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Abstract

The smallest cardinality of an r-locating-dominating code in a cycle
Cn of length n is denoted by MLD

r (Cn). In this paper, we prove that for
any r ≥ 5 and n ≥ nr when nr is large enough (nr = O(r3)) we have
n/3 ≤ MLD

r (Cn) ≤ n/3 + 1 if n ≡ 3 (mod 6) and MLD
r (Cn) = dn/3e

otherwise. Moreover, we determine the exact values of MLD
3 (Cn) and

MLD
4 (Cn) for all n.
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1 Introduction

Let G = (V,E) be a simple connected and undirected graph with V as the set
of vertices and E as the set of edges. Let u and v be vertices in V . If u and
v are adjacent to each other, then the edge between u and v is denoted by uv.
The distance d(u, v) is the number of edges in any shortest path between u and
v. Let r be a positive integer. We say that u r-covers v if the distance d(u, v)
is at most r. The ball of radius r centered at u is defined as

Br(u) = {x ∈ V | d(u, x) ≤ r}.

A non-empty subset of V is called a code, and its elements are called code-
words. Let C ⊆ V be a code and u be a vertex in V . An I-set (or an identifying
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set) of the vertex u with respect to the code C is defined as

Ir(C; u) = Ir(u) = Br(u) ∩ C.

Definition 1.1. Let r be a positive integer. A code C ⊆ V is said to be r-
locating-dominating in G if for all distinct vertices u, v ∈ V \C the set Ir(C; u)
is non-empty and

Ir(C; u) 6= Ir(C; v).

Let X and Y be subsets of V . The symmetric difference of X and Y is defined
as X4Y = (X \Y )∪ (Y \X). We say that the vertices u and v are r-separated
by a code C ⊆ V or by a codeword of C ⊆ V if the symmetric difference
Ir(C; u)4 Ir(C; v) is non-empty. The definition of r-locating-dominating codes
can now be reformulated as follows: C ⊆ V is an r-locating-dominating code
in G if and only if for all u, v ∈ V \ C (u 6= v) the vertex u is r-covered by a
codeword of C and

Ir(C; u)4 Ir(C; v) 6= ∅.
The smallest cardinality of an r-locating-dominating code in a finite graph G

is denoted by MLD
r (G). Notice that there always exists an r-locating dominating

code in G. An r-locating-dominating code attaining the smallest cardinality is
called optimal. In [3], it is shown that the problem of determining MLD

r (G) is
NP-hard.

Locating-dominating codes are also known as locating-dominating sets in
the literature. The concept of locating-dominating codes was first introduced
by Slater in [13, 15, 16] and later generalized by Carson in [2]. The locating-
dominating codes have been since studied in various papers such as [5], [6], [7],
[8], [9], [10], [14], [17] and [18]. For other papers on the subject, we refer to the
Web site [12]. Moreover, location-domination in cycles have been examined in
[1], [4] and [16].

Let n be a positive integer such that n ≥ 3. A cycle Cn = (Vn, En) is a graph
such that the set of vertices is defined as Vn = {vi | i ∈ Zn} and the set of edges
is defined as

En = {vivi+1 | i = 0, 1, . . . , n− 2} ∪ {vn−1v0}.

Throughout the paper, we assume that the indices of vi ∈ Vn are calculated
modulo n. Hence, the set of edges can be written as En = {vivi+1 | i ∈ Zn}.
For the rest of the paper, we also assume that n and r are positive integers such
that n ≥ 3.

In [16], it is shown that MLD
1 (Cn) = d2n/5e. For radius r ≥ 2, Bertrand et

al. [1] provide the lower bound

MLD
r (Cn) ≥

⌈n

3

⌉
. (1)

The exact values of MLD
2 (Cn) are determined in [4]. In particular, it is shown

that for n > 6 if n ≡ 3 (mod 6), then MLD
2 (Cn) = n/3 + 1, else MLD

2 (Cn) =
dn/3e. In Section 5, we determine the exact values of MLD

3 (Cn) and MLD
4 (Cn).

In Section 4, we prove that for any r ≥ 5 and n ≥ nr when nr is large enough
(nr = O(r3)) we have constructions showing MLD

r (Cn) ≤ n/3 + 1 if n ≡ 3
(mod 6) and MLD

r (Cn) ≤ dn/3e otherwise. The latter constructions are optimal
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by the lower bound (1). Using the evidence provided in Sections 3 and 5, we
conjecture that also the constructions in the case n ≡ 3 (mod 6) are optimal.

In what follows, we begin in Section 2 by introducing some basic results con-
cerning r-locating-dominating codes in cycles. Then, in Section 3, we proceed
by considering r-locating-dominating codes in cycles Cn with small n (for a given
r). In Section 4, we present constructions for r-locating-dominating codes in
cycles for general r and, in Section 5, we consider r-locating-dominating codes
in cycles when 2 ≤ r ≤ 4.

2 Basics

We first present some useful observations concerning r-locating-dominating codes
in cycles. For this, we need the concept of C-consecutive vertices introduced in
[1]. Let i and j be positive integers. We say that (vi, vj) is a pair of C-consecutive
vertices in Cn if vi, vj ∈ Vn \ C and vk ∈ C for all k = i + 1, i + 2, . . . , j − 1 or
for all k = j + 1, j + 2, . . . , i − 1. The following lemma is previously presented
in [1, Remark 4].

Lemma 2.1 ([1]). If C ⊆ Vn is a code in Cn, then each codeword of C can
r-separate at most two pairs of C-consecutive vertices.

Bertrand et al. in [1] also presented a useful characterization of r-locating-
dominating codes in paths. The following lemma provides similar characteriza-
tion in the case of cycles.

Lemma 2.2. A code C ⊆ Vn is r-locating-dominating in Cn if and only if

(i) each vertex u ∈ Vn \ C is r-covered by a codeword of C,

(ii) each pair (u, v) of C-consecutive vertices in Cn is r-separated by C and

(iii) there exists at most one vertex u ∈ Vn \ C such that Ir(u) = C.

Proof. If C is an r-locating-dominating code in Cn, then the conditions (i), (ii)
and (iii) immediately follow. Assume then that C ⊆ Vn is a code satisfying these
three conditions. By the assumption, all the vertices of Vn are r-covered by a
codeword of C. Let then u and v be two distinct vertices of Vn. If Ir(u) = C,
then by the condition (iii), the vertices u and v are r-separated by a codeword.

Hence, we may assume that Ir(u) 6= C and Ir(v) 6= C. If the intersection of
Ir(v) and C \ Ir(u) is non-empty, then the vertices u and v are r-separated by
a codeword of C. Otherwise, we have Ir(v) ⊆ Ir(u). Then there exists a non-
codeword w ∈ Vn such that (u,w) is a pair of C-consecutive vertices and the
symmetric difference Ir(u)4 Ir(w) is a subset of Ir(u)4 Ir(v). (Notice that if
(u, v) is pair of C-consecutive vertices, then v = w.) Therefore, by the condition
(ii), we have Ir(u) 6= Ir(v).

In the previous characterization, the condition (iii) is necessary. Indeed,
consider a code {v0, v2} in C6 when r = 2. Clearly, the conditions (i) and (ii)
now hold. However, the code is not 2-locating-dominating in C6 since Ir(v1) =
Ir(v4) = {v0, v2}. Notice also that if n ≥ 4r + 2 and the condition (i) holds,
then there is no vertex u ∈ Vn \ C such that Ir(u) = C.
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The following lower bound is presented in [1, Theorem 13]. For Lemma 2.4,
we include the proof of the lower bound here. In [1, Theorem 14], it is also shown
that for each r ≥ 2 there exist an infinite family of n such that MLD

r (Cn) =
dn/3e. In particular, it is shown that if r is even, n > 6 and n ≡ 0 (mod 3r) or
if r is odd and n ≡ 0 (mod 3r + 3), then the lower bound is attained.

Theorem 2.3 ([1]). For all integers n ≥ 3 and r ≥ 2, we have

MLD
r (Cn) ≥

⌈n

3

⌉
.

Proof. Let C be an r-locating-dominating code in Cn. By Lemma 2.1, each
codeword of C can r-separate at most two pairs of C-consecutive vertices. On
the other hand, by Lemma 2.2, each pair of C-consecutive vertices has to be
r-separated by at least one codeword. Hence, we have 2|C| ≥ n − |C|. Thus,
the claim immediately follows.

The next lemma immediately follows from the previous proof.

Lemma 2.4. Let n be divisible by three and r ≥ 2. If C is an r-locating-
dominating code in Cn with n/3 codewords, then

(i) each codeword r-separates exactly two pairs of C-consecutive vertices and

(ii) each pair of C-consecutive vertices is r-separated by exactly one codeword
of C.

For future consideration, we introduce the concept of C-block of codewords.
Let t be a positive integer. Define Qt(i) = {vi, vi+1, . . . , vi+t−1} (i ∈ Zn). Let
C ⊆ Vn be a code. We say that Qt(i) is a C-block (of codewords) if the vertices
vi, vi+1, . . . , vi+t−1 ∈ C and vi−1, vi+t /∈ C. Moreover, if Qt(i) is a C-block of
codewords, then the length of the C-block is t. Notice that if Qt(i) is a C-
block, then (vi−1, vi+t) is a pair of C-consecutive vertices. Notice also that if
vi−1, vi+1 /∈ C and vi ∈ C, then we say that {vi} is a C-block of length one.

Now we are ready to present the following two lemmas.

Lemma 2.5. Let n be divisible by three and r ≥ 2. If C is an r-locating-
dominating code in Cn with n/3 codewords, then the length of any C-block of
codewords is at most r − 1.

Proof. Let C be an r-locating-dominating code in Cn with n/3 codewords. As-
sume that there exists a C-block Qt(i) of length t ≥ r+1. Then it is immediately
clear that vi (and vi+t−1) r-separate at most one pair of C-consecutive vertices.
This is a contradiction with Lemma 2.4 (i).

Assume then that Qr(i) is a C-block of length r. Since (vi−1, vi+r) is a
pair of C-consecutive vertices, the symmetric difference Ir(vi−1)4 Ir(vi+r) con-
tains exactly one codeword of C by Lemma 2.4 (ii). Therefore, without loss
of generality, we may assume that Ir(vi+r) \ Ir(vi−1) = ∅. Since the pairs
(vj , vj+1) of C-consecutive vertices, where j = i + r, i + r + 1, . . . , i + 2r − 1,
are r-separated by exactly one codeword of C and vj−r ∈ Ir(vj) \ Ir(vj+1), the
vertices vi+2r+1, vi+2r+2, . . . , vi+3r /∈ C. Hence, the set Ir(vi+2r) is empty (a
contradiction). Thus, the claim follows.
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Lemma 2.6. Let n be divisible by three and r ≥ 2. If C is an r-locating-
dominating code in Cn with n/3 codewords, then the number of C-blocks of
codewords is even.

Proof. Let C be an r-locating-dominating code in Cn with n/3 codewords.
Assume that Qt(i) is a C-block (for appropriate integers i and t). Hence,
(vi−1, vi+t) is a pair of C-consecutive vertices. This pair is r-separated by a
unique codeword. Assume that this codeword belongs to the C-block Qt′(i′)
(for some appropriate integers i′ and t′). Now the pair (vi′−1, vi′+t′) of C-
consecutive vertices is clearly r-separated by a unique codeword that belongs to
the C-block Qt(i). Therefore, each C-block can be uniquely paired to another
C-block. Thus, the number of C-blocks is even.

3 Cycles with a small number of vertices

In this section, we consider r-locating-dominating codes in Cn with small n (for
a given r). The following easy theorem gives the exact values of MLD

r (Cn) when
3 ≤ n ≤ 2r + 1.

Theorem 3.1. Let n and r be positive integers such that 3 ≤ n ≤ 2r + 1 and
r ≥ 2. Then we have

MLD
r (Cn) = n− 1.

Proof. Let C be an r-identifying code in Cn. Assume that |C| ≤ n − 2. Then
there exist u, v ∈ Vn \ C such that u 6= v. Since Br(u) = Br(v) = Vn, we
have Ir(u) = C and Ir(v) = C. Therefore, |C| ≥ n − 1. On the other hand,
{v0, v1, . . . , vn−2} is an r-locating-dominating code in Cn with n− 1 codewords.
Thus, we have MLD

r (Cn) = n− 1.

The following two theorems consider r-locating-dominating codes in the cy-
cles C2r+2 and C2r+3.

Theorem 3.2. Let r ≥ 2. Then we have

MLD
r (C2r+2) = r + 1.

Proof. Let C be an r-locating-dominating code in Cn with n = 2r + 2. For
vi ∈ Vn \ C, consider sets B′

r(vi) = Vn \ Br(vi) = {vi+r+1}. Since C is an
r-locating-dominating code in C2r+2, the sets B′

r(vi) ∩ C are unique for all
vi ∈ Vn \ C. Assume then that |C| ≤ r. Since now |Vn \ C| ≥ r + 2, there
exist (by the pigeonhole principle) vertices vi, vj ∈ Vn \C such that vi 6= vj and
B′

r(vi) ∩ C = B′
r(vj) ∩ C (a contradiction). Thus, we have |C| ≥ r + 1.

By Lemma 2.2, it is straightforward to verify that {v0, v1, . . . , vr} is an r-
locating-dominating code in C2r+2. Therefore, we have MLD

r (C2r+2) = r+1.

Theorem 3.3. Let r ≥ 2. Then we have

MLD
r (C2r+3) ≥

⌈
2(2r + 2)

5

⌉
.
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Proof. Let C be an r-locating-dominating code in Cn with n = 2r + 3. For
vi ∈ Vn \ C, consider again the sets B′

r(vi) = Vn \ Br(vi) = {vi+r+1, vi+r+2}.
Since C is an r-locating-dominating code in C2r+3, the sets B′

r(vi)∩C are unique
for all vi ∈ Vn \ C. Hence, at most one of the sets B′

r(vi) can be empty and
at most |C| of them contains only one codeword of C. On the other hand,
each codeword can belong to at most two sets B′

r(vi). Therefore, we have the
inequality

|C|+ 2(n− 2|C| − 1) ≤ 2|C|.
Thus, the claim immediately follows.

Let r = 5r′+1, where r′ is a positive integer. Now, by the previous theorem,
we have MLD

r (C2r+3) = MLD
r (C5(2r′+1)) ≥ 2(2r′ + 1). Define then

C =
2r′⋃

i=0

{v5i, v5i+1}.

It is straightforward to verify that C is an r-locating-dominating code in C2r+3

attaining the lower bound of Theorem 3.3. Thus, we have an infinite family of
radii r for which MLD

r (C2r+3) = d2(2r + 2)/5e.
Let us then determine the exact values of MLD

r (C3r) and MLD
r (C3r+3). The

following theorem, which solves the exact values of MLD
r (C3r) when r is even

and MLD
r (C3r+3) when r is odd, have previously been presented in [1].

Theorem 3.4 ([1]). Let r be an integer such that r ≥ 3.

(i) If r is even, then MLD
r (C3r) = r.

(ii) If r is odd, then MLD
r (C3r+3) = r + 1.

The remaining cases are solved in the following theorem.

Theorem 3.5. Let r be an integer such that r ≥ 3.

(i) If r is even, then MLD
r (C3r+3) = r + 2.

(ii) If r is odd, then MLD
r (C3r) = r + 1.

Proof. (i) Let r ≥ 3 be an even integer. Assume that C is an r-locating-
dominating code in C3r+3 with r+1 codewords. Let us first show that now each
C-block of codewords is of length one. Assume to the contrary that Qt(i) is a C-
block of codewords with t ≥ 2 (for an appropriate integer i). Now (vi−1, vi+t) is a
pair of C-consecutive vertices. The symmetric difference Br(vi−1)4Br(vi+t) =
Qt+1(i− r−1)∪Qt+1(i+ r) contains at most one codeword, by Lemma 2.4 (ii).
Without loss of generality, we may assume that Qt+1(i−r−1)∩C is empty. Since
the pairs (vi−r+t−2, vi−r+t−1) and (vi−r+t−3, vi−r+t−2) of C-consecutive vertices
are r-separated, respectively, by the codewords vi+t−1 and vi+t−2, the vertices
vi−2r+t−2 and vi−2r+t−3 do not belong to C, by Lemma 2.4 (ii). By the con-
siderations above, the symmetric difference Br(vi−2r+t−3)4Br(vi−2r+t−2) =
{vi−3r+t−3, vi−r+t−2} = {vi+t, vi−r+t−2} does not contain codewords of C (a
contradiction). Hence, each C-block is of length one.

By Lemma 2.6, we know that the number of C-blocks is even. Therefore,
by the fact that each C-block is of length one, it immediately follows that the
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number of codewords in C is even. However, this contradicts the assumption
that the number of vertices in C is equal to r + 1. Thus, there does not exist
an r-locating-dominating code in C3r+3 with r + 1 codewords. Hence, we have
MLD

r (C3r+3) ≥ r + 2. On the other hand, it is straightforward to verify (using
Lemma 2.2) that {v0, v1, . . . , vr, v2r+1} is an r-locating-dominating code in C3r+3

with r + 2 codewords. Thus, we have MLD
r (C3r+3) = r + 2.

(ii) Let r ≥ 3 be an odd integer. Assume that C is an r-locating-dominating
code in C3r with r codewords. Using similar ideas as in the case (i), it can be
shown that each C-block is of length one. Then a contradiction again follows
using Lemma 2.6. Thus, we have MLD

r (C3r) ≥ r + 1. On the other hand, it
is easy to verify that {v0, v1, . . . , vr} is an r-locating-dominating code in C3r.
Therefore, we have MLD

r (C3r) = r + 1.

4 Cycles with a large number of vertices

Let r be an integer such that r ≥ 5. In this section, we prove that for any n ≥ nr

when nr is large enough we have constructions showing MLD
r (Cn) ≤ n/3 + 1 if

n ≡ 3 (mod 6) and MLD
r (Cn) ≤ dn/3e if n 6≡ 3 (mod 6). By Theorem 2.3, the

latter constructions are optimal.
The path of length n is defined as Pn = (Vn, E′

n), where Vn is the same as in
the case of cycles and E′

n = {vivi+1 | i = 0, 1, . . . , n−2}. The following theorem
provides a useful relation between the optimal r-locating-dominating codes in
cycles and paths.

Theorem 4.1. Let n ≥ 4r + 2. Then we have

MLD
r (Cn) ≤ MLD

r (Pn+1).

Proof. Let C be an r-locating-dominating code in Pn+1. Assume first that
vn /∈ C. Now each pair of C-consecutive vertices in Cn is r-separated by C,
since each pair of C-consecutive vertices in Pn+1 is r-separated by C. It is also
easy to see that all the vertices of Cn are r-covered by a codeword of C and that
there does not exist a vertex u ∈ Vn \C such that Br(u) = C (since n ≥ 4r+2).
Therefore, by Lemma 2.2, C is an r-locating-dominating code in Cn.

If v0 /∈ C, then the proof is analogous to the previous case. Hence, assume
that v0 and vn both belong to C. Let then vi, vj , vk ∈ Vn \ C be vertices such
that v0, v1, . . . , vi−1 ∈ C, vj+1, vj+2, . . . , vn ∈ C and vi+1, vi+2, . . . , vk−1 ∈ C.
In other words, (vj , vi) and (vi, vk) are pairs of C-consecutive vertices. Consider
then the code C ′ = C \ {vn} in Cn. It is straightforward to verify that all
the pairs except (vi, vj) of C ′-consecutive vertices in Cn are r-separated by C ′.
Moreover, the symmetric difference of Br(vj) and Br(vk) contains a codeword
of C ′. Therefore, by Lemma 2.2, C ′ ∪ {vi} is an r-locating dominating code in
Cn. Thus, in conclusion, we have MLD

r (Cn) ≤ MLD
r (Pn+1).

Assume that r ≥ 5 and n ≥ 3r + 2 + 6r((r − 3)(2r + 1) + r). In [5], it is
shown that now MLD

r (Pn) = d(n + 1)/3e. Hence, if n ≡ 1 (mod 3), then
⌈n

3

⌉
≤ MLD

r (Cn) ≤ MLD
r (Pn+1) =

⌈
n + 2

3

⌉
.

Therefore, MLD
r (Cn) = dn/3e. If n ≡ 3 (mod 6), we similarly obtain n/3 ≤

MLD
r (Cn) ≤ MLD

r (Pn+1) = n/3+1. We also conjecture that MLD
r (Cn) = n/3+1
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(see Conjecture 5.4). In what follows, we give optimal constructions for the
remaining cases when n ≡ 0, 2 or 5 (mod 6). For this, we first recall some
preliminary definitions and results (previously presented in [5]).

Let i and s be non-negative integers. First, for 1 ≤ i ≤ r − 2, define

Mi(s) =




r−1⋃

j=0
j 6=r−i−1

{vs+j}


 ∪ {vs+2r−i}

and M ′
i(s) = Mi(s) \ {vs+2r−i}. Notice that |Mi(s)| = r. Furthermore, for

1 ≤ i ≤ r − 3, define

Ki(s) = M ′
i(s) ∪ {vs+2r, vs+3r−i} ∪




4r⋃

j=3r+2
j 6=4r−i

{vs+j}


 ∪ {vs+5r−i, vs+5r+2},

and Kr−2(s) = M ′
r−2(s) ∪ {vs+2r, vs+2r+2}. Notice that for i = 1, 2, . . . , r − 3,

we have |Ki(s)| = 2r + 1 and |Kr−2(s)| = r + 1. Finally, define

L2(s) = M2(s) ∪




4r+1⋃

j=3r+1
j 6=4r−1

{vs+j}


 ∪ {vs+6r}.

Notice that |L2(s)| = 2r + 1.

Denote by Ki and L2 the patterns {vs, vs+1, . . . , vs+`−1} where the code-
words are determined by Ki(s) and L2(s), respectively. The length ` of each
pattern Ki and L2 is equal to three times the number of codewords in the pat-
tern. For example, the length of the pattern L2 is equal to 6r + 3 (see the case
(iii) below). The following lemma, which is a slightly reformulated version of [5],
says for general r ≥ 5 that the patterns Ki and L2 can be concatenated to form
r-locating dominating codes (because the beginning of each of them contains
M ′

i(s)).

Lemma 4.2 ([5]). Let s be a non-negative integer and r ≥ 5. Let C be a code
in Cn.

(i) Let i be an integer such that 1 ≤ i ≤ r−3. If Ki(s)∪M ′
i+1(s+6r+3) ⊆ C,

then each pair (vj1 , vj2) of C-consecutive vertices in Cn such that s ≤ j1 ≤
s + 7r + 2 and s ≤ j2 ≤ s + 7r + 2 is r-separated by a codeword of C.

(ii) If Kr−2(s)∪M ′
1(s+3r+3) ⊆ C, then each pair (vj1 , vj2) of C-consecutive

vertices in Cn such that s ≤ j1 ≤ s + 4r + 2 and s ≤ j2 ≤ s + 4r + 2 is
r-separated by a codeword of C.

(iii) If L2(s) ∪M ′
1(s + 6r + 3) ⊆ C, then each pair (vj1 , vj2) of C-consecutive

vertices in Cn such that s ≤ j1 ≤ s + 7r + 2 and s ≤ j2 ≤ s + 7r + 2 is
r-separated by a codeword of C.
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Figure 1: The r-locating-dominating code C0 illustrated when r = 5. The
pattern C, which obtained by concatenating the patterns K1, K2 and K3, is
repeated p times and the concatenation of K1 and L2 is repeated q times.

For the following constructions, we also define

C(s) =
r−3⋃

i=0

Ki+1(s + i(6r + 3)).

Now we are ready to proceed with the remaining constructions of r-locating-
dominating codes in cycles. These constructions are based on [5], although
attention needs to be paid to details. First let m = p((r− 3)(6r +3)+3r +3)+
q · 2(6r + 3), where p and q are non-negative integers. Define then

C0 =
p−1⋃

j=0

C(j((r − 3)(6r + 3) + 3r + 3))

∪
q−1⋃

j=0

K1(p((r − 3)(6r + 3) + 3r + 3) + 2j(6r + 3))

∪
q−1⋃

j=0

L2(p((r − 3)(6r + 3) + 3r + 3) + (2j + 1)(6r + 3)).

The code C0 is illustrated in Figure 1. Notice that M ′
i(s) ⊆ Ki(s) and

M ′
2(s) ⊆ L2(s) for any s. Therefore, by Lemma 4.2, it is immediate that each

pair (vj , vk) of C0-consecutive vertices in Cm is r-separated by C0. It is also
obvious that all the vertices in Cm are r-covered by a codeword of C0 and that
there does not exist a vertex u ∈ Vm \ C0 such that Ir(u) = C0. Thus, by
Lemma 2.2, it is easy to conclude that C0 is an r-locating-dominating code in
Cm with m/3 codewords.

Notice further that the greatest common divisor of (r−3)(6r+3)+3r+3 and
2(6r+3) is equal to 6. Hence, the greatest common divisor of 1/2 · ((r−3)(2r+
1)+r+1) and 2r+1 is equal to 1. Thus, by [11, Theorem 8.3], if n′ is an integer
such that n′ ≥ r((r−3)(2r+1)+r−1), then there exist non-negative integers p
and q such that n′ = p/2 ·((r−3)(2r+1)+r+1)+q(2r+1). Therefore, if n is an
integer such that n ≥ 6r((r− 3)(2r + 1) + r− 1) and n ≡ 0 (mod 6), then there
exist integers p ≥ 0 and q ≥ 0 such that n = p((r−3)(6r+3)+3r+3)+q·2(6r+3).
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Thus, if n is an integer such that n ≥ 6r((r − 3)(2r + 1) + r − 1) and n ≡ 0
(mod 6), then by the previous construction MLD

r (Cn) ≤ n/3.
Let m = 6r + 2 + p((r − 3)(6r + 3) + 3r + 3) + q · 2(6r + 3), where p and q

are non-negative integers. Define

C2 = Kr−2(r − 1) ∪
p−1⋃

j=0

C(4r + 2 + j((r − 3)(6r + 3) + 3r + 3))

∪
q−1⋃

j=0

K1(4r + 2 + p((r − 3)(6r + 3) + 3r + 3) + 2j(6r + 3))

∪
q−1⋃

j=0

L2(4r + 2 + p((r − 3)(6r + 3) + 3r + 3) + (2j + 1)(6r + 3))

∪M1(4r + 2 + p((r − 3)(6r + 3) + 3r + 3) + 2q(6r + 3)).

By Lemma 4.2, it is immediate that if (vi, vj) is a pair of C2-consecutive vertices
in Cm such that r−1 ≤ i ≤ m−r−1 and r−1 ≤ j ≤ m−r−1, then (vi, vj) is r-
separated by C2. Consider then the remaining pairs of C2-consecutive vertices.
For this, we first recall that M1(m−2r) = {v−2r, v−2r+1, . . . , v−r−3, v−r−1, v−1}
and Kr−2(r − 1) = {vr−1, vr+1, vr+2, . . . , v2r−2, v3r−1, v3r+1}. Now it is easy to
see that the pairs (v−r−2, v−r) and (vr−2, vr) are r-separated by the codeword
v−1 and the pair (v−2, v0) is r-separated by the codeword vr−1. Furthermore, for
all i = −r,−r+1, . . . ,−3 and j = 0, 1, . . . , r−3 the pairs (vi, vi+1) and (vj , vj+1)
are r-separated by the codewords vi−r and vj+1+r, respectively. Thus, each pair
of C2-consecutive vertices in Cm is r-separated by C2. Therefore, by Lemma 2.2,
it is straightforward to verify that C2 is an r-locating-dominating code in Cm

with dm/3e codewords. Thus, as in the previous case, if n is an integer such
that n ≥ 6r + 2 + 6r((r − 3)(2r + 1) + r − 1) and n ≡ 2 (mod 6), then by the
previous construction MLD

r (Cn) ≤ dn/3e.
Let m = 12r + 5 + p((r − 3)(6r + 3) + 3r + 3) + q · 2(6r + 3), where p and q

are non-negative integers. Define

C5 = Kr−2(r) ∪
p−1⋃

j=0

C(4r + 3 + j((r − 3)(6r + 3) + 3r + 3))

∪
q⋃

j=0

K1(4r + 3 + p((r − 3)(6r + 3) + 3r + 3) + 2j(6r + 3))

∪
q−1⋃

j=0

L2(4r + 3 + p((r − 3)(6r + 3) + 3r + 3) + (2j + 1)(6r + 3))

∪M2(4r + 3 + p((r − 3)(6r + 3) + 3r + 3) + (2q + 1)(6r + 3)).

Again, using Lemmas 2.2 and 4.2, it can be shown that C5 is an r-locating-
dominating code in Cm with dm/3e codewords. Thus, if n is an integer such
that n ≥ 12r + 5 + 6r((r − 3)(2r + 1) + r − 1) and n ≡ 5 (mod 6), then by the
previous construction MLD

r (Cn) ≤ dn/3e.
Combining the previous results with the lower bound of Theorem 2.3, we

immediately obtain the following theorem.

Theorem 4.3. Let r ≥ 5 and n ≥ 12r + 5 + 6r((r − 3)(2r + 1) + r − 1).
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(i) If n 6≡ 3 (mod 6), then MLD
r (Cn) = dn/3e.

(ii) If n ≡ 3 (mod 6), then n/3 ≤ MLD
r (Cn) ≤ n/3 + 1.

In the latter case of the previous theorem, we conjecture that actually
MLD

r (Cn) = n/3 + 1 (see Conjecture 5.4).

5 On r-locating-dominating codes in cycles with
2 ≤ r ≤ 4

In this section, we consider r-locating-dominating codes in Cn when 2 ≤ r ≤ 4.
The exact values of MLD

2 (Cn) are determined in [4]. In particular, it is shown
that for n > 6 if n ≡ 3 (mod 6), then MLD

2 (Cn) = n/3 + 1, else MLD
2 (Cn) =

dn/3e. In the following theorem, we provide an alternative (and shorter) proof
for the lower bound in the case n ≡ 3 (mod 6).

Theorem 5.1 ([4]). Let n ≡ 3 (mod 6). Then we have

MLD
2 (Cn) ≥ n/3 + 1.

Proof. Let C be a 2-locating-dominating code in Cn with n/3 vertices. Now,
by Lemma 2.5, each C-block is of length one. By Lemma 2.6, the number of
C-blocks is even. Hence, by combining these two observations, the number of
codewords of C is even. This contradicts with the fact that |C| = n/3 (an odd
integer since n ≡ 3 (mod 6)). Thus, we have MLD

2 (Cn) ≥ n/3 + 1.

With our new approach, a lower bound similar to the previous theorem can
also be proved when r = 3 and r = 4. The following theorem shows the result
for 3-locating-dominating codes.

Theorem 5.2. Let n ≡ 3 (mod 6). Then we have

MLD
3 (Cn) ≥ n/3 + 1.

Proof. Let C be a 3-locating-dominating code in Cn with n/3 vertices. Notice
that each C-block of codewords is now at most of length 2 (by Lemma 2.6). In
what follows, we show that the number of C-blocks of length two is even.

Recall that according to Lemma 2.4 each pair of C-consecutive vertices is
3-separated by exactly one codeword of C. Assume then that {vi, vi+1} is a C-
block of length two. By the previous observation, the set Br(vi−1)4Br(vi+2)
contains exactly one codeword of C. Without loss of generality, we may assume
that vi−4, vi−3 and vi−2 do not belong to C. Then either vi+3 or vi+5 belongs to
C. (Notice that if vi+4 ∈ C, then the pair (vi+3, vi+5) of C-consecutive vertices
is 3-separated by at least two codewords.)

Assume first that vi+5 ∈ C. If now vi+6 /∈ C, then the pair (vi+2, vi+3)
of C-consecutive vertices is not r-separated by any codeword of C. Hence,
vi+6 ∈ C and further vi+7 /∈ C. Therefore, {vi+5, vi+6} is also a C-block of
length two. Since the neighbourhoods of the C-blocks {vi, vi+1} and {vi+5, vi+6}
are symmetrical to each other, these C-blocks of length two can be paired with
each other.

Assume then that vi+3 ∈ C. Considering the pairs (vi+2, vi+4), (vi+4, vi+5)
and (vi+6, vi+7), we obtain that vi+6, vi+7, vi+8 and vi+10 do not belong to
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C. The pairs (vi+5, vi+6) and (vi+7, vi+8) of C-consecutive vertices imply that
vi+9 and vi+11 belong to C. By the fact that now (vi+8, vi+10) is a pair of
C-consecutive vertices, we know that either vi+12 or vi+13 is a codeword of C.
If vi+12 ∈ C, then {vi+11, vi+12} is a C-block and the neighbourhoods of the
C-blocks {vi, vi+1} and {vi+11, vi+12} are symmetrical to each other. There-
fore, these C-blocks of length two can be paired with each other. Assume then
that vi+13 ∈ C. Consider then the symmetric difference Br(vi+10)4Br(vi+12),
where (vi+10, vi+12) is a pair of C-consecutive vertices. Now either vi+14 or
vi+15 belongs to C. If vi+14 ∈ C, then the pair (vi+12, vi+15) of C-consecutive
vertices is 3-separated by at least two codewords (a contradiction). There-
fore, vi+15 belongs to C. Using similar arguments as above, we obtain that
vi+16, vi+17, vi+18, vi+19, vi+20, vi+22 /∈ C and vi+21, vi+23 ∈ C. The situation
is now analogous to the one in which we considered the pair (vi+8, vi+10) of
C-consecutive vertices instead that here we have the pair (vi+20, vi+22).

The previous reasonings can now be repeated. However, since we are oper-
ating in a cycle, at some point the repetition has to end. Therefore, for some
non-negative integer k we have that {vi, vi+1} and {vi+11+12k, vi+12+12k} are
C-blocks with symmetrical neighbourhoods. Clearly, the sets {vi, vi+1} and
{vi+11+12k, vi+12+12k} do not coincide. Thus, these C-blocks of length two can
be paired with each other. In conclusion, each C-block of length two can be
uniquely paired to another C-block of length two. Therefore, the number of
C-blocks of length two is even.

By Lemma 2.6, the number of C-blocks is even. Hence, by the previous
considerations, the number of C-blocks of length one is also even. Thus, the
number of codewords of C is even. This contradicts with the fact that |C| = n/3
is odd. Therefore, we have MLD

3 (Cn) ≥ n/3 + 1.

In the following theorem, a lower bound similar to the one in Theorems 5.1
and 5.2 is presented for 4-locating-dominating codes in cycles.

Theorem 5.3. Let n ≡ 3 (mod 6). Then we have

MLD
4 (Cn) ≥ n/3 + 1.

Proof. Let C be a 4-locating-dominating code in Cn with n/3 vertices. As
earlier, we start by showing that the number of C-blocks of length two is even.

Let {vi, vi+1} be a C-block of length two. Without loss of generality, we can
again assume that vi−5, vi−4 and vi−3 do not belong to C. As in the previous
proof, we can also conclude that vi+5 does not belong to C. Moreover, since
vi−1 and vi+2 are 4-separated by C, either vi+4 ∈ C or vi+6 ∈ C by Lemma 2.4.

In what follows, we are going to classify C-blocks of length two into different
types depending on their neighbourhood. If {vi+6, vi+7, vi+8} is a C-block of
length three, then we say that C-block {vi, vi+1} is of type A1. If {vi+6, vi+7} is
a C-block of length two, then a contradiction follows since the pair (vi+3, vi+4)
of C-consecutive vertices is not 4-separated by a codeword. Assume that {vi+6}
is a C-block of length one. Then vi+4 does not belong to C. If vi+3 /∈ C, then
the C-block {vi, vi+1} is said to be of type A2. Assume further that vi+3 ∈ C.
If now vi−2 /∈ C, then we say that {vi, vi+1} is of type A3, else it is of type A4.

If {vi+3, vi+4} is a C-block of length two, then (vi+6 /∈ C and) {vi, vi+1} is
of type A5. Assume now that {vi+4} is a C-block of length one. Then vi+6 does

12



not belong to C. If vi−2 ∈ C, then the C-block {vi, vi+1} is of type A6, else it
is of type A7.

For each of the previous types Ai we also have a symmetrical pair A′i which is
considered as a reflection of the neighbourhood of type Ai (between the vertices
vi and vi+1. For example, if vi−4, vi+4, vi+5, vi+6 /∈ C and {vi−7, vi−6, vi−5} is a
C-block of length three, then we say that C-block {vi, vi+1} is of type A′1. By
the previous considerations, it is straightforward to verify that each C-block of
length two is one of the types Ai or A′i.

Assume that the C-block {vi, vi+1} is of type A′1. Then vi−2, vi−1, vi+2,
vi+3, vi+4, vi+5 and vi+6 do not belong to C. Considering the pairs (vi+2, vi+3),
(vi+3, vi+4), (vi+4, vi+5) and (vi+5, vi+6) of C-consecutive vertices, we have that
vi+7, vi+8 ∈ C and vi+9, vi+10 /∈ C. The pair (vi+9, vi+10) of C-consecutive
vertices imply that vi+14 ∈ C. Therefore, considering the pair (vi+6, vi+9) of
C-consecutive vertices, we obtain that the C-block {vi+7, vi+8} of length two
is either of type A1 or A7. The proof of the following symmetrical result is
analogous: if the C-block {vi, vi+1} is of type A1, then the C-block {vi−7, vi−6}
of length two is either of type A′1 or A′7.

Assume that the C-block {vi, vi+1} is of type A2. Then the vertices vi+2,
vi+3, vi+4 and vi+5 do not belong to C. Considering the pairs (vi+2, vi+3),
(vi+3, vi+4) and (vi+4, vi+5) of C-consecutive vertices, we obtain that vi+7, vi+9 /∈
C and vi+8 ∈ C. Since vi+1 ∈ B4(vi+5)4B4(vi+7), then vi+10, vi+11 /∈ C. Con-
sidering the pair (vi+7, vi+9) of C-consecutive vertices, we know that either vi+12

or vi+13 belong to C. If vi+13 ∈ C, then it is straightforward to conclude (using
similar arguments as before) that {vi+13, vi+14} is a C-block of type A′2. Other-
wise, it can be seen that vi+12, vi+14 ∈ C and vi+13, vi+15, vi+16, vi+17 /∈ C. The
situation is now analogous to the one in which we considered the pair (vi+7, vi+9)
of C-consecutive vertices instead that here we have the pair (vi+13, vi+15). The
previous reasonings can be repeated. However, since we are operating in a cycle,
at some point the repetition has to end. Therefore, for some non-negative inte-
ger k we have that {vi, vi+1} and {vi+13+6k, vi+14+6k} are C-blocks of type A2

and A′2, respectively. The following symmetrical result also holds: if {vi, vi+1}
is a C-block of type A′2, then for some non-negative integer k we have that
{vi−13−6k, vi−12−6k} is a C-block of type A2.

In the following, we list the results of the previous two paragraphs and other
analogous ones, which can be obtained using similar arguments:

• If {vi, vi+1} is a C-block of type A′1, then {vi+7, vi+8} is a C-block either
of type A1 or A7.

• If {vi, vi+1} is a C-block of type A2, then for some non-negative integer k
we have that {vi+13+6k, vi+14+6k} is a C-block of type A′2.

• If {vi, vi+1} is a C-block of type A′3, then either {vi+11, vi+12} is a C-block
of type A′6 or {vi+13, vi+14} is a C-block of type A′4.

• If {vi, vi+1} is a C-block of type A4, then {vi+13, vi+14} is a C-block either
of type A3 or A5.

• If {vi, vi+1} is a C-block of type A′5, then either {vi+11, vi+12} is a C-block
of type A′6 or {vi+13, vi+14} is a C-block of type A′4.

• If {vi, vi+1} is a C-block of type A6, then {vi+11, vi+12} is a C-block either
of type A3 or A5.
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• If {vi, vi+1} is a C-block of type A′7, then {vi+7, vi+8} is a C-block either
of type A1 or A7.

The obvious symmetrical results also hold. For example, if {vi, vi+1} is a C-
block of type A′4, then {vi−13, vi−12} is a C-block either of type A′3 or A′5.

The results listed above provide an approach to pair C-blocks of length two.
The C-block {vi, vi+1} depending on its type is paired with the C-block of length
two suggested by the previous results. For example, the C-block {vi, vi+1} of
type A′3 is paired with {vi+11, vi+12} or {vi+13, vi+14} depending on which one
of these sets is a C-block. Using the results listed above, it is straightforward to
verify that this way each C-block of length two is uniquely paired with another
such one. Therefore, the number of C-blocks of length two is even.

By Lemma 2.6, the number of C-blocks is even. Hence, since the number of
C-blocks of length two is even, the number of C-blocks that are of length one or
three is also even. Thus, the number of codewords of C is even. This contradicts
with the fact that |C| = n/3. Therefore, we have MLD

4 (Cn) ≥ n/3 + 1.

Theorems 3.5, 5.1, 5.2 and 5.3 suggest the following conjecture.

Conjecture 5.4. Let n be a positive integer such that n ≡ 3 (mod 6). Then
for any r we have

MLD
r (Cn) ≥ n/3 + 1.

In what follows, we concentrate on constructing optimal r-locating-dominating
codes in Cn when 3 ≤ r ≤ 4. In order to do this, we first need to present some
preliminary definitions and results.

Define an infinite path P∞ = (V∞, E∞), where V∞ = {vi | i ∈ Z} and
E∞ = {vivi+1 | i ∈ Z}. Define then

C = {vi ∈ V∞ | i ≡ 0, 2 mod 6}.

In [8], it is stated that if r is an integer such that r ≥ 2 and r ≡ 1, 2, 3 or
4 (mod 6), then C is an r-locating-dominating code in P∞. This result is
rephrased in the case of cycles in the following lemma when r = 3 or r = 4.

Lemma 5.5. Let n and k be integers such that

D = {vk, vk+2, vk+6, vk+8, vk+12, vk+14} ⊆ Vn.

If a pair (vi, vj) of D-consecutive vertices in Cn is such that k + 5 ≤ i ≤ k + 13
and k+5 ≤ j ≤ k+13, then vi and vj are 3- and 4-separated by D. Moreover, for
each vertex vi ∈ Vn \D such that k + 6 ≤ i ≤ k + 11 we have ∅ ( I3(D; vi) ( D
and ∅ ( I4(D; vi) ( D.

Consider then 3-locating-dominating codes in Cn. The exact values of MLD
3 (Cn)

when 3 ≤ n ≤ 8 are determined in Theorems 3.1 and 3.2. Let p be a non-negative
integer. Define then

D(p) =
p⋃

i=0

{v6i, v6i+2}.

It is straightforward to verify that D(1) and D(2) are 3-locating-dominating
codes in C9, C10, C11, C12 and C15, C16, C17, C18, respectively. Therefore, by
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combining Lemmas 2.2 and 5.5, it can be concluded that D(p) is a 3-locating-
dominating code in C6p+3, C6p+4, C6p+5 and C6p+6 with 2(p + 1) codewords
when p ≥ 1. Similarly, it can be shown that D(p) ∪ {v6p+5} is a 3-locating-
dominating code in C6p+8 with 2p + 3 codewords when p ≥ 1. Furthermore,
D(p) ∪ {v6p+5, v6p+8, v6p+10} is a 3-locating-dominating code in C6p+13 with
2p + 5 codewords when p ≥ 0. In conclusion, the constructions given above
attain the lower bounds of Theorems 2.3 and 5.2. Thus, the exact values of
MLD

3 (Cn) are determined for all positive integers n.

Consider now 4-locating-dominating codes in Cn. By Theorems 3.1 and 3.2,
the exact values of MLD

4 (Cn) are known when 3 ≤ n ≤ 10. By Lemma 5.5,
D1(p) is a 4-locating-dominating code in C6p+6 when p ≥ 2. Using analogous
arguments as above in the case r = 3, the following results can be shown:

• The code D(p) ∪ {v6p+5, v6p+7, v6p+8} is 4-locating-dominating in C6p+13

with 2p + 5 codewords when p ≥ 0.

• The code D(p) ∪ {v6p+7} is 4-locating-dominating in C6p+8 with 2p + 3
codewords when p ≥ 1.

• The code D(p) ∪ {v6p+4, v6p+7, v6p+9, v6p+10} is 4-locating-dominating in
C6p+15 with 2p + 6 codewords when p ≥ 0.

• The code D(p) ∪ {v6p+4, v6p+6} is 4-locating-dominating in C6p+10 with
2p + 4 codewords when p ≥ 1.

• The code D(p)∪{v6p+7, v6p+8, v6p+10, v6p+15, v6p+18, v6p+21} is 4-locating-
dominating in C6p+23 with 2p + 8 codewords when p ≥ 0.

In conclusion, by Theorems 2.3 and 5.3, the exact values of MLD
4 (Cn) are de-

termined for all n except 11, 12 or 17. The missing values can be easily de-
termined since it is straightforward to verify that {v0, v1, v3, v4}, {v0, v2, v4, v6}
and {v0, v1, v4, v7, v10, v11} are 4-locating-dominating codes in C11, C12 and C17,
respectively, attaining the lower bound of Theorem 2.3.

The following theorem summarizes the previous considerations on 3- and
4-locating-dominating codes.

Theorem 5.6. Let n ≥ 3 and 3 ≤ r ≤ 4. Then we have the following results:

(i) MLD
r (Cn) = n− 1 if 3 ≤ n ≤ 2r + 1.

(ii) MLD
r (C2r+2) = r + 1.

(iii) MLD
r (Cn) = n/3 + 1 if n > 2r + 2 and n ≡ 3 (mod 6).

(iv) MLD
r (Cn) = dn/3e if n > 2r + 2 and n 6≡ 3 (mod 6).

In finding the optimal families of r-locating-dominating codes in the cases
r = 3 and r = 4, some computer searches were applied to obtain the initial
codes. In what follows, we present a couple of approaches that were used to
increase the efficiency of the search algorithms.

Consider each vertex of Cn in order. There are two possibilities: either the
vertex is in the code, or it is not in the code. So there are 2n cases to consider.
We can reduce the number of cases we have to consider in two ways. First, we
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note that after we have decided whether or not vertex vi is in the code, we can
check vertices vr through vi−r to make sure they have distinct identifying sets.
(Note that for paths, we could check vertices v0 through vi−r.) The second
method for limiting the search uses a running count on the number of vertices
in the code. By symmetry, we can assume that the number of codewords in the
first half of the cycle is at most the number of codewords in the second half of
the cycle. We also know that among any consecutive set of vertices vi to vj

that contains (exactly) k codewords, the number of codewords must be at least
log2(j− i +1− 2r− k). These two categories of checks were sufficient to reduce
the running time of the algorithm to a manageable level.

6 Conclusions

Previously, the exact values of MLD
1 (Cn) and MLD

2 (Cn) have been determined
in [16] and [4], respectively. In Section 5, we solved the exact values of MLD

3 (Cn)
and MLD

4 (Cn) for any n. In Section 3, we determined the exact values of
MLD

r (Cn) when 3 ≤ n ≤ 2r + 2. Furthermore, in Section 4, it is shown that
when n is large enough we have n/3 ≤ MLD

r (Cn) ≤ n/3 + 1 if n ≡ 3 (mod 6)
and MLD

r (Cn) = dn/3e otherwise. Moreover, we have Conjecture 5.4 stating
that MLD

r (Cn) ≥ n/3 + 1 when n ≡ 3 (mod 6).
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