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Abstract 

Background:  In the context of monitoring dogs, usually, accelerometers have been 
used to measure the dog’s movement activity. Here, we study another application of 
the accelerometers (and gyroscopes)—seismocardiography (SCG) and gyrocardiogra‑
phy (GCG)—to monitor the dog’s heart. Together, 3-axis SCG and 3-axis GCG constitute 
of 6-axis mechanocardiography (MCG), which is inbuilt to most modern smartphones. 
Thus, the objective of this study is to assess the feasibility of using a smartphone-only 
solution to studying dog’s heart.

Methods:  A clinical trial (CT) was conducted at the University Small Animal Hospital, 
University of Helsinki, Finland. 14 dogs (3 breeds) including 18 measurements (about 
one half of all) where the dog’s status was such that it was still and not panting were 
further selected for the heart rate (HR) analysis (each signal with a duration of 1 min). 
The measurement device in the CT was a custom Holter monitor including synchro‑
nized 6-axis MCG and ECG. In addition, 16 dogs (9 breeds, one mixed-breed) were 
measured at home settings by the dog owners themselves using Sony Xperia Android 
smartphone sensor to further validate the applicability of the method.

Results:  The developed algorithm was able to select 10 good-quality signals from the 
18 CT measurements, and for 7 of these, the automated algorithm was able to detect 
HR with deviation below or equal to 5 bpm (compared to ECG). Further visual analysis 
verified that, for approximately half of the dogs, the signal quality at home environ‑
ment was sufficient for HR extraction at least in some signal locations, while the motion 
artifacts due to dog’s movements are the main challenges of the method.

Conclusion:  With improved data analysis techniques for managing noisy measure‑
ments, the proposed approach could be useful in home use. The advantage of the 
method is that it can operate as a stand-alone application without requiring any extra 
equipment (such as smart collar or ECG patch).
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Background
Pets (and dogs along) are part of the everyday life of millions of people worldwide. The 
purpose of this work is to study new ways to explore the health of dog’s heart, since it 
could be expected that dog owners especially would be tend to know the condition of 
their dogs [1–3]. Currently, the possibilities to access this information are very limited in 
out of clinic setting. Thus, measuring the well-being of the dog (e.g., for preventive pur-
poses after exercise) could have a huge commercial market among the pet owners [4]. As 
with humans, also dogs may have different heart abnormalities and diseases which typi-
cal forms usually depend on the breed of the dog [5–8]. In the clinical settings at veteri-
nary clinic, the cardiac measurements of the pet’s heart can be performed with standard 
ECG or with other modalities [4]. However, as for humans, sometimes, the pet owner 
may be unaware of the pet’s disease (or condition) and, therefore, does not acquire med-
ical help from veterinary clinic even if it would be needed. Also the veterinary clinic 
might want to extend the monitoring of the pet to home settings for a longer time period 
after, e.g., a surgical operation.

As an extension to our previous work in using smartphones for detecting heart condi-
tions in humans [9–11], in this work, we propose using accelerometers (and gyroscopes) 
to the monitoring of the dog’s heart rhythm. This is performed in both in clinical and 
home settings. A sensing device could be a smartphone or some other device attached 
to the dog’s collar or vest (also multiple sensors could potentially be used simultane-
ously)  [12, 13]. 3-axis accelerometers (and 3-axis gyroscopes), i.e., 6-axis MCG, could 
be a feasible alternative as a sensing modality for pet monitoring, due to its non-inva-
sive nature and potential tolerance to factors such as (slight) fur between the sensor and 
the dog’s skin (unlike ECG) and a low-power consumption in a longer follow-up sens-
ing [12, 13]. To the best our knowledge, there has been very few prior works in studying 
the application of SCG or MCG to the animal health, except the recent work utilizing 
SCG for mice (anesthesia was used in that trial for the animals) [14].

The monitoring of dog’s heart at home settings can be performed, e.g., with porta-
ble ECG equipment  [15–18]. For this purpose, one alternative is the AliveCor’s ECG, 
registered for animal studies. The AliveCor’s ECG, for instance, contacts the dog’s skin 
directly with two metal electrodes integrated into a small external package with usu-
ally no requirement of fur removal, which, in turn, communicates with a smartphone 
through an ultrasonic acoustic interface [19]. The usage of the accelerometers have been 
proposed for monitoring of dog’s activity (e.g., during some longer time period) [20, 21]. 
For instance, a smart dog collar can be used for making a summary of pet’s movements 
during a longer time period providing a summary of the different activities for the pet 
owner’s computer [12, 13].

Seismocardiography (SCG) is a well-known modality of measuring the heart’s motion 
using accelerometers attached on the chest [22–24]. It can be used to supplement ECG 
in  situations where also the true mechanical motion of the heart is to be monitored, 
for instance in the form of deriving time-intervals or electromechanical delays. At the 
moment, the electromechanical delays are not extensively used in clinical practice, but 
this can change when better data are available. Ballistocardiography (BCG) measures 
the overall changes induced by the heart movements to the body, for example, using a 
smart weighting scale [25]. Gyrocardiography (GCG) is another, more recently proposed 
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modality measuring the angular rate of the micromovements induced by heart to the 
chest using gyroscopes. It measures the rotational aspect of heart movement, which is 
in major role when the heart pumps blood to the circulatory system [9]. Recently, it was 
also shown that, using multiple sensors (SCG, GCG, and joint ECG) attached to the skin 
and a machine learning algorithm, it was possible to extract the cardiac parameters of a 
human even when running in a treadmill [26].

Methods
Animal study protocol and measurement set‑up

For the clinical study, a permission was obtained from Research Ethics Committee of 
University of Helsinki’s Viikki Campus (statement no. 8/2016) and they were performed 
at the University Small Animal Hospital, University of Helsinki, Finland. In addition to 
the clinical trial, we performed additional data gathering from voluntary dog owners 
mainly among the staff of Department of Future Technologies, University of Turku, Fin-
land. Each dog owner filled an informed consent regarding the participation to the study 
including the necessary instructions.

Clinical trial (CT‑A)

Devices: For the clinical trial (CT-A), both ECG and IMU signal were gathered with the 
miniature sensor system reported in [9, 27]. The sensor system (“Holter”) (see Fig. 1) is 
built on an ARM Cortex M0-based microcontroller with Bluetooth capability to ena-
ble wireless control of the device. This feature can be also exploited in use cases, where 
IMU is located in a mobile phone, while the ECG acquisition is performed by the Holter 
device. In such cases, the mobile phone sets the real-time clock of the Holter device, 
enabling alignment of the data samples in the post-processing phase. However, in this 
work, we used the stand-alone version of the device. For stand-alone usage, as the Holter 
device integrates both IMU and ECG front end, an accurate time-domain synchroni-
zation between the accelerometer, gyroscope, and ECG samples without any additional 
effort can be achieved. The raw data samples are written to a memory card in propri-
etary frames, each containing a time stamp with 1 ms resolution. Together with a large 
memory capacity, the low-power design approach for the sensor enables measurement 
periods of even several days in length [27].

Fig. 1  The available measurement devices of the study. The devices used in the measurements: (1) our 
custom Holter monitor (on the left, used in CT-A), (2) AliveCor’s phone ECG and patch (in the middle, used 
in HM-C), and (3) a 3D printed mounting for Android device (used in HM-B, not the cover, on the right) for 
improved contact and to avoid the sliding of the phone
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Methods: The Holter sensor (stand-alone version) was wrapped/hold on the left lower 
lateral side, over the heart region, while dog was standing or lying on the right side. 
Simultaneous 1-lead ECG and 6 degree-of-freedom IMU (3-axis SCG and 3-axis GCG, 
i.e., 6-axis MCG) signal of length of at least 1 min was captured. Dogs: In total, initially, 
32 dogs from three breeds were measured (4 Whippet, 19 Doberman, and 9 Newfound-
land dogs). After initial inspection of the signals, only the measurements which status 
was that the dog was not nervous or panting (the status recorded while acquiring the 
measurements) were selected for further processing. Purpose: To find out can SCG/
GCG be used to measure dog’s heart with respect to an ECG reference.

Home measurements (HM‑B)

Devices: The device was based on Sony Xperia series smartphone using Google Android 
OS as in  [10, 11] (without ECG as reference). Methods: The dog owners themselves 
made the measurements. A data collection App was started and a button was pressed 
on the smartphone screen to start and end the measurement. The device was held on 
either lateral side or on the ridge of the, while the dog was in rest in a side, prone, or 
in a standing position (as shown in Fig. 2). Dogs: 16 dogs with total of 9 breeds (and 1 
mixed-breed). Purpose: To test whether better signal quality could be obtained in home 
environment than at the veterinary clinic.

Home measurements (HM‑C)

Devices: The second set-up for smartphone data collection was based on AliveCor’s 
Kardia while using the built-in IMU sensor of the iPhone running the AliveCor ECG 
simultaneously (i.e., capturing both ECG and MCG signal). Methods: The dog owners 
themselves made the measurements. The phone was held on the dog as in HM-B while 
simultaneously pressing the AliveCor patch usually to the paws of the dog. Dogs: Using 
this set-up, we obtained signals from only 3 dogs (Miniature Schnauzer, Maltese, and 

Fig. 2  Implementing smartphone-only measurement. The placement of the smartphone in home 
measurements (HM-B) was usually on the ridge (while the dog was standing or in prone position) or on 
either lateral side of the dog, while the dog was resting on the other side. The users of the data collection 
application were advised to avoid grasping the phone hard. During the clinical measurements (CT-A), the 
Holter device was wrapped/hold on the left lower lateral side, over the heart region, while dog was standing 
or lying on the right side
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Wheaten Terrier), while, for two of these dogs, the simultaneous measurement did not 
succeed. Purpose: To test whether the smartphone IMU signal (and its important loca-
tions) collected from a dog can at least in some cases be directly mapped to smartphone 
ECG signal.

In practice, it was rather difficult in some cases to maintain short enough distance 
between the ECG patch and the smartphone to enable simultaneous ultrasonic com-
munication and contact to dog’s skin while placing the smartphone simultaneously on 
the lateral side, on the ridge or on the abdomen of the dog and targeting that the dog 
was not moving. The sampling rate of the IMU sensor in the Android smartphone was 
200 Hz and for the iPhone 100 Hz.

Data analysis pipeline

The signal processing pipeline of CT-A starts by filtering each axis of the Holter signal 
(we used a fourth-order Butterworth band-pass filter). For smartphone-only case (trials 
HM-B and HM-C), the evaluations based on the signals (i.e., signal quality—how well 
the main SCG/GCG locations can be observed) were mostly made visually by a human 
expert. Different filters were tested and the best performing signal band in this case was 
35–75 Hz. Although it is probable that most of the signal energy lies in lower frequency 
bands, the overall shape of the signal including more versatile set of dominant peak loca-
tions for peak detection was provided by the selected frequency band. The ECG signals 
and the IMU signals were resampled and aligned in time-domain to the same sampling 
frequency (of 200 Hz). Roughly 1 min length selection from each signal was finally cho-
sen to the analysis (including 6-IMU axes and 1-lead ECG).

Automated axis and measurement selection

The data analysis for CT-A starts with selecting the best IMU axis for further analysis 
(see Fig. 3). The selection of the best axis was accomplished axis-wise by the following 
procedure. First, a noise estimate (NSE) of the signal was obtained by high-pass filter-
ing (above 50 Hz) the original signal with a 3th order Butterworth filter and calculat-
ing a squared mean absolute deviation (MAD) of the resulting signal’s amplitude. An 
estimate of the signal’s peak’s magnitudes was also calculated by first band-pass filtering 
(sixth-order Butterworth filter) the original signal in the frequency band of 35–75 Hz 
and extracting the peaks and the valleys from the signal with minimum peak distance of 
1 s (the minimum spacing between successive detected peaks). The overall amplitudes of 
the resulting extreme points was then calculated through taking a median of the abso-
lute values of the peak amplitudes, subtracted by the amplitudes of the valleys (PEAKS). 
Finally, as a signal quality estimating measure (SNR), the peak distance was divided by 
the noise estimate (SNR = PEAKS/NSE). The right side of Fig. 3 describes the SNR cal-
culation [28]. The proposed method was considered sufficient for our application for the 
purpose of demonstrating that the axis selection and the selection of good-quality meas-
urements could be beneficial.

We selected only the measurements which best axis’s SNR estimate was larger than 
a pre-determined threshold for the final heart rate (HR) estimation. As roughly half of 
the measurements were seen to be of sufficient quality, the threshold was in this case 
approximated accordingly. Of the total number of 18 signals selected to the evaluation, 
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we this way (semi-automatically) identified 10 good-quality signals. However, by visual 
inspection by checking the correspondence of the dominant peaks, R-peaks in ECG, and 
AO peaks in SCG, even a better overall accuracy could have been obtained.

Heart rate estimation methods

We use three different methods for estimating the RR interval (or in fact AO–AO 
interval) to obtain the Dog’s HR from the IMU signals alone while using the miniature 
Holter device. It is first noted that the best axis on the basis of the SNR estimate is only 
selected for further processing in two of the three algorithms except one which uses all 
axes simultaneously. (M1) The first RR-interval estimation algorithm is very simple and 
it only locates the peaks with Matlab’s (R2017a) findpeaks function with minimum peak 
distance parameter set to 0.45 s (with maximum detectable HR slightly above 130 bpm). 
(M2) The second method is the same as reported in  [29] for human atrial fibrillation 
(AFib) detection and it uses short autocorrelations to estimate HR for the selected 
best axis based on the SNR estimate (see the details in [29]). (M3) The third method 
is a multi-axis extension of the single-axis autocorrelation method presented in [30]. It 
can be estimated that the detected HR range in the case of autocorrelation algorithm is 
between 48 and 160 bpm which was seen sufficient for our application [29].

Measurement data selection

With regard to the clinical measurements (CT-A), 14 dogs and 18 measurements were 
selected to be used, while some of the measurements were repeated both in right lateral 
and standing positions. The measurements where the dog was not still or where the dog 
was panting were discarded in this analysis. As the dogs tended to be were quite nervous 

Fig. 3  Axis and measurement selection method. A flowchart of the measurement and axis selection method 
considering trial CT-A and an example of SNR calculation (on the right)
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at the veterinary clinic, such a large portion (about one half ) of the measurements 
were omitted. The dog’s breeds selected for HR estimation were as follows: Doberman 
(12), Newfoundland dog (1), and Whippet (1). The mean weight of the Dobermans was 
32.8 kg with a standard deviation of 3.3 kg. The weight of the Newfoundland dog was 
61 kg and the Whippets 17 kg. Eight of the measurements were performed in a right lat-
eral position and ten in a standing position.

In the home settings (HM-B), we obtained measurements from 16 dogs with Android-
based smartphone-only solution. The placement of the smartphone in the home meas-
urements was usually on the ridge (while the dog was standing or in prone position) or 
on either lateral side of the dog, while the dog was resting on the other side (see Fig. 2). 
In this case, we applied a Butterworth band-pass filter with passband 1–45 Hz prior to 
the analysis to facilitate visual interpretation of the signals. The smallest dog among the 
home measurements was 7 kg Maltese and the largest dog was 35 kg Golden Retriever.

Results
The results of the clinical trial (CT‑A)

The clinical trial results with different HR estimation algorithms (as described in the 
previous section) with ECG as a reference are reported in Table 1. A total of ten meas-
urements from the 18 were selected to fulfill the quality criteria (the best axis’s SNR 
above a threshold, as described in the previous section). Each measurement used con-
sisted of approximately 1  min measurement with joint ECG and IMU, while the total 
number of automatically detected beats (R-peaks) in ECG was 1685 (including all 18 
measurements) of which only 18 (1.1%) were not detected correctly (confirmed by vis-
ual inspection). Thus, using an HR estimate obtained automatically from the ECG’s R 
peaks (as the median of all the individual time-differences between the beats) is accu-
rate. In 7 of the 10 measurements of the best method (M2) in Table 1, the error (in bpm) 
is below or equal to 5, while, in one measurement (the last one), it is significantly larger. 
In Table  1 legend, also the breeds of the dogs in 10 measurements (corresponding to 
9 dogs, one dog measured twice in two different positions) are described. The largest 
error was obtained for the Newfoundland dog. This is probably due to an inefficiency 
in the best axis (and best measurements) selection algorithm in selecting a good-quality 
measurement.

Table 1  The estimated HR results of the different methods (M1–3) and ECG ground truth 
HR regarding the clinical trial

It can be observed that method M2 gives the lowest mean deviation from ECG. Measurements 1–2 and 4–9 are from 
Dobermans, while 1–2 are in a right lateral and 4–9 in a standing position. The measurements 1 and 5 are from the same 
dog. Measurements 3 and 10 are from Whippet and Newfoundland dog, respectively (both in a standing position)

(CT-A) selected measurement #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Peak detection (HR) (bpm) (M1) 94 86 110 77 89 96 112 95 88 94

Deviation from ECG (in bpm) 28 0 47 3 20 2 5 8 4 44

Single-axis autocorrelation HR (bpm) (M2) 67 79 64 80 69 93 110 86 82 115

Deviation from ECG (in bpm) 1 7 1 0 0 5 7 1 2 23

6-axis autocorrelation HR (in bpm) (M3) 68 69 64 71 68 60 83 85 78 81

Deviation from ECG (in bpm) 2 17 1 9 1 38 34 2 6 57

ECG ground truth HR (bpm) 66 86 63 80 69 98 117 87 84 138
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Smartphone‑only home measurements (HM‑B)

The quality of the home recordings was fairly good, as the dog owners were advised to 
obtain the measurements when the dog was relaxed and still. Still, some dog owners 
reported that the dog was initially not well accustomed with the measurement, and also 
some measurements were interrupted by dog changing position. In these cases, the length 
of the acquired signal may be shorter. However, it is probable that eventually (for most 
dogs) the smartphone measurement will more likely succeed after some attempts as the 
dog gets comfortable with the procedure. Figure 4 shows the IMU signals taken in these 
settings utilizing the Android device. The purpose was to extract visually best-quality 10 s 
duration segment from each dog. Each of the measurement plots in Fig. 4 correspond to the 
dog’s information in Table 2, where the breed, the weight, the age,and the overall number of 
measurements (which were in the end stored to the Android smartphone by the dog own-
ers), can be seen. This number includes all the registered measurements by the dog owners, 
including potential unsuccessful measurements (e.g., because of aborting the recording due 
to dropping the phone). The estimated quality of each signal segment (with respect to how 
well the main signal peaks or HR can be identified) in Fig. 4 annotated by a human expert 
is also given in Table 2. For poor-quality signals, HR estimation would not probably work at 
all. In general, it can be observed that the heart beats are in about half of the cases clearly 
observable. While not all the dogs showed good signal quality, we estimate that, in about 
half or even most of the cases, HR could be extracted from the measurements (at least for 
some locations). Developing signal processing means to detect these locations automati-
cally is, however, left for future work. This evaluation is based on visual characteristics of 
the signals, since, in this setting, we did not have an ECG reference available.

Joint Alivecor’s ECG and smartphone‑only measurement (HM‑C)

As an another example with Alivecor’s ECG reference, a synchronized iPhone IMU signal 
and ECG taken in home setting is shown in Fig. 5. The ECG was digitized from the pdf 
output of the Alivecor’s ECG patch by a MATLAB script that we built. The smartphone’s 
ECG signal and iPhone IMU signal were further converted to the same sampling rate and 
subsequently aligned semi-automatically (i.e., shifted manually in time to the correct loca-
tion). The signals (IMU and ECG) were acquired, so that the Alivecor’s patch was held in 
the paws of the dog and the phone simultaneously on the dog. While this experimental set-
ting turned out too difficult for many dogs to obtain a good-quality recording (a few dogs 
tested), the acquired synchronized and time-aligned signal is a good example in that smart-
phone IMU can indeed be used to obtain both (a) the correct heart rhythm (verified against 
ECG) and (b) the individual R-peaks which correspond to the true AO peaks of the IMU. 
However, we were able to synchronize only one iPhone IMU + ECG signal in this setting, 
which was of sufficient quality for the final analysis. The collection of the IMU signal is 
much easier if simultaneous data acquisition with the Alivecor’s ECG patch is not required.

Discussion
The purpose of this paper was to provide a feasibility evaluation of using an IMU-based 
smartphone-only solution to the measurement of dog’s health and well-being. As envi-
sioned, the motion artifacts decrease the signal quality of MCG which is the most impor-
tant limiting factor in this approach. However, when the dog is relaxed and while still it 
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seems that the HR could be estimated for many different types of dogs (e.g., breeds and 
weights). A potential future application of this study could be a stand-alone smartphone 
application which could be used by dog owners to monitor the functioning of their pet’s 
heart for occasional check-up of dog’s heart condition. There could also be an option to 
store the results and track the trend in the dog’s resting HR in the long run.

It was noted during the clinical trials that the dog’s panting (which may occur espe-
cially if it is warm) affects to the acquired signal considerably. Therefore the user of a 
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15 - Shih-Tzu (7 kg)
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accZ (Dog 15)
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16 - Beagle (15 kg)
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Fig. 4  Examples of each signal measured at home. A good-quality signal segment (of a length of 10 s) 
according to human expert’s visual inspection from each of the 16 home measurements (of HM-B). Only 
the band-pass filtered AccZ and the GyroY signal axes are shown. The weights of the dogs are also shown 
in parenthesis. The signals were captured with the Android device while placing the smartphone on either 
lateral side of the dog or on the ridge, while in rest in a side, prone, or in a standing position
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smartphone application should possibly be advised to perform the measurement only 
if the dog is still and not panting. Furthermore, the user should only gently hold the 
phone from sliding to make a successful acquisition of the dog’s heart signal. If this 
procedure is followed, also the probability of the sliding/dropping the phone is small. 
There are two issues that affect to the development of HR estimation algorithms 
for dogs. First, the range of the HR is wider for dogs (with varying breeds) than for 

Table 2  The information of the dogs corresponding to the signals in Fig. 4 of the Android 
smartphone home measurements

Visually estimated signal quality of the signals in Fig.  4 made by human expert is also given. Due to motion artifacts, full 
signals were not evaluated in visual inspection

HM-B # Breed Weight Age Tot. meas. Quality

#1 Wheaten Terrier 15 12 4 Excellent

#2 Westie 10 8 5 Moderate

#3 Scotish Terrier 10 2 4 Poor

#4 Golden Retriever 35 9 1 Moderate

#5 Maltese 7 14 14 Moderate

#6 Golden Retriever 32 3 1 Moderate

#7 Mixed-breed 17 8 7 Excellent

#8 Shih-Tzu 7 4 4 Excellent

#9 Wheaten Terrier 20 9 3 Excellent

#10 Finnish Lapphund 25 3 4 Excellent

#11 Havanese 7 6 4 Good

#12 Beagle 17 4 1 Good

#13 Golden Retriever 35 5 1 Moderate

#14 Golden Retriever 30 2 1 Good

#15 Shih-Tzu 7 5 3 Moderate

#16 Beagle 15 2 2 Poor

17 18 19 20 21 22 23 24 25 26 27
-0.2

-0.1

0

0.1

0.2

0.3
ECG

17 18 19 20 21 22 23 24 25 26 27
Time in seconds

-0.02

-0.01

0

0.01

0.02
accZ

Fig. 5  Example signal from 15 kg Wheaten Terrier. Time-aligned iPhone’s IMU signal (AccZ axis only shown 
below) and synchronized simultaneously captured ECG from AliveCor’s patch (above) converted from pdf 
output. It can be observed that the AO peaks in SCG match to the R peaks in ECG
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humans [31]. Second, the breathing rate (BR) is higher for dogs (15–25 min−1 at rest). 
Therefore, it is, sometimes, difficult to differentiate the dog’s HR and BR from each 
other based on the MCG signal only.

As a limitation of this study, in the CT-A trial, there were only dogs from three 
breeds (mainly Dobermans). Thus, further work needs to be conducted to generalize 
our findings to all breeds. However, in the HM-B trial, nine breeds and one mixed-
breed dogs were included. More than half of these had sufficient signal for HR estima-
tion based on visual inspection. When comparing the different methods (M1–3, in 
Table 1), simple peak detection (M1) provides deviation of 5 bpm or less (from ECG) 
in half of the cases. For certain measurements with particularly low HR, it, however, 
fails. Single-axis autocorrelation (M2) performs best and it would seem to work both 
in low and high HR values. However, it does not work well for the dog number 10 
(CT-A) which had the highest HR according to ECG. 6-axis autocorrelation (M3) had 
some difficulties among higher HR values. Its HR detection range is typically nar-
rower, since it combines information from multiple axes HR estimates. If these differ 
from each other much, it may give a value in between the extreme values.

In general, our approach could be applied to monitor dog’s health even without 
anesthesia (which was used in  [14] for mice). However, in the selection of the best 
measurements for HR estimation, the ratio of the measurements which succeeded 
was, in our case, known a priori. In the future, a more general algorithm should be 
developed that can blindly select only the good-quality measurements. However, as 
this work concerns feasibility evaluation only, this is left for future work. An another 
application which we did not consider in this work is heart rate variability (HRV) esti-
mation. In addition to HR, HRV could be a potential indicator of dog’s wellness [4]. 
After successful HR extraction, it would be straightforward to extend our work 
towards HRV extraction.

The conducted clinical trial showed that it is possible to obtain the correct heart 
rhythm from dogs automatically using the proposed modality; however, the effect of 
artifacts caused, e.g., by panting or sinus arrhythmia needs to be taken into account. 
As the dogs in the veterinary clinic were quite nervous, a proper further validation 
procedure should be carried out using full 24 h Holter ECG recording, while simul-
taneously conducting occasional check-up measurements with the smartphone-only 
solution. Motion artifacts also limit the usage of the proposed method in the follow-
up of dogs after a surgery and at least partly in using the method for the follow-up of 
the dogs’ recovery after exercise.

We also considered the effect of excessive dog’s fur to the non-invasive IMU sensing. 
At least in one of the home measurements (HM-B, dog number 10), it was reported 
by the dog owner that the dog had extensive fur. Despite this, the overall quality of the 
signal appears quite good. It seems obvious that excessive dog’s fur might, in some 
cases, still have a decreasing effect to signal quality, as our modality is based on either 
direct or indirect contacts to the dog’s fur/skin. During the work, we also developed a 
smart 3D printed casing (with four stick fingers) to avoid the effect of signal attenua-
tion due to fur and the sliding of the phone. With regard to the main application, i.e., 
measuring the dog’s heart during still motion, it would be important that the applied 
smartphone solution (or application) would possess enough advanced methods for 
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the signal-quality assessment, with an option to advice the user to redo the measure-
ment if necessary. The implementational aspects of this are left to a future work.

In addition to our approach and ECG, there are also some other emerging modali-
ties such as PPG (photoplethysmography) which could be utilized to monitor the 
dog’s vital signs [32]. While MCG recording measures the heart-induced mechanical 
activity, PPG measures optically the blood volume in the microvascular bed of tis-
sue [32]. Intuitively, PPG could partly suffer from similar drawbacks than our method 
in that finding a proper sensing location from the dog could be an issue if there are 
excessive fur. About a question, whether our approach could potentially replace Alive-
cor’s ECG patch in clinical practice, the answer is probably no. On the other hand, if 
the dog owner’s intention was to only occasionally investigate the resting HR, poten-
tially as a fitness/health indicator (and/or possibly BR in home settings), our approach 
in the form of a smartphone application could be a viable solution, since it does not 
require buying any extra equipment.

Conclusion
It is concluded that there are several limitations which make the usage of this new 
modality challenging, but, with improved data analysis techniques mainly for manag-
ing noisy measurements, the proposed smartphone-only solution for measuring dog’s 
HR could still be useful in home use.
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