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Abstract

This article analyzes the complexity of the modular tool switching problem arising in flexible manufac-
turing environments. A single, numerically controlled placement machine is equipped with an online tool
magazine consisting of several changeable tool feeder modules. The modules can hold a number of tools
necessary for the jobs. In addition to the online modules, there is a set of offline modules which can be
changed to the machine during a job change. A number of jobs are processed by the machine, each job
requiring a certain set of tools. The sequence of jobs is given as part of the input and fixed. Tools between
jobs can be switched individually, or by replacing a whole module containing multiple tools. We consider
the complexity of the problem of arranging tools into the modules, so that the work for module and tool
loading is minimized. Tools are of uniform size and have unit loading costs. We show that the general
problem is NP-hard, and in the case of fixed number of modules and fixed module capacity the problem is
solvable in polynomial time.

Keywords: Complexity theory, Flexible Manufacturing Systems, Tool loading, Set-up optimization,
Printed circuit board

1. Introduction

In the assembly of printed circuit boards (PCB),
flexible component placement machines are used to
mount components onto a bare PCB. The place-
ment machines are highly automatized, config-
urable and suitable for the assembly of a wide range
of PCB product types. The flexibility and config-
urability of these machines results in various effi-
ciency problems. The planning and control of PCB
assembly machines is a task that consist of multiple
interconnected problems (see [4], [8] and [2]).

One of these problems arises when several dif-
ferent PCB product types are manufactured on a
single machine, with each product type requiring
a specific set of component types to be placed on
the boards. The component placement machines
are equipped with a feeder unit that can hold a
sufficient number of component input reels to man-
ufacture a single product type. Due to the capacity
constraints of the feeder unit, it is not possible to
load at once all the component reels required for all
the PCB jobs.

∗Corresponding author. Tel: +358 45 1167977
Email address: csraba@utu.fi (Csaba Raduly-Baka)

In the case of multiple PCB types, as one PCB
type batch ends, the content of the feeder unit must
be reconfigured, by loading the component reels re-
quired for the next PCB type. This replacement
can occur only between processing jobs, because the
machine must be stopped. Replacing one compo-
nent reel causes extra delay in production, and the
total delay between two jobs is determined by the
number of component reel swaps.

The above discussion deals with the organiza-
tion of job switching in the context of PCB as-
sembly manufacturing. The same situation oc-
curs in many other Flexible Manufacturing Systems
(FMS), where tools (above component reels) are
stored in tool magazines (feeder units). Minimizing
the setup delay is known in literature as the Tool
Switching Problem (TS) (see [19]), in this more gen-
eral context.

Many variants of the tool switching problem have
been extensively studied in literature. The order in
which the jobs are processed may be fixed or arbi-
trary. If the job order is arbitrary, the tool switch-
ing cost can be further reduced by finding a better
job sequence (this is also known as the job sequenc-
ing problem). The cost of switching tools may be
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Figure 1: A placement machine with modular component feeder unit. Individual modules (Mi) can be
replaced in one step with offline modules. The content of offline modules can be prepared in parallel with
the processing of the previous assembly batch.

uniform or tool specific. Further, the size of the
tools may be uniform, or tool specific, causing frag-
mentation of the feeder unit in the latter case. The
job sequencing problem is NP-hard even in the case
of uniform tool sizes and equal switching costs ([6]).

When the job sequence is fixed, the tool switching
problem with uniform tool sizes and equal change
costs can be solved optimally in polynomial time
by the means of the KTNS procedure of Tang and
Denardo [19]. When tool sizes are non-uniform, the
problem is NP-hard even for the fixed job sequence
(as shown in [5], where the problem is called the
tool loading problem).

Over the past decade, component placement ma-
chines have increasingly employed modular feeder
units to improve versatility, flexibility and effi-
ciency of these equipments. Such examples are
Fuzion from Universal, iFlex from Assemblon, and
BM/NPM from Panasonic. These machines employ
several feeder module units that are online at the
same time. The modules contain component reels,
and can be swapped with readily available offline
modules, that have been prepared in parallel to the
processing of the current assembly job.

The present work focuses on the practical prob-
lem of switching component reels (tools) in a sin-
gle placement machine containing multiple remov-
able feeder modules of equal capacity. Each feeder
module contains a number of component reels (typ-
ically 40), and one or more online modules can be
replaced by another module which has been pre-
pared to contain a different set of component reels.
Swapping a feeder module with another one incurs
a much smaller delay (cost) than swapping some
individual component reels. Therefore, switching
components in groups can reduce the overall setup
time required when transitioning between PCB job
types. Component reels can also be swapped indi-

vidually in the online modules if that is preferred (in
case of small setup changes), making the problem
more difficult than the basic tool switching prob-
lem.

The problem of switching tools in groups to im-
prove production efficiency is not considered by the
tool switching literature to our knowledge. Let us
call this problem the modular tool switching (MTS)
problem, where in the present context, tools are
component reels required to manufacture PCB jobs
(see Fig. 1.). In the present work, the tools have
uniform sizes and the delay caused by switching
tools to online modules is also uniform across tool
types. The delay of switching a feeder module is
a constant, different from the tool switching de-
lay. We show that by introducing online and offline
modules into the tool switching problem, the prob-
lem becomes NP-hard even in the case of a fixed job
sequence, uniform tool sizes and equal tool switch-
ing delays.

1.1. Literature review

The tool switching literature focuses mainly on
solving two problems. The first one deals with a
fixed job sequence (see Tzur and Altman [13]). The
second problem also includes the task of finding an
order of the jobs that minimizes the tool switch-
ing costs. The general tool switching problem was
introduced by Tang and Denardo [19]. They pro-
posed a polynomial time, optimal algorithm called
Keep Tool Needed Soonest (KTNS), for the case
of a fixed job sequence, uniform tool sizes and tool
switching costs.

The case of fixed job sequence, uniform tool size,
and tool specific changeover cost was discussed by
Privault et. al. in [14]. They show that if the
changeover costs are of the form dik, where tool i
is inserted after removing tool k, then the problem
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can be solved optimally by formulating it as a min-
cost flow problem.

For non-uniform tool sizes and arbitrary maga-
zine capacity C (introduced by Stecke et. al. in
[18]), the problem becomes NP-hard even for a
fixed job sequence, as shown by Crama et. al. in
[4]. Heuristic methods for solving the problem were
given in [12] and in [20]. However, when the maga-
zine capacity C is fixed, Crama et. al. [4] show that
the problem admits a polynomial-time optimal al-
gorithm, albeit with a very large exponent, making
it unpractical for industrial application.

For the case of job sequencing with uniform tool
sizes, Crama et. al. [6] show that the problem is
NP-hard, even for C = 2. Heuristics to solve the
problem have been proposed in [3], [11], [9], [16],
[17] and [21]. The approximability of the problem
was discussed by Crama et. al. [7]. Fawzan et.
al. [1] use a tabu search approach to find better
job sequences, that minimize the number of tool
switches.

For the case of job sequencing with non-uniform
tool sizes, two NP-hard problems (tool switching
and job sequencing) are combined into a single op-
timization objective. Heuristics to solve the com-
bined problem have been discussed in [13] and [15].

While the case of modular tool magazine and ex-
tra offline modules is an important practical appli-
cation, previous research on it seems to be missing.

1.2. Problem definition

Next, the definition and assumptions of the mod-
ular tool switching problem are given, in the context
of loading component reels into feeder modules of a
PCB assembly machine. Suppose, that a list J of
n PCB assembly jobs is given. The jobs are pro-
cessed by a single component placement machine.
The order in which these jobs are processed is fixed
by the list J . Each job j (j ∈ [1...n]) requires the
insertion of a set Tj of different component types
(these are considered tools) and the components of
a job are supplied by the means of a modular feeder
unit (tool magazine).

The feeder unit has sufficient capacity to hold all
the component reels required for a job. The feeder
unit contains a number of F changeable modules
(typically from 2 to 6). Each module has the same
fixed capacity C to hold the component reels. A
number of E offline modules are available in the
vicinity of the machine. The capacity of each offline
module is the same C, and their content can be

manually rearranged, in parallel to the processing of
the current job, having no impact on the production
time.

The available capacity in all the online modules
is F ·C, and it is not sufficient to hold all the com-
ponent reels for all the PCB types: | ∪j∈[1...n] Tj | >
F · C. Therefore, component reel changes are pos-
sibly required between jobs. Reels can be changed
individually, incurring a delay of tc for each change,
or in group by changing a whole module, incurring
a delay of tm for each module change. By changing
a module, one can change a total of C component
reels in one step (C is typically 20 to 40) and in-
cur a single tm delay that is much smaller than a
C · tc delay of changing all reels of a module while
changing jobs. (In practice the tm/tc ratio tends to
be between 2 and 4, and it is 2.5 for the machine
types studied here). Therefore, arranging compo-
nent reels into offline modules, so that they can be
swapped in a group when transitioning to the next
job, is advantageous in terms of the incurred delay.

Next, the parameters and assumptions of the
MTS problem are listed:

C the capacity of a feeder module. All feeder
modules have equal capacity.

F the number of online feeder modules.

E the number of offline modules. It is assumed
that at least one offline module is available.
Otherwise the problem simplifies to the well
known tool switching problem which can be
solved optimally by the means of the KTNS
procedure.

n the number of PCB assembly jobs. The order
in which jobs are processed is given and fixed
by list J .

Tj the set of component types required for job j.
It is assumed that a single job will always fit
into the available online capacity (|Tj | ≤ F ·C),
and that there is no sufficient online capacity
for all the jobs: (| ∪j∈[1...n] Tj | > F · C). All
components are of uniform size, i.e. demand a
unit space (single slot) in the feeder module.

tc the delay incurred when swapping one compo-
nent reel in an online module.

tm the delay incurred when swapping one online
module with an offline module.
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It is assumed that the completion time of each
job is sufficiently large that offline modules can
be prepared before the job completes. This
simplifying assumption is valid mainly because
jobs are typically batches of identical PCB
units.

Extra copies of component reels may or may not
be available. If extra copies are available, these
make it easier to setup offline modules, while the
current job is being processed. The number of ex-
tra copies may be limited per component reel type,
or it may be that no extra copies are available due
to budgetary constraints. There are F online mod-
ules and there is no need to place more than one reel
of a type into a module. Therefore, it is sufficient to
have F + 1 copies available of each component type
reel, so that at least one reel is available offline, and
there is no need to wait for a job to complete when
building offline modules. Otherwise, some compo-
nent reel types may be locked into online modules,
so an offline module can be completed only after
the previous job completes, and at that moment all
the component reel switchings will be counted in
the total delay.

2. Complexity

The problem of switching component reels (tools)
having equal sizes, equal switching costs, and no
offline modules, can be solved by the means of the
KTNS procedure. In the case of modular feeder
units, with at least one offline module, the problem
becomes more complicated by the fact that switch-
ing modules incurs a smaller cost than switching
individually several component reels of a module.

Next, we show that if the capacity constraints F
and C are arbitrary, the MTS problem is NP-hard.
In fact there are four cases of the MTS problem in
terms of the capacity constraints. Either F or C
can be fixed, or can be arbitrary parameters. In
the case of either F or C are arbitrary, the problem
is NP-hard. Only when both F and C are fixed,
the problem becomes polynomially solvable.

The 4 cases of the MTS problem are:

• The General MTS Problem (or simply the
MTS problem) is the problem of minimizing
the delay incurred by component reel and mod-
ule switches, when both the number of online
modules F and their capacity C are arbitrary.

• The MTS-F problem is the special case of MTS
problem, when the number of online modules
F is fixed, but the capacity C of these modules
is arbitrary.

• The MTS-C problem is the special case of
MTS problem, when capacity of the modules
C is fixed, but the number of online modules
F is arbitrary.

• The MTS-FC problem is the special case of
MTS problem, when both the number of online
modules and their capacity are fixed.

Next, we show that the MTS, MTS-C and MTS-
F problems are NP-hard, while the MTS-FC prob-
lem can be solved in polynomial time, albeit with
very large exponent.

2.1. MTS: The general case

In the General MTS (or just MTS) problem, F
and C are arbitrary. We show that this prob-
lem is NP-hard, by showing that its decision ver-
sion (Decision-MTS problem) is NP-complete. The
proof is inspired by the complexity proof for the tra-
ditional tool switching problem with non-uniform
tool sizes by Crama et. al. [5].

In the Decision-MTS problem, a fixed integer L is
given and it is asked whether there is a module and
component reel switching policy so that the total
delay is less or equal than L. We use a reduction
from 3-Partition which is known to be strongly NP-
complete ([10]). The 3-Partition problem is defined
as follows:

2.1.1. 3-Partition

Given a multi-set S of 3n positive integers wk,
and a positive integer B, where B/4 < wk < B/2
for each wk, and

∑
k∈S wk = nB. The problem asks

to partition S into n disjoint triples S1, S2, ..., Sn,
so that for each 1 ≤ i ≤ n, the sum of integers in
Si is B:

∑
k∈Si

wk = B.

2.1.2. Complexity of the MTS problem

Lemma 1. Decision-MTS is NP-Complete, with at
least one offline module and with or without extra
component reels.

Proof. Clearly, Decision-MTS is in NP: given a
module setup and component reel switching pol-
icy, it is easy to sum up the setup delay incurred
between jobs. Next, we show that the 3-Partition
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problem can be reduced into a Decision-MTS prob-
lem.

In the Decision-MTS problem, one or more offline
modules can help to reduce the cost of component
reel switches. First, we consider the case where at
least one extra copy is available for each compo-
nent reel type. Then, with a small change, we show
that the reduction works even if no extra copies of
component reels are available.

One extra copy for each component type. Given an
arbitrary instance I of the 3-Partition problem, a
Decision-MTS problem instance will be constructed
in the following way:

• Set the component reel switching cost tc =
6n + 1 and the module switching cost tm = 1.
The component reel switching cost can be any
number equal or greater than 6n + 1, the goal
is to force the Decision-MTS problem to avoid
switching component reels.

• For each value wk (k = 1, 2, ..., 3n) of I, de-
fine a set of basic component types Tk =
{tk1, tk2, ..., tkwk

}, |Tk| = wk. There are a total
of n ·B different component types.

• Define an extra set of component types X,
|X| = B. These component types are differ-
ent from the ones in the basic sets Tk.

• Let Ja be a basic job requiring all the basic
component types from ∪3nk=1Tk. There are a
total of nB component reels required by job
Ja.

• Let Jk be an extra job containing the com-
ponent types (∪3ni=1Ti)\Tk, and wk component
types from X. Job Jk also requires exactly
n ·B component reels. Component types from
X are reused between various jobs Jk, by se-
lecting a wk number of component types from
X.

• Each of the 3n component type set Tk induces
a different job Jk.

• Create a job sequence of 6n + 1 jobs:
Ja, J1, Ja, J2, Ja, ..., Ja, J3n, Ja.

• Each of the 6n+1 jobs requires exactly nB reel
types.

• Let the number of online modules be F = n,
the capacity of a module C = B, and use at

T1 T3 T5 T2 T4 T6

T1 T3 X5 T2 T4 T6

M1 M2

Ja

J5

Figure 2: The setup for job J5 after Ja requires
swapping module M1. The replacement module for
M1 can be prepared offline if extra component reel
copies are available.

least one offline module of capacity C. The
total available online capacity is thus n ·B.

• Clearly, each job fully uses the available online
capacity.

• Each pair of consecutive jobs (Ja, Jk or Jk, Ja)
differ by a number of wk component types, and
these reels must be switched between each job
(see Fig. 2).

• There are 6n transitions between the 6n + 1
jobs. It is assumed that the machine starts
with all the component reels available online
for job Ja.

• Since each transition must change at least wk

component reels, the optimal solution must
have at least one module change incurring a
cost of tm = 1 per transition.

• Set L = 6n, the Decision-MTS problem will
ask if there is a module and component reel
swapping policy with a delay no more than L.

• All component reels have an extra copy avail-
able, so that offline modules can be prepared
before the current job completes. One extra
copy is sufficient, since there will be no need to
duplicate copies in online modules. Each com-
ponent type will have at most one reel online
and at least one reel offline.

The above transformation creates a Decision-
MTS problem instance that has a size exponen-
tial in the size of the 3-Partition problem, in case
of binary representation. This is because for each
value wk we create wk different components. If wk

is binary encoded, the number of components will
be exponential in the size of wk. Since 3-Partition
is a strongly NP-complete problem, it is still NP-
complete if unary coding of wk is used. Therefore,
the unary coded representation of the 3-Partition
is considered, and it is transformed into a Decision-
MTS problem of similar size.
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1. To show NP-Completeness (with one extra
copy for each component type), we show that a
YES-instance of Decision-MTS problem translates
into a YES-instance of 3-Partition and vice versa.

Consider that there is a YES-instance for
Decision-MTS problem with L = 6n. A consecutive
pair of jobs is either of the form (Ja, Jk) or (Jk, Ja).
The difference between jobs Jk and Ja is exactly wk

components, as the set of Tk components required
by job Jk are replaced by wk components from the
set X. Therefore, there must be some reel changes
between two consecutive jobs.

There are 6n job transitions, and for L = 6n the
answer of the Decision-MTS problem was a YES.
Clearly, this can happen if and only if there is ex-
actly one module swap between each consecutive
jobs (the delay of the module swap being tm = 1).
But this implies that all the wk component reels
(basic or extra) are located in one module. That is,
the (2k)th and (2k + 1)th job transition cannot be
done with a delay of 1 if the replaced wk compo-
nents of Tk or X are spread over multiple modules.

A transition from job Ja to job Jk can be done
by a single module in the following way. Let Mi be
the module containing reels from the set Tk while
Ja is processed. Prepare a new module M ′i offline,
that has the same content as Mi except the reels of
Tk are replaced with wk reels from X. M ′i can be
prepared offline because there is at least one extra
offline copy for each reel (the other B −wk reels of
module Mi are also required for module M ′i).

Each job requires exactly n·B reels. Each module
holds at most B reels. Each set of Tk reels is fully
contained in a module. A module cannot contain
4 or more Tk sets of reels (because B/4 < wk).
There are 3n sets of reels loaded into the n online
modules, then each module contains exactly three
sets of reels. Since the total online capacity n ·B is
fully used by each job, each module contains exactly
B reels. Thus, when a job Ja is being processed,
for each online module Mi we have

∑
Tk∈Mi

|Tk| =
B. This directly translates into a YES-instance of
the 3-Partition problem, where Si corresponds to
module Mi and

∑
k∈Si

wk = B.
2. Now we show that a YES-instance of

3-Partition corresponds to a YES-instance of
Decision-MTS problem with L = 6n. Given a so-
lution Si to 3-Partition, assign modules Mi (i =
1, 2, ..., n) with reels from Tk for all k ∈ Si. The
capacity of a module is B, and from 3-Partition we
will have

∑
k∈Si

|Tk| = B. Thus, all modules are
completely filled with reels, and all 3n reel sets are

made available online for job Ja.

At the transition from Ja to Jk there is exactly
one module Mi that contains the set of reels Tk.
Prepare an offline module M ′i containing the other
B − wk reels of Mi and wk reels from X. Swap
Mi with M ′i at cost tm = 1. A similar transition
can be made from Jk to Ja. Thus, the given job
list can be processed with no more than 6n module
transitions, with each transition at a cost of tm =
1. This results in a YES-instance for the Decision-
MTS problem with L = 6n.

No extra copies of component reels. Consider the
case where no extra reels are available to build of-
fline modules. We show that a reduction exists from
3-Partition even in this case.

If there are sufficient extra copies of each compo-
nent reel, a complete offline module can be prepared
without using reels from online modules. This is a
relaxed assumption of the problem. If there are no
such extra copies, the offline module cannot be pre-
pared completely and the above reduction will not
hold. With a small change to the job list, the reduc-
tion can be modified so that it holds for no extra
copies as well.

Define a new set Y containing B different com-
ponent types, these are also different from compo-
nent types in Tk and X. Define a new job Jy, that
contains exactly B component types from Y . Now
define a job sequence of the following form:

Ja, Jy, J1, Jy, Ja, Jy, J2, Jy, Ja, ..., Ja, Jy, J3n, Jy, Ja.

There are a total of 12n + 1 jobs, with 12n tran-
sitions. The Ja, Jy transition will unload all reels
from a module Mi, and load one module contain-
ing only reels from Y . The reels of module Mi then
are available offline, so that a new module can be
constructed for job Jk (while job Jy is being pro-
cessed) see Fig. 3. The transition back to job Ja
is similar, a job Jy is inserted in-between in order
to unload all reels that are required to construct an
offline module for Ja.

In this instance of the Decision-MTS problem,
the limit is set to L = 12n, and the reel switching
cost is tc = 12n + 1. Similarly to the earlier reduc-
tion, it is clear that a 12n delay can be achieved if
and only if there is a 3-Partition of the instance.
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Ja
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T1 T3 X5 T2 T4 T6J5

Figure 3: No extra copies of component reels are
available. Inserting job Jy between jobs Ja and J5
will cause the unloading of component sets T1, T3

and T5. These become available to build an offline
module, while Jy is being processed, and load the
module in one step when transitioning to J5.

2.2. MTS-F: fixed number of online modules

The above reduction for the General MTS prob-
lem assumed that both the number of online mod-
ules and their capacity are arbitrary. In the MTS-F
problem the number of online modules is fixed and
the capacity of each module is arbitrary. Showing
the complexity of MTS−F problem requires a dif-
ferent reduction, since in the earlier case the vari-
able n of 3-Partition was mapped to the number of
online carriages F .

In the case of MTS-F problem, a reduction from
the Bin-Packing problem is used. Then the Bin-
Packing problem is also known to be strongly NP-
complete ([10]). As before, the following reduc-
tion considers the unary representation of the val-
ues in Bin-Packing. Since the Bin-Packing problem
is strongly NP-complete, it remains NP-Complete
even in the case of unary representation of the prob-
lem.

2.2.1. Bin-Packing

Given a multi-set of numbers A = {a1, a2, ..., an}
and a bin capacity V , find a minimum number of
bins m and a partition of the numbers of A into the
bins B1, B2, ..., Bm such that

∑
k∈Bi

≤ V for all
1 ≤ i ≤ m. The decision version of Bin-Packing (b-
Bin-Packing) asks if it is possible to pack the given
input A into b bins each of the capacity V .

2.2.2. MTS-F complexity

Lemma 2. Decision-MTS-F problem is NP-
Complete, with at least one offline module and with
or without extra component reels.

Proof. Clearly, the Decision-MTS-F is in NP. We
will show that an arbitrary instance of the b-Bin-
Packing problem can be reduced to the Decision-
MTS-F problem. Given an instance of the b-Bin-
Packing problem, construct the following Decision-
MTS-F problem instance:

• Set the reel switching cost to tc = 2n + 1 and
the module switching cost tm = 1.

• For each value ak of A, define a set of basic
component types Tk = {tk1, tk2, ..., tkak

}, with
|Tk| = ak.

• Define an extra set of component types X,
|X| = V (i.e. the capacity of a bin). These
component types are different from the ones in
the basic sets Tk.

• Let the number of online modules F = b, and
the capacity of a module C = V .

• Let S =
∑n

k=1 ak. Clearly S ≤ b ·V , otherwise
the b-Bin-Packing problem is not feasible.

• Define another set of component types Z con-
taining b · V − S different component types.

• Component types of Z are used to complete the
jobs so that they fully use the available online
capacity (see Fig. 4).

• Let Ja be a basic job requiring all the basic
component types from all Tk sets and the com-
ponent types from Z. Then, Ja requires ex-
actly b · V capacity.

• Let Jk be an extra job containing the compo-
nents (∪ni=1Ti)\Tk, all components from Z, and
wk component types from X. Job Jk also re-
quires exactly b · V capacity.

• There are a total of n basic component type
sets Tk and each of them induces a different
job Jk.

• Create a job sequence of 2n + 1 jobs:
Ja, J1, Ja, J2, Ja, ..., Ja, Jn, Ja.

• There are a total of 2n + 1 jobs in the se-
quence, each requiring exactly b ·V component
reel types.

• Each consecutive pair of jobs differs by a num-
ber of wk component types, these reels must
be switched between each job.

• There are 2n transitions between the 2n + 1
jobs.

• Since each transition must incur at least wk

component reel changes, the optimal solution
must have a minimum of one module switch
incurring a cost of tm = 1 per transition.
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J5

Z

T2 T4 T6 Z

Z
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Figure 4: The setup for job J5 after Ja requires
swapping module M1 only. The components of Z
will fill up a module to full capacity.

• Set L = 2n, that is the Decision-MTS-F prob-
lem will ask whether there is a module and
component reel swapping policy with a delay
no more than 2n.

• All component reels have an extra copy avail-
able, so that offline modules can be prepared
before the current job completes.

To show NP-Completeness, we show that a YES-
instance of Decision-MTS-F problem translates into
a YES-instance of b-Bin-Packing, and vice versa.
The reduction is similar to that of the General MTS
problem.

Clearly, in a YES-instance for Decision-MTS-F
problem with L = 2n, there is exactly one module
swapped between two consecutive jobs. This means
that each reel set Tk was fully contained by one
module.

A module Mi will contain the reel sets Tk that
correspond to a bin assignment Bi. The extra reels
of Z are used to fill the empty capacity of each
module. If b online modules, each of capacity V ,
are sufficient to achieve one module swap per job
transition (i.e. a reel sets Tk is fully contained in a
module Mi), then b bins are sufficient to pack all ak
numbers of the Bin-Packing instance. Thus, for a
YES-instance of Decision-MTS-F problem we have
a YES-instance of Bin-Packing.

Suppose, that the answer to the b-Bin-Packing
problem is YES. For each bin Bi containing num-
bers ak, assign the corresponding reel sets Tk to
module Mi. Since the Bin-Packing instance fits into
b bins, each reel set Tk can be placed into exactly
one of the b online modules. Because a reel set is
fully contained in one module, a single module swap
is sufficient between each job Ja and Jk. This re-
sults in a total delay of 2n, implying a YES-instance
for the Decision-MTS-F problem.

The reduction in the case of no extra component
reel copies is handled in a similar way as in the case
of General MTS problem. Let Y be an additional
set of V component types, and Jy a job containing
the V component types from Y . Job Jy is inserted

after each Ja and Jk to allow the unloading of reels
required to construct a module offline. Transitions
between Jy and other jobs can be handled by ex-
actly one module swap. In order to avoid extra cost,
the swapped module must contain the changing reel
set Tk.

2.3. MTS-C: fixed module capacity

In the MTS-C problem, the capacity of a module
C is fixed and the number of online modules F is
arbitrary. For MTS-C problem we use a reduction
from the Minimum Makespan Scheduling Problem,
that is also known to be strongly NP-hard ([10]).

2.3.1. Minimum Makespan Scheduling

In the Minimum Makespan Scheduling Problem
(MMS) n jobs are given, each with an integer pro-
cessing time pk, and m identical machines. Find
the assignment of the n jobs to the m machines
so that the maximum completion time (also called
makespan) is minimized.

The MMS problem is strongly NP-hard for arbi-
trary m. The decision version of the MMS prob-
lem (Decision-MMS) asks if there is a job/machine
assignment so that the makespan is not larger
than some fixed integer C. Decision-MMS is NP-
complete for an arbitrary value of m.

2.3.2. MTS-C complexity

Lemma 3. Decision-MTS-C problem is NP-
Complete, with at least one offline module and with
or without extra component reels.

The proof of NP-Completeness of the Decision-
MTS-C problem follows similar steps as the earlier
reductions, the details are given in the Appendix.

2.4. MTS-FC: Fixed online and module capacity

In the MTS-FC problem both the number of on-
line modules F and their capacity C are fixed. We
show that the problem can be solved optimally in
polynomial time, albeit with a very large expo-
nent. The polynomial-time algorithm follows simi-
lar ideas to those given by Crama et. al. [5], for the
case of non-uniform tool sizes and single linear tool
magazine, except that here we solve the problem by
dynamic programming.

Consider all the possible component reel assign-
ments to the online modules. A given assignment to
F online modules may or may not be feasible. The
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assignments that are not feasible are not considered
(incur∞ cost). The transition between two module
assignments can be calculated easily and efficiently
by either swapping components or replacing mod-
ules if such modules can be constructed offline.

Let m = |∪j∈[1...n]Tj | be the total number of dif-
ferent components used in the manufacturing of n
jobs. Consider one extra dummy component type,
which is used to fill unused slots in a module. Sup-
pose that there is an arbitrary number of copies
available of the dummy component. Thus, a mod-
ule can be filled with m+ 1 components in at most
O((m + 1)C) different ways (depending how many
extra copies of each reel are available). With F on-
line modules there are at most O((m + 1)C·F ) con-
figurations for online components. An online con-
figuration is feasible for a job j if all the required
component types are present, and the number of
component reel duplications don’t exceed the avail-
able component reel copies.

Let D be the set of all the O((m + 1)C·F ) pos-
sible online configurations, and d, d′ ∈ D be two
such configurations. Then, the transition function
R(d, d′) calculates the delay incurred by changing
from configuration d to d′. The function R can be
efficiently calculated for a fixed online capacity F
and C.

Given a number of n jobs, the delay for the mini-
mum module/component reels swapping can be cal-
culated by dynamic programming using the follow-
ing recurrence relation:

The initial online magazine setup consists of load-
ing no more than C · F component reels into the
feeder unit:

OPT(1, d′) ≤ C · F · tc
For each d′ ∈ D that contains all the components
for job j

OPT(j, d′) = mind{OPT(j − 1, d) + R(d, d′)}

and let
OPT(j, d′) =∞

if d′ ∈ D is not feasible for job j.
That is, the minimum delay of reaching job j with

state d′ is the minimum of the sum of reaching job
j − 1 with a state d and transitioning from state d
to d′.

Lemma 4. The dynamic programming recurrence
defined by OPT(n, d) results in an optimal solution
to the MTS-FC problem.

Proof. By induction, assume that OPT(n− 1, d) is
the optimal value to reach job n− 1 with a feasible
state d. Let d′ ∈ D be a feasible state for job n.
Lets assume that this state can be reached by a
delay Q, where Q < OPT(n, d′).

Let d′′ ∈ D be the state used by job n− 1, in the
solution that obtains delay Q. Then we have

Q = OPT(n− 1, d′′) + R(d′′, d′)} <

mind{OPT(n− 1, d) + R(d, d′)}

since Q is optimal and R(d′′, d′) can be calculated
efficiently. But this is a contradiction, since mind

minimizes over all possible configurations, thus Q =
OPT(n, d′).

That is, there is no solution that results in a
smaller delay than the one given by the recurrence
relation OPT(n, d′).

The above dynamic program calculates the mini-
mum setup delay when manufacturing n jobs. The
actual module configurations can be recovered, by
recording at each step the choice made for d that
achieves the minimum. The dynamic program will
involve a table of size O(n · (m + 1)F ·C).

Although this is polynomial for a fixed F and
C, in practice the values of m, F and C are large
enough to make this approach prohibitive. It is
typical in industrial cases that m ≥ 100, while F =
4 and C = 40. Making the DP table as large as
100160 per job.

3. Conclusion

This study considered the complexity of the mod-
ular tool switching problem. The problem arises
in flexible manufacturing environment, especially
in the case of component placement machines in
PCB manufacturing, where multiple online and of-
fline feeder modules are available for a single ma-
chine. It was shown that the modular tool switching
problem is NP-hard in the general case, even for a
fixed job sequence, unit loading cost and uniform
tool sizes. The problem can be solved optimally
in polynomial time if both the number of online
feeder modules and the capacity of these modules
are fixed.

In practical applications of the MTS problem,
both the number of feeder modules and their ca-
pacity are constants. These are characteristics of
the component placement machines. Nevertheless,
the number of different component types and the
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total capacity of the online feeder modules make
an exact solution prohibitive. Thus, heuristic ap-
proaches are necessary to find good feeder module
arrangements and reel/module swapping decisions.
Such heuristics are subject of active research in our
group, and will be considered in future for publica-
tion.
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4. Appendix. Proof of Lemma 3

Proof. The reduction of the Decision-MMS prob-
lem to the Decision-MTS-C problem follows a sim-
ilar logic to the earlier reductions. Here we must
check that, for some fixed C, processing times pk
can be assigned to the machines so that each ma-
chine completes in no more that C time. Observe
that this reduction relies on the fact that Min-
imum Makespan Scheduling is strongly NP-hard,
and therefore its unary representation is still NP-
complete.

Given an arbitrary instance I of the Decision-
MMS problem, construct a Decision-MTS-C prob-
lem instance in the following way:

• Set the reel switching cost to tc = 2n + 1 and
the module switching cost tm = 1.

• For each processing time pk of I, define a set of
basic component types Tk = {tk1, tk2, ..., tkpk

},
|Tk| = pk. This transformation is linear
when unary representation of the MMS prob-
lem is used (per the definition of strongly NP-
complete).

• Define an extra set of component types X,
|X| = C. These component types are differ-
ent from the ones in the basic sets Tk.

• Let the number of online modules be the num-
ber of machines F = m, and the capacity of a
module be C (the makespan of the Decision-
MMS).
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• A machine of the MMS problem corresponds to
a module of the MTS problem. Assigning jobs
k in MMS to a machine corresponds assigning
reels of the set Tk to a module.

• Let S =
∑n

k=1 pk. Clearly, S ≤ m·C otherwise
the problem is not feasible.

• Define another set of component types Z con-
taining n · C − S different component types.

• If a machine (module) is not fully used to its
capacity C, components of Z are used to fill the
capacity requirement up to nC for each job of
the MTS problem.

• The rest of the Decision-MTS-C problem in-
stance is constructed in the same way as in the
Bin-Packing reduction.

Clearly, as in the Bin-Packing reduction, a
YES-instance of Decision-MTS-C problem can be
achieved if and only if, each reel set Tk is entirely
contained in a single module. This is because only
in such assignment it is possible to have a sin-
gle module switched between two consecutive jobs.
Each module may contain some extra components
of Z, and the capacity of a module may not exceed
C.

The reduction follows the same logic as earlier re-
ductions. From a YES-instance of Decision-MTS-
C problem we get an assignment of reel sets Tk to
modules Mi, where each reel set is feasibly assigned
to a single module. This corresponds to an assign-
ment of job k in MMS to a single machine, where
the machine capacity C is not exceeded.

Conversely, a YES-instance in MMS can easily be
converted into a YES-instance of MTS-C problem,
requiring only one module swap between two con-
secutive jobs, by assigning a reel set Tk to a module
Mi following the job/machine assignments obtained
in MMS.

As in the previous cases, the proof can also be
extended to the case where no extra component
reel copies are available. A job Jy taking up only
one module is inserted between each job Ja, Jk and
Jk, Ja, forcing the content of the corresponding
module offline, and making the necessary compo-
nents available offline to construct a new module at
no delay.
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