13] Rajala, T., Kaila, E., Laakso, M.-J. & Salakoski, T. 2009. Effects of
Collaboration in Program Visualization. Technology Enhanced
Learning Conference 2009 (TELearn 2009), Taipei, Taiwan.

[14] Kaila, E., Rajala, T., Laakso, M.-J. & Salakoski, T. (2009): Effects,
Experiences and Feedback from Studies of a Program Visualization
Tool. Informatics in Education, 8(1): 17-34.

[15] Kupittaa ICT high school curriculum (201X). Available online:
http://www05.turku.fi/ah/ol/2010/1117018x/Images/1004679.pdf.
Fetched: 28-11-2011.

[16] Laakso, M.-J. (2010). Promoting Programming Learning.
Engagement, Automatic Assessment with Immediate Feedback in
Visualizations. TUCS Dissertations no 131

120

