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Abstract:  52 
 53 
Cancer stem cells (CSCs) are involved in the initiation and progression of human 54 

malignancies by enabling cancer tissue self-renewal capacity and constituting the therapy-55 

resistant population of tumor cells. However, despite the exhausting characterization of CSC 56 

genetics, epigenetics, and kinase signaling, eradication of CSCs remains an unattainable 57 

goal in most human malignancies. While phosphatases contribute equally with kinases to 58 

cellular phosphoregulation, our understanding of phosphatases in CSCs lags severely 59 

behind our knowledge about other CSC signaling mechanisms. Many cancer-relevant 60 

phosphatases have recently become druggable, indicating that further understanding of the 61 

CSC phosphatases might provide novel therapeutic opportunities. This review summarizes 62 

the current knowledge about fundamental, but yet poorly understood involvement of 63 

phosphatases in the regulation of major CSC signaling pathways. We also review the 64 

functional roles of phosphatases in CSC self-renewal, cancer progression, and therapy 65 

resistance; focusing particularly on hematological cancers and glioblastoma. We further 66 

discuss the small molecule targeting of CSC phosphatases and their therapeutic potential 67 

in cancer combination therapies. 68 
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Introduction  76 

In normal adult tissues, stem cells (SCs) confer the capacity for tissue regeneration and 77 

homeostasis [1]. The self-renewal capacity of SCs, and generation of differentiated cellular 78 

progenies, is a prerequisite for tissue maintenance and repair throughout an organism´s 79 

lifespan. Based on cancer stem cell hypothesis, cancers evolve from an analogous small 80 

population of cells designated as cancer stem cells (CSCs), or as tumor initiating cells (TICs, 81 

or tumor-cell-of-origin) [2, 3]. Neither CSCs or TICs can be definitely recognized by markers, 82 

but are rather defined by their functional properties such as the capacity for long-term self-83 

renewal and tumor initiation [3, 4]. While in normal SCs, differentiation into one or multiple 84 

cell lineages is another prime character, in CSCs the tumor initiating capacity and 85 

recapitulation of different cancer cell lineages are fundamental functional properties and 86 

contribute to intratumor heterogeneity [5]. Although CSCs display differential gene 87 

expression profiles and exhibit expression of certain cell surface markers as compared with 88 

SCs [6-8], most CSC surface markers are present in human embryonic stem cells or adult 89 

stem cells [9]. Similarly, CSCs and SCs from the same tissue are regulated by similar 90 

molecular mechanisms [10, 11].  91 

As phosphorylation-dependent signaling pathways are often deregulated in human cancers, 92 

it is not surprising that deregulated phosphosignaling plays an important role also in self-93 

renewal, proliferation, survival and differentiation of CSCs [12]. The CSC signaling pathways 94 

crosstalk, and the CSC niche microenvironment determines what signaling pathways are 95 

activated. In addition to their importance for CSC self-renewal, proliferation, and survival, 96 

phosphorylation-dependent signaling pathways promote resistance to many therapeutics. 97 

Importantly, the therapy tolerance in cancer develops initially by non-genetic mechanisms 98 

including phosphorylation-dependent signaling rewiring [13, 14]. Simultaneous inhibition of 99 

several kinase pathways has shown a marginal success in targeting CSCs with acquired 100 
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chemoresistance [15-17]. However, findings from clinical resistance of most cancer types to 101 

kinase inhibitors suggest that these compounds and their combinations have failed to 102 

sufficiently eradicate CSCs [18].  103 

The current understanding of the roles of phosphatases in regulation of key CSC functions 104 

is still relatively poor. However, since phosphatases regulate most CSC-related 105 

phosphorylation-dependent pathways [18-20], further understanding of phosphatase-106 

mediated regulation of CSCs will provide novel approaches to inhibit the critical CSC 107 

functions, including CSC non-genetic therapy tolerance. This is particularly appealing as 108 

many phosphatases have recently become druggable by small molecules [18, 21-23]. In this 109 

work, we review the current knowledge of phosphatases in CSCs. In particular, we focus on 110 

phosphatase-mediated regulation of signaling pathways which are strongly implicated in 111 

CSCs: WNT, PI3K-AKT, Hedgehog (HH), NOTCH, and JAK-STAT. We also review the 112 

current knowledge of the functional importance of phosphatases in selected cancer types, 113 

and discuss potential phosphatase targeted therapies to overcome therapy resistance in 114 

CSCs. 115 

Phosphatase families 116 

Based on their amino acid sequence, the majority of human protein phosphatases are  117 

classified as protein serine/threonine phosphatases (PSPs) and tyrosine phosphatases 118 

(PTPs) (Fig. 1) [24]. Since nearly 70% of all human phosphoregulation targets either serine 119 

or threonine residues, PSPs constitute a very powerful phosphoproteome regulatory 120 

mechanism. Based on the catalytic mechanism, PSPs are subdivided into phosphoprotein 121 

phosphatases (PPPs), metal-dependent protein phosphatases (PPMs), or aspartate-based 122 

phosphatases. PSPs, the majority of which function as dimeric or trimeric protein complexes, 123 

consist of a catalytic subunit complexed with either one or two scaffolding subunits and a 124 

substrate determining regulatory subunit (Fig. 1). Instead, PTPs function as monomeric 125 
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enzymes, and based on the number of genes which encode the catalytic subunits, PTPs 126 

are the largest family of phosphatases (Fig. 1). On the basis of the sequence of their catalytic 127 

domains, PTPs are classified into three distinct subfamilies: cysteine, aspartate and 128 

histidine-based PTPs  [24]. Cysteine-based PTPs include receptor tyrosine phosphatases 129 

(PTPRs), non-receptor tyrosine phosphatases (PTPNs), and CDC25 phosphatases. A 130 

subclass of cysteine-based PTPs are dual-specificity protein phosphatases, targeting either 131 

serine/threonine and tyrosine residues (DUSPs), or tyrosine and phosphatidylinositol 132 

(3,4,5)-trisphosphate (PTEN). For more detailed biochemistry of phosphatases, 133 

characteristics of the phosphatase families, and their broader roles in cancer, the reader is 134 

encouraged to study the recent reviews [25-28]. 135 

Oncogenic and tumor suppressor phosphatases  136 

The functional assignment of a phosphatase as either an oncoprotein or a tumor suppressor 137 

is defined by the functional role of the phosphosite they target [23]. Certain tumor suppressor 138 

and oncogenic phosphatases have recently become druggable, with reactivating and 139 

inhibiting small molecules, respectively [21-23, 28]. Because there is limited information 140 

about the functional relevance of phosphatases in specific CSC phenotypes, first we briefly 141 

summarize the overall cancer relevance of the most important tumor suppressor and 142 

oncogenic phosphatases, focusing on those which will be later discussed in more details in 143 

regard to the CSC pathways they regulate.    144 

 145 

Protein phosphatase 2A (PP2A) is a heterotrimeric protein complex consisting of a catalytic 146 

subunit (PP2Ac or C), a scaffold subunit (PR65 or A), and one of the alternative regulatory 147 

B subunits. There are α and β isoforms for both the catalytic and scaffolding subunits. 148 

Moreover, there are four B subunit families, each with various isoforms or splice variants. 149 

Such variability in PP2A holoenzyme composition results in a family of functionally distinct 150 
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phosphatases which cover broad substrate specificity and control diverse cellular functions 151 

[29-31].  152 

 153 

In addition to strong evidence that inhibition of PP2A drives human cell transformation [32, 154 

33], recent studies have provided compelling evidence for PP2A-mediated tumor 155 

suppression in mouse models [34-36]. These studies demonstrate that even partial inhibition 156 

of PP2A activity is sufficient to drive mouse tumorigenesis [36]. Inhibition of PP2A activity in 157 

human neoplasms occurs through various mechanisms. A prevalent genetic mechanism for 158 

PP2A inhibition is haploinsufficiency of PPP2R4, which encodes the PP2A activator PTPA 159 

[36], whereas point mutations in the scaffolding A subunit PPP2R1A are observed in 160 

relatively high frequency in some specific cancer types [37]. The non-genetic PP2A inhibition 161 

mechanisms are very common across most cancer types and include overexpression of 162 

PP2A inhibitory oncoproteins such as CIP2A, NOCIVA, PME-1, SET, and ARPP19 [38, 39]. 163 

Very importantly and highlighting the relevance of PP2A complex composition, the PP2A 164 

complexes containing STRN B subunits are oncogenic due to their negative role in 165 

regulation of the tumor suppressor Hippo pathway upstream of YAP [40-42].    166 

 167 

Based on the original discovery that some antipsychotic phenothiazines are direct PP2A 168 

reactivators [43], two different series of PP2A reactivating drugs (iHAPs and SMAPs) have 169 

recently been developed [22, 23, 44-46]. Importantly, these compounds selectively activate 170 

only certain tumor suppressive PP2A complexes, namely PP2A-B55 and PP2A-B56, and 171 

thereby have strong antitumor effects, without affecting other PP2A functions that might 172 

cause systemic side-effects [22, 23, 44, 46]. Whereas iHAPs efficiently kill T-ALL cells [44], 173 

series of SMAPs have been shown to be effective towards numerous types of cancer [20, 174 

23, 45, 47]. PP2A reactivation globally promotes kinase inhibitor sensitivity [20, 48], and 175 
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SMAP-elicited PP2A reactivation combined with kinase inhibitors results in a significant 176 

tumor regression in KRAS-driven lung cancer in vivo [20]. Additionally, the FTY720 177 

(Fingolimod), an FDA approved immunosuppressant drug, also activates PP2A by targeting 178 

interaction between SET and PP2Ac, and is effective in several types of leukemic cells in 179 

vitro and in vivo [23, 49-52]. FTY720 is phosphorylated in cells by sphingosine kinases, and 180 

this is required for the immunosuppressive effects, while SET inhibition is mediated by non-181 

phosphorylated pool of FTY720. Importantly, development of non-phosphorylatable 182 

analogues of FTY720, devoid of direct immune-modulatory activities, has been reported. 183 

Similar to FTY720, they restore PP2A activity by disruption of the PP2A-SET complex, and 184 

inhibit growth of leukemic cells [23, 49, 53, 54]. 185 

 186 

PTEN is a tumor suppressor phosphatase with pleiotropic roles in tumor hallmarks such as 187 

cell proliferation, cellular senescence, metabolism, and regulation of tumor 188 

microenvironment [26, 55]. PTEN is one of the most commonly mutated tumor suppressor 189 

genes, and if not mutated, largely suppressed or down-modulated [26, 55]. Similar to PP2A, 190 

PTEN is a haploinsufficient tumor suppressor and its partial loss results in sustained 191 

phosphoinositide 3-kinase (PI3K) activation and tumorigenesis [56]. PTEN is a dual-192 

specificity phosphatase with both protein and lipid phosphatase activity. Its lipid 193 

phosphatase activity targets the phosphatidyl-inositol-3,4,5-phosphate (PIP3) which is 194 

critical for PI3K/AKT activation, and thereby malignant growth and survival [26, 57]. The 195 

cancer relevance of the protein phosphatase activity of PTEN is still elusive. PTEN 196 

dephosphorylates Ser, Thr, and Tyr residues in substrates such as focal adhesion kinase 197 

(FAK) and cAMP responsive-element binding protein (CREB) [55]. Inhibition of PTEN 198 

phosphatase activity activates the nonreceptor tyrosine kinase SRC and drives HER2 199 

inhibitor resistance in breast cancer cells [58]. On the other hand, a recent study has 200 
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demonstrated that while inhibition of PTEN lipid phosphatase activity promotes PI3K-driven 201 

mammary tumorigenesis in vivo, co-inhibition of its protein phosphatase activity blocks 202 

tumorigenesis via regulation of the glucocorticoid receptor [59].  203 

 204 

Recent evidence indicates that similar to PP2A, PTEN tumor suppressor functions could be 205 

pharmacologically reactivated through inhibition of its endogenous inhibitors [23, 60, 61]. 206 

Two NEDD4 family HECT domain E3 ubiquitin ligases, NEDD4-1 and WWP1, inhibit PTEN. 207 

Two recent studies demonstrated that their negative impact on PTEN stability and 208 

membrane localization is impaired by treatment with indole-3-carbinol (I3C), a natural 209 

indolecarbinol compound derived from cruciferous vegetables [23, 60, 61]. I3C induces 210 

apoptosis in cells expressing wild-type PTEN, but not in cells with mutant or null PTEN, and 211 

results in potent antitumor effects in vivo. These studies provide evidence for small molecule 212 

druggability of PTEN [23, 60, 61].  213 

  214 

SHP2 (Src homology phosphatase 2), encoded by PTPN11, is a protein tyrosine 215 

phosphatase involved in different signaling pathways and induced by various stimuli such 216 

as growth factors and cytokines [62, 63]. Patients with Noonan syndrome, and juvenile 217 

myelomonocytic leukemia (JMML), a childhood myeloproliferative neoplasm (MPN), have 218 

germline mutations in PTPN11, whereas somatic mutations in PTPN11 account for 34% of 219 

non-syndromic JMMLs. The gain of function mutations in PTPN11 have also been found in 220 

a small percentage of patients with myelodysplastic syndrome (MDS), de novo acute 221 

myeloid leukemia (AML) [64]. Moreover, a recent study unraveled the important contribution 222 

of Ptpn11 mutations in bone marrow microenvironment and leukemogenesis [65]. Ptpn11 223 

activating mutations in mesenchymal stem/progenitor cells induce production of the CC 224 

chemokine CCL3 (also known as MIP-1α), which recruits monocytes. Consequently, the 225 
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HSCs are hyperactivated by interleukin-1β produced by monocytes, leading to initiation and 226 

development of MPN. Interestingly, CCL3 receptor antagonists reverse the MPN 227 

development induced by the Ptpn11-mutated bone marrow microenvironment. These 228 

findings unravel the key role of Ptpn11 mutations in the bone marrow microenvironment in 229 

leukemogenesis [65]. 230 

SHP2 is essential for KIT-induced myeloproliferative disease (MPD) through activation of 231 

the PI3K/AKT signaling pathway. Consistently, a SHP2 inhibitor has been shown to augment 232 

anti-tumor efficacy of PI3K inhibition in KIT-induced MPD in vivo [66]. In addition to 233 

hematological cancers, somatic PTPN11 mutations are found in 5-7% of glioblastoma (GB) 234 

cases [67]. Moreover, SHP2 promotes RAS activity and is required for growth of KRAS-235 

mutant non-small-cell lung cancer in vivo, and its inhibition restores sensitivity to ALK 236 

inhibitors [68]. SHP2 blockade enhances sensitivity of KRAS-amplified gastroesophageal 237 

tumor models to MEK inhibition [69]. These findings, together with the recent development 238 

of selective allosteric and small-molecule SHP2 degraders using the proteolysis-targeting 239 

chimera (PROTAC) concept [23, 70-74] suggest that SHP2 inhibition is an attractive 240 

therapeutic strategy in several cancer types.  241 

 242 

DUSPs are a large subgroup of cysteine-based PTP superfamily, which dephosphorylate 243 

both tyrosine and serine/threonine residues in mitogen-activated protein kinases (MAPKs) 244 

[27]. DUSP1 has some tumor suppressor properties as its overexpression attenuates 245 

oncogenic behavior in gallbladder cancer in vitro and in vivo [75]. DUSP1 is also upregulated 246 

in low-grade, but downregulated in high-grade prostate carcinomas [76, 77]. On the other 247 

hand, DUSP1 negatively regulates the pro-apoptotic JNK and P38 MAP kinases, triggers 248 

evasion from JNK-mediated apoptosis and provides survival benefit and supports 249 

oncogenicity [78, 79]. DUSP6 targets specifically ERK1/2 kinases and its expression is 250 
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increased in breast cancer, GB and acute lymphatic leukemia [27, 80-82]. DUSP6 depletion 251 

or its pharmacologic inhibition reduces cell proliferation and induces apoptotic cell death 252 

[83-85], indicating an oncogenic role for DUSP6.  253 

 254 

Regulation of cancer stem cell signaling pathways by phosphatases 255 

 256 

WNT pathway and phosphatases in cancer stem cells 257 

The soluble ligand WNT induces β-catenin pathway, which is important for normal 258 

embryonic development via Frizzled and LRP receptors. WNT controls body axis patterning, 259 

cell fate decision, cell proliferation and migration. WNT signaling is also responsible in 260 

controlling tissue renewal and regeneration in adult vertebrate stem cells [86, 87]. Activation 261 

of WNT signaling in CSCs has been shown in a variety of cancers [88], as well as in CSC-262 

mediated breast cancer metastases [89].  263 

 264 

The PP2A-B56 complex inhibits WNT/β-catenin by multiple mechanisms [90, 91]. PP2A 265 

dephosphorylates the inhibitory serine 9 phosphorylation in GSK3β, which results in 266 

proteasomal degradation of β-catenin, and inhibition of several β-catenin stemness target 267 

genes such as MYC. A recent study confirmed that in the CSC context, PP2A-B56 is the 268 

phosphatase responsible for GSK3β dephosphorylation as well [92]. In addition, the PP2A 269 

catalytic subunit PP2Acα colocalizes with β-catenin at the plasma membrane, which 270 

prevents β-catenin translocation and β-catenin-mediated transactivation [93, 94]. There is 271 

also evidence that the PP2A/B56 complex inhibits WNT signaling via Axin-mediated 272 

regulation of β-catenin activity without affecting β-catenin stability [95]. Interestingly, two 273 

recent studies indicated a potential WNT-PP2A feedback loop, resulting in maximal WNT 274 

pathway activity. In these studies, GSK3β inhibition was found to suppress protein 275 
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expression of PP2A-A, B56 and C subunits in GB stem cells (GSCs) [92], whereas WNT 276 

treatment inhibited PP2A activity in cancer cells [96].  277 

MYC, a WNT/β-catenin target gene, is a master regulator of stem cell self-renewal [97-99]. 278 

MYC is directly inhibited by PP2A-B56-mediated GSK3β activation, as GSK3β is a MYC 279 

threonine 58 kinase, and this phosphorylation triggers proteosomal MYC degradation [100, 280 

101]. PP2A-B56 inhibition particularly stabilizes the expression of serine 62 phosphorylated 281 

MYC (pS62MYC) [102-104]. In APC-deficient intestinal crypts, MYC is essential for stem 282 

cell expansion downstream of β-catenin activation [99]. On the other hand, in regenerating 283 

intestinal crypts, the PP2A-B56 inhibitor protein CIP2A [105] increased expression of serine 284 

62 phosphorylated MYC (pS62MYC), and supported MYC-mediated transcriptional activity 285 

[102]. Functionally, CIP2A deficient mice were unable to regenerate their intestine in 286 

response to irradiation. In line with these results, hyperproliferative skin lesions in mouse 287 

model of hypomorphic deletion of B56a subunit displayed increased levels of pS62MYC 288 

[106]. It was further shown that this leads to acceleration of papilloma initiation through 289 

enhancement of the number of skin stem cells. This is most likely due to cell intrinsic effects 290 

of PP2A inhibition in keratinocytes, as siRNA mediated depletion of B56a was found to 291 

increase proliferation of keratinocytes in vitro. In addition to skin, the hypomorphic B56a 292 

mouse model exhibited elevated clonogenicity of bone marrow stem cells [106]. Importantly, 293 

in both mouse studies, increased PP2A activity selectively inhibited pS62MYC protein pool, 294 

without any notable effects on total MYC protein expression [106, 107]. These results 295 

somewhat question the in vitro observed role for serine 62 phosphorylation in regulating 296 

overall MYC protein stability [102-104]. On the other hand, the results indicate for an 297 

interesting possibility to suppress the oncogenic form of MYC (pS62MYC) by PP2A 298 

reactivation in vivo, without deleterious effects on tissue homeostasis observed with total 299 

MYC inhibition [108]. Further support for the importance of PP2A inhibition in supporting 300 
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WNT/MYC-mediated self-renewal was obtained from human embryonic stem cells (hESC). 301 

PP2A activity was gradually increased during hESC differentiation, and inhibition of PP2A 302 

by semi-selective okadaic acid [109] was able to sustain hESC self-renewal in the absence 303 

of basic fibroblast growth factor (bFGF) [110]. Mechanistically, the effects of PP2A inhibition 304 

on hESC self-renewal were through increased activity of GSK3β-MYC and AKT pathways 305 

[110]. Together, these findings delineate that PP2A-B56 plays a central role in stem cell self-306 

renewal and proliferation via regulation of WNT pathway and MYC activity [90]. Furthermore, 307 

regarding the tumor suppressor activity of PP2A-B56 [34, 111-113], targeting the PP2A-B56 308 

inhibitors CIP2A and SET, which are overexpressed in multiple cancers [38, 114-120], could 309 

provide a novel approach for eradication of WNT-driven CSCs. Importantly, MYC and β-310 

catenin are most likely required for the self-renewal and survival of the proliferating 311 

CSC/LSC pool but not for their quiescence. In line with this, it has been demonstrated that 312 

PP2A-mediated regulation of MYC and  β-catenin is necessary for the transcriptional 313 

activation of G1/S and M mediators, which is necessary for the re-entry of CSC/LSC into the 314 

cell cycle and self-renewal but not cell cycle exit [121]. 315 

There is also evidence for the regulation of the non-canonical WNT signaling by PP2A. 316 

Conditional reprogramming of human ectocervical, breast and prostate cancer cells induces 317 

their stem cell-like properties through β-catenin activation via a non-canonical pathway that 318 

is independent of WNT and AKT/GSK-3β. In turn, this β-catenin-dependent transcription 319 

and induction of stem cell-like behavior is largely regulated by PP2A [122]. 320 

 321 

In addition to PP2A, recent studies imply for an important role for SHP2 in regulating WNT 322 

pathway in CSCs. SHP2 is overexpressed in CSCs of chemoresistant hepatocellular 323 

carcinomas (HCCs), and in recurrent HCCs from patients [123]. Further investigation 324 

revealed that SHP2 facilitates liver CSC self-renewal via nuclear translocation of β-catenin. 325 
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β-catenin translocation in SHP2-depleted spheroids was associated with decreased GSK3β 326 

serine 9 phosphorylation whereas no effects were observed on GSK3β tyrosine 216 327 

phosphorylation. This indicates that SHP2 indirectly regulates GSK3β phosphorylation via a 328 

serine/threonine phosphatase such as PP2A [123]. SHP2 impacts WNT signaling via 329 

dephosphorylation of parafibromin/CDC73 as well [123-126] (Fig. 2). Originally, it was found 330 

that SHP2-mediated dephosphorylation of parafibromin results in inhibition of its tumor 331 

suppressor activity at RNA polymerase II-associated factor (PAF) complex and its binding 332 

to β-catenin, and thereby induction of expression of WNT target genes [125]. Importantly, 333 

related to loss-of-function SHP2 mutations found from patients with Leopard syndrome, it 334 

was shown that these mutations inhibit SHP-mediated parafibromin dephosphorylation in 335 

vitro [124]. Even though no direct evidence has been shown for the impact of SHP2-336 

mediated parafibromin regulation and its effects on WNT signaling in stem cell context, a 337 

recent study has found that parafibromin competitively interacts with β-catenin and GLI, 338 

thereby potentiating transactivation of WNT- and HH-target genes in a mutually exclusive 339 

manner [126]. Parafibromin binds to the NOTCH intracellular domain (NICD), enabling 340 

concerted activation of WNT and NOTCH-target genes [126]. These transitions between 341 

different stem cell pathway effectors were regulated by SHP2 [126], indicating that SHP2 342 

efficiently coordinates several critical stem cell and CSC pathway activities through 343 

parafibromin (Fig. 2).  344 

 345 

PI3K/AKT and phosphatases in cancer stem cells  346 

PI3K/AKT signaling pathway is a master regulator of tumorigenesis, with increasing 347 

evidence for its contribution to CSCs [127]. Activation of PI3K/AKT in CSCs is associated 348 

with radioresistance in prostate cancer and tumorigenicity of breast, colorectal, and HCC as 349 

reviewed earlier [127]. In this vein, inhibition of PI3K/AKT/mTOR activity by specific inhibitors 350 
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decreases the CSC population in a variety of human malignancies including GB, breast 351 

cancer, pancreatic carcinoma, prostate cancer and lung carcinoma [128-132]. Of 352 

phosphatases with CSC relevance, PI3K/AKT signaling is directly regulated by PTEN [55] 353 

and PP2A [133] (Fig. 2). PI3K/AKT signaling is indirectly regulated by many other 354 

phosphatases, as this pathway exhibits cross-talks with many other phosphorylation-355 

dependent signaling pathways.  356 

 357 

PTEN is a master regulator of PI3K/AKT by its unique capacity to dephosphorylate PIP3, 358 

critical for PI3K activation [26, 55]. Mechanistically, PI3K/AKT activation due to PTEN loss 359 

promotes self-renewal through modulation of several downstream pathways. For instance, 360 

suppression of PTEN by microRNA-216a promotes AKT-mediated phosphorylation of 361 

FOXO3a and GSK-3β, which in turn supports the maintenance of stem-like populations and 362 

clonogenic potential in HCC [134]. PTEN inhibition promotes crosstalk between the WNT/β-363 

catenin and PI3K/AKT pathways and drives self-renewal induced by Aryl hydrocarbon 364 

receptor and the cytochrome P450 1A1 activation [135]. Moreover, PTEN suppresses 365 

PI3K/AKT/mTOR-mediated maintenance of stemness through induction of chemokine 366 

receptor type 4 (CXCR4) and STAT3 activation [130]. Additionally, PTEN loss in prostate 367 

epithelial cells, and the subsequent activation of the PI3K/AKT/IL-6 axis activates STAT3. 368 

In this setting, AKT induces Ikβ degradation, which permits nuclear translocation of NF-kβ 369 

and induction of IL-6 transcription, which promotes self-renewal and tumorigenesis via 370 

STAT3 activation [136]. Banasavadi-Siddegowda et al. have reported that downregulation 371 

of PTEN via protein arginine methyltransferase-5 (PRMT5)-mediated methylation is required 372 

for the maintenance of primary GB neurospheres via AKT/ERK [137]. Importantly, PTEN 373 

regulates cell cycle progression in CSCs via the PI3K/AKT pathway and this is not limited to 374 

the control of quiescence [138]. Peng et al. have shown that a high number of cyclin D1+ 375 
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cells were residing in the bone marrow of an AML mouse model with PTEN deficiency. 376 

Interestingly, after administration of rapamycin, leukemia cancer stem cells (L-CSCs) were 377 

depleted and normal hematological stem cells (HSCs) were restored, providing evidence for 378 

the involvement of the PI3K/mTOR pathway [138]. 379 

PP2A is a well-established direct AKT phosphatase [133, 139, 140]. However, PP2A´s role 380 

in regulating AKT dephosphorylation and activity specifically in the CSC context is poorly 381 

understood. In colorectal CSC, the natural compound silibinin was shown to inhibit stemness 382 

properties via inhibition of AKT phosphorylation. Interestingly, during prolonged culture of 383 

CSC spheres, the sphere growth correlated with increased AKT phosphorylation and 384 

decreased PP2A activity, partly rescued by silibinin treatment [141]. Interestingly, a recent 385 

study has identified a potential functional link between the major PI3K/AKT phosphatases, 386 

PP2A and PTEN, in liver TICs. The CBP inhibitor ICG001 and RNAi-mediated depletion of 387 

CBP reduced anchorage independent growth in human HCC cell lines and murine TICs 388 

associated with reduction of PTEN, AKT and β-catenin phosphorylation. ICG001 increased 389 

PP2A activity and ICG001-elicited serine dephosphorylation of PTEN was preempted by co-390 

treatment with okadaic acid [142], which is an unselective PP2A inhibitor.  391 

Of the other CSC relevant phosphatases, there is evidence for interaction between 392 

leukemia-associated mutant Shp2 with Gab2, an important scaffolding protein in 393 

PI3K/AKT/mTOR signaling in juvenile myelomonocytic leukemia, and elevated 394 

PI3K/AKT/mTOR pathway activity in Ptpn11-mutant leukemic cells [143].  395 

 396 

HH pathway and phosphatases in cancer stem cells 397 

HH pathway is activated by binding of a soluble ligand Sonic Hedgehog (SHH) to Patched 398 

cell surface receptor, resulting in dimerization with Smoothened receptor, and consequent 399 
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release and nuclear translocation of the GLI transcription factor (Fig. 2) [144]. HH pathway 400 

is active in stem cells during prenatal development and controls cellular proliferation, 401 

differentiation and migration [145]. Reactivation of HH signaling has been observed in CSCs 402 

of various primary malignancies like breast cancer, GB, pancreatic adenocarcinoma, 403 

multiple myeloma and chronic myeloid leukemia, as well as in metastases [12, 144]. 404 

Using a stochastic model of GSC, it was shown that nutritional deprivation increased the 405 

expression of GSC-specific biomarkers, the cells acquired higher invasive and angiogenic 406 

properties and exhibited resistance to multiple anticancer compounds. This nutritional stress 407 

was associated with activation of HH and WNT signaling pathways via stabilizing of GLI and 408 

β-catenin through modulation of the GSK3β/AKT axis. As an AKT pathway phosphatase, 409 

depletion of PTEN potentiated the expression of both GLI and β-catenin which resulted in 410 

increased neurosphere formation, and GSC-specific biomarker expression [146] (Fig. 2). 411 

Therefore, PTEN potentially coordinates activities of two critical CSC pathways, WNT and 412 

HH.  413 

WIP1 is a member of the PP2C family of Ser/Thr protein phosphatases and is encoded by 414 

PPM1D, a P53 target gene induced by various types of DNA damage [147] (Fig. 1). WIP1 415 

is amplified/overexpressed in certain human malignancies [148]. WIP1 was shown to 416 

increase transcriptional activity, nuclear translocation, and protein stability of GLI (Fig. 2) 417 

[149]. Specifically, it was shown that regulation of the transcriptional activity of GLI1 by WIP1 418 

depends on its phosphatase activity and is independent of P53 [149]. Moreover, WIP1 is 419 

essential for tumor growth and self-renewal in vitro and xenograft growth mediated by HH 420 

activation, and blockade of HH potentiates the effects of WIP1 inhibition on reducing tumor 421 

growth [149]. The P53-independent function of WIP1 as positive regulator of the SHH 422 

signaling was later confirmed in neuronal precursors, and in two independent HH-driven 423 

medulloblastoma (MB) models in vivo [150]. In both the in vivo models, genetic Wip1 424 
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deletion had radical effects on de novo MB tumorigenesis. These finding suggest that WIP1 425 

plays a key role in sustaining tumor growth and CSC self-renewal mediated by the HH 426 

pathway. As a potentially druggable phosphatase [148, 151], WIP1 inhibition could 427 

constitute a novel treatment strategy for MB.  428 

 429 

NOTCH and phosphatases in cancer stem cells 430 

In normal stem cells, NOTCH pathway has an important role in regulation of self-renewal 431 

properties and differentiation states. NOTCH signaling is dysregulated in many cancers 432 

[152] and contributes to maintenance of their stemness properties [153]. PTEN functionally 433 

interacts with NOTCH in breast cancer. In breast cancer cells which are resistant to the anti-434 

HER2 mAb trastuzumab, NOTCH-1 expression is increased and drives tumor recurrence. 435 

NOTCH-1 expression directly suppresses PTEN expression, and its inhibition resulted in 436 

PTEN induction and PTEN-mediated reversion of trastuzumab resistance [154] (Fig. 2). On 437 

the other hand, loss of PTEN in mammary fibroblasts promotes ErbB2-dependent mammary 438 

tumorigenesis. PTEN deletion was shown to trigger abnormal alveolar side-branching, 439 

which results in an expansion of the mammary epithelial stem cell (MaSC) enriched 440 

basal/myoepithelial population and an increase in in vitro stem cell activity. Mechanistically, 441 

PTEN depletion in tumor-associated fibroblasts down-regulated JAGGED-1, a 442 

transmembrane inhibitory ligand for the NOTCH3 receptor [155]. Moreover, reintroduction 443 

of JAGGED-1 within the PTEN-null fibroblasts preempted the observed increase in colony 444 

forming activity, which indicates that stromal JAGGED-1 has a key role in regulation of 445 

MaSC properties. Consistent with this, breast cancer patients with both low stromal 446 

JAGGED-1 and PTEN represent a shorter recurrence time compared to those whose tumors 447 

express low levels of either alone. These findings reveal a stromal PTEN-to-JAGGED-1 axis 448 

in maintaining the MaSC population and preventing breast cancer tumorigenesis [155]. 449 
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As an indication for the potential role for PP2A in regulation of NOTCH signaling, Drosophila 450 

PP2A catalytic subunit was found to inhibit casein kinase 2 (CK2)-mediated effects in  451 

NOTCH signaling and to induce similar phenotype with NOTCH mutation [156]. More 452 

recently, the same group demonstrated that the regulatory PP2A B-subunit which mediates 453 

this regulation was human B56 homologue widerborst [157]. Moreover, in human NOTCH-454 

dependent T-ALL cell line KOPTK1, PP2A reactivation by phenothiazines potently 455 

synergized with NOTCH inhibition by g-secretase inhibitor GSI in cell killing [43]. In addition 456 

to PP2A-mediated regulation of NOTCH activity indicated by these studies, a recent study 457 

identified transcription factor IER5 as a direct NOTCH target, and PP2A B55a subunit as 458 

one of the IER5 suppressed genes downstream of NOTCH [158]. NOTCH and IER5 were 459 

epistatic in regulation of at least some NOTCH target genes further indicating PP2A-460 

mediated control of NOTCH activity. Regulation of NOTCH signaling by other CSC 461 

phosphatases is yet obscure.  462 

 463 

JAK/STAT and phosphatases in cancer stem cells 464 

Janus-activated kinase/signal transducer and activator of transcription (JAK/STAT) pathway 465 

promotes transcription of genes involved in stem cell maintenance, hematopoiesis and 466 

neurogenesis [159, 160]. In addition to hematological malignancies, dysregulation of 467 

JAK/STAT pathway has been detected in stem-like cells in breast cancer, prostate cancer 468 

and GB models [161-163], and in CSC-mediated colon cancer metastasis [164].  469 

 470 

Function of JAK effectors, the STAT transcription factors, are heavily regulated by both 471 

tyrosine and S/T phosphorylation. Several protein tyrosine phosphatases such as SHP1, 472 

SHP2, TCPTP45, DUSP3 and PTP1B have been shown to regulate different components 473 

of the JAK/STAT pathway, and contribute to its dysregulation in different cancer types [165]. 474 
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However, there is a paucity of studies using CSCs and demonstrating the role of 475 

phosphatases in JAK/STAT pathway regulation. Nevertheless, considering that most 476 

hematological cancers could be classified as diseases of CSC dysfunction, and the critical 477 

roles of JAK/STAT pathway in hematological CSCs, the previously identified roles of tyrosine 478 

phosphatases in JAK/STAT regulation most probably translate to CSC biology [166, 167]. 479 

Most recently, a study demonstrated that homozygous myeloid cell lineage specific deletion 480 

of Ptp1b induced AML and this was dependent on increased JAK/STAT activity [168]. A 481 

recent study demonstrated that TICs have enhanced phosphorylation levels of STAT3 482 

serine 727 because of PP2A inactivation [169]. Moreover, the PP2A-STAT3S727-Col XVII 483 

pathway increased the ability of TIC to establish malignant tumors in murine models of lung 484 

cancer with pleural effusion, and spontaneous colon cancer metastasis [169]. Moreover, 485 

PP2A-regulated JAK2 might have a role in CSC survival and self-renewal through induction 486 

of SET and ß-catenin activation [49, 170]. 487 

Cancer relevance of cancer stem cell phosphatases 488 

Due to their key roles in cancer therapy resistance and tumor recurrence, CSCs have strong 489 

clinical implications. CSCs have been shown to be intrinsically more resistant to various 490 

therapies in a wide range of malignancies, and constitute the self-renewing population of 491 

cancer cells with a tumor-initiating capacity. Therefore, therapeutic targeting of CSCs has 492 

attracted great attention. Whereas previous chapters focused on the role of phosphatases 493 

in specific CSC pathways, below, we summarize the roles of phosphatases in controlling 494 

tumor-initiating capacity, and therapy resistance of CSCs in selected cancer types.  495 

CSC phosphatases in hematological malignancies  496 

Hematological neoplasms are the human cancer types in which CSCs have the most 497 

established role in tumor initiation, malignant progression and therapy resistance. All 498 

hematological cell types are derived from either myeloid or lymphoid stem cells, and based 499 
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on the current understanding, leukemias and lymphomas are caused by defects in these 500 

stem cell populations, or in immature progenitor populations of hematological cells derived 501 

from HSCs [171, 172].  502 

PTEN plays a key role in self-renewal of normal and leukemic HSCs. Loss of PTEN depletes 503 

normal HSCs and promotes leukemogenesis by generation of leukemia-initiating cells 504 

(LICs) [173, 174]. In line with the critical role of PTEN in suppressing the AKT/mTOR activity, 505 

several AKT and mTOR inhibitors have been shown to alleviate leukemogenesis in Pten-506 

depleted cancer models [173, 174]. Additionally, β-catenin activation, and a t(14;15) 507 

chromosome translocation, favor formation of PTEN-deficient LICs and subsequent 508 

leukemogenesis [175]. In line with its haploinsufficient tumor suppressor activity, Pten 509 

heterozygous mice develop spontaneous T-cell leukemias and lymphomas [173, 174, 176, 510 

177]. The effects of PTEN depletion on initiation of hematological (stem cell) malignancies 511 

in mouse models is dependent on the moment in mouse development when PTEN is 512 

depleted, and the cell type in which the depletion occurs. PTEN depletion during embryonal 513 

development leads to T-cell acute lymphoblastic leukemia and lymphoma [175, 178], 514 

whereas in adulthood it induces myeloid malignancies [179, 180]. Together with emerging 515 

therapeutic strategies to reactive haploinsufficient PTEN [23, 61, 181], these findings 516 

highlight PTEN pathway as an attractive therapeutic target to devise effective leukemia 517 

therapies without damaging the normal stem cell pool. 518 

Inhibition of PP2A is strongly implicated in leukemogenesis. By series of elegant studies, 519 

Perrotti and co-workers have shown that non-genetic PP2A inhibition promotes propagation 520 

of a therapy resistant chronic myeloid leukemic stem cell population [49, 117, 182]. 521 

Mechanistically, the oncogenic BCR/ABL kinase inhibits PP2A activity by promoting SET 522 

expression, which in turn enhances the BCR/ABL signaling activity by preventing 523 

dephosphorylation of ERK, STAT5, AKT, MYC and BAD [117]. Furthermore, PP2A inhibition 524 
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is needed for CML-quiescent leukemic stem cell survival through the regulation of the G1/S 525 

proteins cyclin D2/cyclin-dependent kinase 6 [183], and a more recent study identified micro-526 

RNA MIR300 as an additional mechanism for PP2A activation through inhibition of SET in 527 

quiescent CML-LSCs [184]. Indicative of therapeutic relevance, it was demonstrated that 528 

the PP2A activating compounds such as FTY720 [185], eliminate both proliferating and 529 

quiescent LSCs in CML, with the latter responsible for disease relapse [49, 182, 184]. 530 

Importance of SET, and its potential direct druggability in leukemic cells was supported by 531 

studies in which FTY720 derivatives, devoid of immunosuppressive activity, were found to 532 

efficiently kill leukemia cells by inhibiting the SET-PP2A interaction [49, 52, 53]. In addition 533 

to SET, another PP2A-B56 inhibitor CIP2A [29, 186] is overexpressed in CML, and its levels 534 

in diagnostic samples were shown to strongly predict progression of the disease to blast 535 

crisis [116]. Mechanistically, CIP2A expression promoted MYC levels, and the BCR/ABL 536 

kinase activity in CML cells [116]. More recently, a novel CIP2A splicing variant NOCIVA 537 

was discovered and high expression of NOCIVA was found to predict for poor patient 538 

outcomes both in AML and CML [39].  539 

The cAMP-regulated phosphoprotein 19 (ARPP19) is a PP2A-B55 inhibitor protein 540 

important in mitosis. ARPP19 is highly expressed in embryonic tissues and its expression is 541 

decreased during development, suggesting that ARPP19 regulates stemness [187]. In 542 

keeping with this, ARPP19 is part of leukemic stem cells (LSC) signature in AML [188, 189]. 543 

Moreover, it was one of the three genes involved in phenotypic LSC signature, which 544 

predicted poor-prognosis in an AML cohort [188]. Although a recent follow-up study did not 545 

directly address the role of ARPP19 in AML LSCs, it found that high diagnostic ARPP19 546 

levels predicted patient relapse from standard AML chemotherapy independently of known 547 

genetic AML risk factors [190].  548 
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Many druggable PTPs are also implicated in stem cell-derived leukemias and lymphomas 549 

[25]. The clinical importance of SHP2 is strongly emphasized by high frequency of activating 550 

mutations in hematological cancers (reviewed in [25, 167]), and preclinical efficacy of small 551 

molecule SHP2 inhibitor in mouse AML models with different genetic and epigenetic 552 

backgrounds [191]. Related to stem cell pathways discussed above, ablation of Gab2 in 553 

Ptpn11-mutant mice decreased splenomegaly and myeloid cell infiltration in 554 

nonhematopoietic organs, and normalized excessive myeloid differentiation of stem cells 555 

[192]. Moreover, the acute leukemia progression of myeloproliferative neoplasm (MPN) was 556 

reduced in the double mutant mice and their survival was prolonged [192]. Similar findings 557 

were observed after treatment of the Ptpn11-mutant mice with rapamycin, a potent mTOR 558 

inhibitor. Collectively, these results identify SHP2 as a candidate therapeutic target in 559 

hematological cancers with small molecule inhibitors which are currently in clinical trials in 560 

several solid cancer types [23, 73].  561 

In mice with p53-mutant background, deletion of Ptpn1 (coding for PTP1B) results in 562 

emergence of predominantly B cell lymphomas [193], whereas inactivating mutations are 563 

found from some human B cell lymphomas such as Hodgkin lymphomas [194]. Consistent 564 

with stem cell characteristics of B-cell lymphomas, Ptpn1-/- mice predisposed to B-cell 565 

lymphomas displayed increased numbers of immature Pre-B cells in their bone marrow 566 

[193]. More recently, myeloid lineage specific deletion of Ptpn1 was shown to result in 567 

development of mouse AML accompanied with an increase in immature myeloid blast cells 568 

in the peripheral blood [168]. These results highlight the dual function of PTP1B as an 569 

oncogenic phosphatase in many solid cancers, but as a tumor suppressor in hematological 570 

cancers [25]. Therefore, a caution about potential hematological effects of any future PTP1B 571 

targeted therapies [23, 73] is fully warranted.  572 
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 Polycythemia vera (PV) is a clonal hematopoietic stem cell disorder characterized by gain-573 

of-function mutation in JAK2 kinase (JAK2V617F). Using induced pluripotent stem cells-574 

derived CD34+ progenitor-enriched cultures from JAK2V617F+ PV patient, Stetka et al. 575 

recently showed that JAK2V617F abrogates activation of the proapoptotic P38/JNK MAP 576 

kinases [195]. Mechanistically, the expression of DUSP1, which inactivates P38/JNK, was 577 

high in these cells, and its RNAi-mediated knockdown augmented DNA damage response 578 

and apoptosis. These results suggest that high expression of DUSP1 in the JAK2V617F+ 579 

PV progenitors is a protection mechanism against DNA damage and promotes their survival, 580 

and further identify DUSP1 as a potential druggable target in PV [196]. On the other hand, 581 

DUSP4 was found to be downregulated either by promoter hypermethylation or by gene 582 

deletion in more than 80% of human DLBCL cases, which recognizes it as a human 583 

lymphoma tumor suppressor phosphatase [197]. Low expression of DUSP4 also served as 584 

a significant poor prognosis factor in DLBCL patients treated with standard chemotherapy. 585 

Interestingly, as opposed to the role of JNK as a pro-apoptotic DUSP target in some other 586 

malignancies, JNKs may also have oncogenic activities [198], and the authors provided 587 

compelling evidence that JNKs are the targets of tumor suppressor activity of DUSP4 in 588 

DLBCL cells [197]. Together with evidence for epigenetic silencing of another DLBCL tumor 589 

suppressor phosphatase SHP1 [199], epigenetic restoration of expression of DUSP4 and 590 

SHP1 could thus provide a therapeutic opportunity to target CSCs in DLBCL patients.  591 

CSC phosphatases in GB 592 

GB is a grade IV astrocytoma with a very poor median survival due to its rapid growth, 593 

angiogenesis, invasiveness and therapeutic resistance [200, 201]. GB was among the first 594 

cancer types in which the importance of CSCs for disease recurrence and therapy 595 

resistance was established [4]. However, due to several conflicting reports, and because 596 

molecular markers were not sufficient to selectively and sensitively define GSCs, the 597 
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definition of GSCs has been difficult to explicitly define. Rich and co-workers recently 598 

proposed that GSCs should rather be defined functionally based on their capacity for self-599 

renewal and establishing heterogenic tumors in vivo [4]. Similar to definitive characteristics 600 

of GSCs, there has also been conflicting views about the origin of GSCs. While some reports 601 

identify them as reprogrammed astrocytes, most evidence suggests that the origin of GSCs 602 

are glial stem cells that reside in the subventricular zone of the brain [4, 202]. These cells 603 

generate neural progenitors and neuroblasts, and among phosphatases, PTEN [203, 204] 604 

and PP2A [205, 206] have been implicated in inhibiting the self-renewal and proliferation of 605 

these neural progenitor cell types. CIP2A was also recently shown to support neural stem 606 

cell fate of the neural crest cells which give rise to neuroblastomas [207].  607 

PTEN is mutated in about 35% of GB tumors and represent one of the most frequent genetic 608 

alterations in GB [201]. Genetic deletion of PTEN was originally shown to co-operate with 609 

loss of P53 in driving mouse GB development [208]. Loss of PTEN also synergizes with 610 

several other oncogenic events in development of murine GB, which shares high functional 611 

similarities with human GB [209, 210]. Furthermore, by using a mouse model in which three 612 

tumor suppressors, Nf1, Trp53, and Pten were genetically deleted in adult committed neural 613 

and oligodendrocytes progenitors, Parada and co-workers showed that these adult 614 

subventricular zone cells were reprogrammed to two distinct type of GSCs with human GSC 615 

resemblance [211]. An important conclusion from these studies was that the cell of origin in 616 

which the tumor suppressors were inactivated defines the type of GB. More recently, in an 617 

attempt to address the fundamental differences in molecular mechanisms by which mouse 618 

and human cells undergo malignant transformation [32, 212], it was demonstrated that also 619 

neural stem cells (NSCs) derived from PTEN-depleted human embryonic stem cells 620 

underwent neoplastic transformation towards a GSC phenotype [213]. Mechanistically, the 621 

tumor suppressor role of PTEN in the human NSCs was proposed to be mediated by nuclear 622 
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PTEN-mediated direct inhibition of transcription factor CREB, and subsequent inhibition of 623 

PAX7 transcription [213]. Very interestingly, protein but not lipid phosphatase activity of 624 

PTEN was required for suppression of both NSC cell migration and CREB phosphorylation. 625 

Whether protein phosphatase activity of PTEN is critical for other GSC functions remains to 626 

be revealed, however, these results highlight that in addition to its lipid phosphatase activity 627 

toward PIP3, protein phosphatase activity of PTEN might have tumor suppressor role in 628 

NSCs as well. Together, these results indicate a fundamental role for PTEN as a tumor 629 

suppressor phosphatase which suppresses GSCs functions in GB.   630 

Whereas PP2A subunit genes were found genetically intact in almost all sequenced human 631 

GBs [48], high expression of three PP2A inhibitor proteins PME-1, ARPP-19 and CIP2A 632 

correlate with disease aggressiveness in GB [118, 214, 215]. Additionally, these PP2A 633 

inhibitor proteins were overexpressed in GSC cell lines [47, 118], and inhibition of either 634 

CIP2A or PME-1 has been shown to inhibit clonogenic growth of primary GSC lines [48, 635 

118]. Similar to other cancer types [216], the overexpression of CIP2A in GSC cells was 636 

stimulated by constitutive CHK1 kinase activity via GSC transcription factor STAT3 [118]. 637 

Therefore, constitutive DNA damage, which is very apparent in GB [217], could promote 638 

viability of GSC by this recently discovered feed-forward loop between CHK1, STAT3 and 639 

CIP2A. Further supporting the role of CIP2A-regulated PP2A-B56 complexes as GSC tumor 640 

suppressors, the mRNA expression of B56a and B56g was downregulated in GBs versus 641 

normal samples [118]. Of a potential therapeutic relevance, a recent study demonstrated 642 

that pharmacological activators of PP2A-B56, the SMAPs [46], killed CSCs very efficiently 643 

in vitro, regardless of their transcriptional subtype or mutational background [47]. In vivo, 644 

orally dosed SMAP therapy significantly inhibited growth of intracranial GB cells with CSC 645 

properties, and extended the lifespan of the tumor bearing mice by 70% [47]. Moreover, in 646 

line with the results indicating that PP2A reactivation overcomes kinase inhibitor resistance 647 
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in other cancer types [20, 49, 218, 219], PME-1-mediated PP2A inhibition was found to drive 648 

kinase inhibitor resistance in GSCs [48]. On the contrary to these studies which clearly 649 

implicate the pharmacological PP2A reactivation as a potential GSC-targeted therapeutic 650 

approach, a recent study demonstrated that high PP2Ac catalytic activity in GB significantly 651 

correlates with a poor patient survival [220]. These seemingly paradoxical findings can be 652 

explained by the fact that whereas reactivation of certain tumor suppressive PP2A 653 

complexes by SMAPs [22] or by inhibition of PP2A inhibitor proteins [48, 118] targets specific 654 

CSC survival pathways, inhibition of total PP2A activity by chemical PP2A inhibitors such 655 

as okadaic acid [220] and LB100 derivatives [221] induces a widespread S/T 656 

phosphorylation imbalance and GSCs cannot compensate it. Nevertheless, the results 657 

obtained by okadaic acid or LB100 should be treated with caution in relation to PP2A CSC 658 

functions, because these compounds also efficiently inhibit related oncogenic phosphatase 659 

PP5 [23, 109, 222].  660 

In summary, including the evidence about SHP2, DUSPs and CDC25 [72, 79, 223], it is 661 

clear that phosphatases have important pathogenic roles in GSCs. Due to the lack of any 662 

major advance in GB therapies in the last 15 years, and the central role of GSCs in GB 663 

therapy resistance [4], the recent development of orally bioavailable small molecules 664 

targeting GSC phosphatases [23, 47, 72, 73] might provide new therapeutic opportunities 665 

for these patients. Especially, regarding the plasticity of GSCs, and the role of SHP2 and 666 

PP2A in therapy-induced signaling rewiring and GSC drug responses [19, 20, 48, 72, 224], 667 

their blockade in combination with existing therapies could inhibit drug tolerance in GB.  668 

 669 

CSC phosphatases in other cancer types 670 
 671 

PTEN loss in prostate stem/progenitor cells triggers prostate cancer tumor initiation and 672 

invasion [225]. Moreover, constitutive activation of the RAS/MAPK signaling pathway co-673 



 

 27 

operates with PTEN loss to favor metastasis in prostate cancer stem/progenitor cells [226]. 674 

Interestingly, CIP2A was recently implicated in prostate CSCs [115]. Furthermore, our 675 

unpublished findings suggest that those PrCa tumors that harbor both complete loss of 676 

PTEN, and overexpression of PP2A inhibitor protein PME-1 (i.e. double tumor suppressor 677 

phosphatase inhibition), are particularly aggressive [227].  678 

Testicular cancers are considered to be of stem cell origin [228], and express the pluripotent 679 

stem cell marker OCT4 [228, 229]. CIP2A was recently shown to be co-expressed with 680 

OCT4 in 95% of a small number of testicular cancer samples, and OCT4 was shown to drive 681 

CIP2A gene promoter activity in testicular cancer cells in vitro [229]. Interestingly, CIP2A 682 

and MYC double positivity was detected in testicular cancers, but MYC was not expressed 683 

in normal CIP2A positive testicular stem cells, spermatogonia [230]. Moreover, double 684 

positivity for OCT4 and CIP2A associated with poor differentiation in head and neck 685 

squamous cell carcinoma (HNSCC) cells, and a worse survival in radiotherapy treated 686 

HNSCC patients [229]. The PP2A inhibitor SET was recently shown to drive stemness 687 

characteristics in gastric cancer cells via E2F1. Although the study did not utilize gastric 688 

CSCs, the authors demonstrated that SET promoted stem cell-like sphere growth of 689 

established cell lines and its overexpression increased expression of stem cell associated 690 

CD44 [231]. Interestingly, inhibition of SET by OP499 selectively inhibited spheroid growth 691 

of gastric cancer cells and had significant antitumor effect in a xenograft model.  692 

In small cell lung cancer (SCLC), protein kinase A (PKA) activity is required for propagation 693 

of SCLC stem cells and its genetic ablation, or inhibition by pharmacological reactivation of 694 

PP2A was found to suppress SCLC expansion in cell culture and in vivo [232]. In non-small-695 

cell lung cancer (NSCLC) cells, P38 kinase activity has been shown to suppress CSC 696 

properties [233]. A recent study by Deng et al. has shown that elevated expression of WIP1 697 

correlates with reduced levels of activated P38, and increased expression of CSC markers 698 
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in NSCLC tissues. Functionally, WIP1 was found to promote NSCLC CSC properties by 699 

inhibiting P38 activity, and pharmacologic inhibition of WIP1 inhibited CSC properties in 700 

NSCLC cells in vitro and in vivo [234]. 701 

Examples of phosphatases implicated in breast cancer stem cells (BCSC) include different 702 

DUSPs and PTEN. Boulding et al. documented that DUSP1, 4 and 6 differentially contribute 703 

to the formation of CD44hi/CD24lo/EpCAM+ BCSCs [80]. Similar to its putative tumor 704 

suppressor role in DBCL [197], DUSP4 loss has been functionally linked to BCSC 705 

phenotypes, breast cancer progression, and therapy resistance [235-238]. Another 706 

interesting indication for the roles of DUSPs in BCSC was published by Semenza’s 707 

laboratory recently [239]. They demonstrated that chemotherapy-induced HIF1 tuned DUSP 708 

expression balance through inhibition of DUSP16 and induction of DUSP9. As a result, 709 

breast cancer cells cultured in stem cell like conditions displayed decreased p-ERK and 710 

increased P38 MAPK activity, resulting in vivo in Nanog-mediated BCSC enrichment [239].  711 

The epithelial-mesenchymal transition (EMT) increases self-renewal capability of tumor cells 712 

[240]. As shown by a recent study, restoration of PTEN expression reverses EMT, and 713 

inhibits CSC capacity of breast cancer cells via dephosphorylation and downmodulation of 714 

the adaptor protein Abi1 [241]. Prognosis of patients with advanced-stage endometrial 715 

cancer remains poor [242]. A recent study demonstrated that DUSP6 promotes expression 716 

of CSC markers ALDH1, NANOG, SOX2 and OCT4A, and enhances sphere formation 717 

ability of endometrial cancer cell lines [243]. In patients with endometrial cancers, elevated 718 

expression of DUSP6 associates with a shorter progression-free and overall survival. These 719 

results suggest that DUSP6 could be a therapeutic target to eliminate CSCs in endometrial 720 

cancer [243]. 721 

 722 

 723 



 

 29 

Conclusions 724 

Phosphatases play major roles in CSC-mediated self-renewal during cancer initiation and 725 

contribute to therapy resistance in several cancer types. Despite this, our understanding of 726 

the role of phosphatases in CSC is lagging severely behind of kinases and other cellular 727 

signaling mechanisms. Therefore, characterization of the roles of many entirely unstudied 728 

phosphatases in CSC and/or further clarification of the precise roles of the already 729 

established important oncogenic and tumor suppressor phosphatases might have a 730 

transforming impact. Considering recently emerging pharmacological opportunities for 731 

phosphatase modulation [22, 23, 71, 73], and role for many of these druggable 732 

phosphatases in CSCs, it will be important to evaluate whether the phosphatase targeting 733 

compounds would open novel therapeutic opportunities for CSC-targeted therapies. 734 

Regarding non-genetic therapy-induced drug tolerance [13, 14], recent studies have 735 

demonstrated a profound impact for phosphatase modulators in cancer therapy responses 736 

[19, 20, 23, 48, 49, 51, 70, 73, 120, 151, 218, 219, 221]. This further indicates that 737 

combinations of CSC phosphatase targeted therapies, with existing cancer therapies could 738 

provide clinically meaningful benefits. Especially in the case of CSC pathways for which 739 

there are no currently approved targeted therapies, such as HH and NOTCH, further 740 

understanding how phosphatase targeting interacts with these pathways might open entirely 741 

novel therapeutic opportunities. In theory, it could also be possible to combine the 742 

phosphatase targeting therapies based on the knowledge how different CSC pathways co-743 

operate in the CSC apoptosis resistance and emerging information how phosphatases 744 

regulate these pathways (Fig. 2).  745 

  746 
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 1529 

Figure legends 1530 

 1531 

Figure 1. Families of cancer stem cell phosphatases. Based on their amino acid 1532 

substrates, phosphatases are divided into (A) serine/threonine phosphatases, (B) tyrosine 1533 

phosphatases (PTPs) or (C) dual-specificity phosphatases that are capable of 1534 

dephosphorylating both serine/threonine and tyrosine residues or tyrosine residues and 1535 

lipids. (A) PP2A is a serine/threonine phosphatase that functions as a trimeric complex in 1536 

which a member from any four B-subunit families (B55, B56, B72 or STRN) defines the 1537 

substrate specificity. PP2A complexes are inhibited by oncogenic inhibitor proteins PME-1, 1538 

SET, CIP2A/NOCIVA and ARPP19. WIP1 (PPM1D) instead is a monomeric 1539 

serine/threonine phosphatase consisting of a catalytic and a regulatory domain. (B) 1540 

Representative examples of cancer stem cell relevant non-receptor type PTPs which are 1541 

monomeric proteins encoded by a single gene but composed of indicated functional 1542 

domains that are relevant for their activity regulation and substrate recognition. (C) 1543 

Representative examples of cancer stem cell relevant dual specificity phosphatases. 1544 

Whereas DUSPs dephosphorylate both tyrosines and serine/threonines on mitogen-1545 

activated protein kinases, PTEN dephosphorylates a lipid, phosphatidylinositol PIP3 and 1546 

tyrosines, serines, or threonines.  1547 

 1548 

Figure 2. Phosphatase-mediated regulation of cancer stem cell signaling pathways. 1549 

Phosphatases involved in each of the depicted pathways are colored yellow. Direct 1550 

regulation of the signaling pathway is shown with a connective line between a phosphatase 1551 

and a specific target protein, whereas those phosphatases that either have been shown to 1552 
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indirectly regulate phosphorylation, or the direct dephosphorylating activity is unclear, are 1553 

presented adjacent to their target proteins. 1554 

 1555 
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