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Abstract

Background: Transition to psychosis (PT) is the most adverse outcome of the Clinical High-
Risk (CHR) syndromes. The second phase of the North American Prodromal Longitudinal Study
(NAPLS-2) proposed a psychosis risk calculator for patients with ultra-high risk (UHR) states
operating on 8 clinical-neurocognitive variables.! The model’s generalizability has not been suf-

ficiently validated across diverse risk cohorts.

Methods: We validated the original model in the multi-site European PRONIA cohort (334 pa-
tients with CHR or recent-onset depression (ROD); 23/3 PT cases with CHR/ROD) by testing its
performance in patients with UHR syndromes, UHR and basic symptoms (CHR), and a broader
risk population encompassing patients with CHR states or ROD (CHR+). Using reciprocal exter-
nal validation, we assessed how the choice of algorithm and the risk enrichment in different dis-

covery populations moderated the prediction of PT in the validation samples.

Outcomes: After calibrating the PRONIA to the NAPLS-2 data, the original model predicted PT
with a balanced accuracy [BAC(sensitivity,specificity)] of 64%(68%,59%) in the PRONIA-
UHR, 70%(78%,61%) in CHR, and 70%(77%,62%) in CHR+ patients. Prognostic performance
improved from UHR to CHR+-based models due to increased precision in NAPLS-2 UHR pa-
tients [UHR-based: 58%(61%,56%), CHR+-based: 67%(68%,66%)]. Attenuated psychotic
symptoms predicted PT across risk levels, while age and processing speed were additionally pre-
dictive in the CHR+ cohort.

Interpretation: Multivariate models operating on the NAPLS-2 risk pattern reliably prognosti-
cate PT in youth with diverse risk syndromes. Further studies should investigate the therapeutic

utility of this risk signature, as well as the additional value of neurobiological information.
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Research in context

Evidence before the study

We systematically searched PubMed to extract the relevant evidence from all papers published
from inception to June 25" 2020 using the following search terms: (“psychosis” OR “schizophre-
nia”’) AND (“risk calculator’”) AND (“validation”). We identified 14 unique records, none of
which involved the validation of a risk calculator model predicting likelihood of conversion to
psychosis from an at-risk state in an external sample with a sufficiently clinically diverse risk co-
hort. Although multiple risk calculators consisting of clinical-neurocognitive measures, neuroim-
aging measures, or both, have been developed, cross-validation and robust external validation—
which are essential for determining prognostic precision and ultimate clinical utility—has only
been implemented with the individualized risk calculator developed in the second phase of the
North American Prodrome Longitudinal Study (NAPLS-2). While this calculator has been vali-
dated in clinical-high risk cohorts in the US and Shanghai, it is still unknown how this model
generalizes to diverse clinical risk cohorts, such as those in the European-based PRONIA study,
and how Cox proportional hazard (Cox PH)-based regression models compare to different types

of predictive algorithms.

Added value of the study

This is the first study to demonstrate generalizability of a risk prediction model for the develop-
ment of psychosis in an international, multi-site framework within diverse risk samples including
high-risk individuals with basic symptoms and affective disorders. We implemented strategies to
account for cross-consortium differences between NAPLS-2 and PRONIA and showed that the

model initially developed in the NAPLS-2 sample generalizes to a more transdiagnostic risk co-



Koutsouleris, Worthington et al. External validation of the NAPLS-2 psychosis risk calculator

hort. Further, not only did we show that the existing model generalizes to a more diverse risk co-
hort, we also demonstrated that the enrichment of the PRONIA validation sample with individu-
als experiencing basic symptoms and/or recent onset-depression resulted in the development of
even higher performing prediction models when tested using both cross-validation and external

validation in the NAPLS-2 sample.

Implications of all available evidence

Our study uses external validation strategies to demonstrate how prognostic models involving
clinical-neurocognitive measures may be optimized to operate across diverse risk populations
and healthcare settings across the globe, ultimately contributing to the increasing precision with
which clinicians may be able to predict the development of psychosis in transdiagnostic popula-

tions.
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INTRODUCTION

Over the last 30 years, research criteria defining the Clinical High-Risk (CHR) states for psychosis
have been successfully established in academic sites around the globe.?* The purpose of these
criteria has been to early detect adolescents and young adults with an increased risk for developing
psychotic disorders, study potential disease-modifying treatments in these risk cohorts and ulti-
mately implement these strategies as a new approach of preventive psychiatry in real-world clinical
care. Previous research showed that the pre-test patient referral process combined with the assess-
ment of these CHR criteria identifies a risk population with a several hundred-fold increased inci-
dence for psychosis.® Yet, the observed three-year transition rates have continuously dropped from
36% to currently 22% as more sites adopted and intensified early recognition activities.® Hence,
due to this low prognostic value and the laborious, skill-dependent assessment of high-risk criteria,
the clinical utility and scalability of the CHR paradigm have been questioned.’

To increase the prognostic value of the CHR designation, previous studies have proposed
to augment the actual two-tier risk enrichment process—patient referral followed by CHR assess-
ment—using algorithms that accurately measure the risk of psychosis in the individual CHR pa-
tient. These proof-of-principle studies demonstrated that individualized risk quantification could
be achieved using Cox regression or machine learning models trained to estimate patients’ disease
transition likelihoods based on clinical, neurocognitive, neuroimaging, metabolic or genetic infor-
mation.>®12 If these stratification models could operate across risk cohorts and diverse healthcare
environments, a more fine-grained and modular clinical management of CHR patients could be
implemented: practitioners could tailor specific disease-interceptive strategies and flexibly com-
bine them with treatments that target the varying array of psychiatric comorbidities and functional

impairments present in these patients.®
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However, for this vision to become reality major challenges must be addressed. One sig-
nificant concern is that the generalizability of most risk calculators has not even been tested using
cross-validation, let alone external validation approaches.* An exception is the clinical-neurocog-
nitive risk calculator developed by the second phase of the North American Prodromal Longitudi-
nal Study (NAPLS-2).! Based on 8 phenotypic variables, this Cox proportional-hazards (Cox-PH)
model predicts PT with a sensitivity of 66% and specificity of 72% at a 20% predicted risk cut-
off. So far, the NAPLS-2 model has been validated in independent CHR cohorts from the US®
(sensitivity=58.3%, specificity=72.6%) and Shanghai (sensitivity=71.7%, specificity=45.8%).1°

Due to these varying sensitivity and specificity levels, further validation is needed to test
the model across risk populations and healthcare systems. Furthermore, as attenuated or brief lim-
ited intermittent psychotic symptoms may not mark the only pathway to psychosis,*’ % the
NAPLS-2 risk calculator should be probed across diverse risk cohorts, including youths with basic
symptoms and affective disorders, as recently proposed by transdiagnostic studies of psychosis
risk.2*-2! Finally, within this external validation framework, the original model should be compared
with different predictive algorithms operating on the same NAPLS-2 variables to identify the
model with the optimal prognostic precision across different risk populations.

The European PRONIA study (Personalised Prognostic Tools for Early Psychosis Man-

agement; www.pronia.eu)?? recruited and followed such a diverse risk population, encompassing

adolescents and young adults with different CHR states or recent-onset depression (ROD). In the
current study, we first performed the external validation of the original NAPLS-2 model in PRO-
NIA and then reciprocally trained, validated and compared different Cox-PH algorithms versus
Support Vector Machine (SVM) models in the NAPLS-2 and PRONIA cohorts. In these analyses,

we evaluated whether iteratively narrowing the discovery population from a cohort encompassing
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both CHR and ROD to patients experiencing only ultra-high-risk syndromes (UHR) moderated

prognostic performance.

METHODS

Participants
Participants were drawn from the NAPLS-22% and the PRONIA studies.?? NAPLS-2 is an 8-site
observational consortium study examining the predictors and mechanisms related to transition to
psychosis in the CHR population. Participants from NAPLS-2 were patients aged 12-35 who met
criteria for an ultra-high (UHR) risk syndrome for psychosis as determined by the Criteria of
Prodromal States (COPS)?* and as measured by the Structured Interview for Psychosis-risk Syn-
dromes (SIPS).?>% The PRONIA consortium is an observational consortium study across 7 sites
located in 5 European countries aiming to implement personalized prognostic tools for the devel-
opment of affective and non-affective psychoses. Participants from PRONIA were patients aged
15-40 who experienced (a) clinical high-risk syndromes for psychosis meeting UHR criteria
and/or basic symptoms criteria, or (b) recent-onset depression (ROD). In PRONIA, CHR states
were defined by 9 items of the Schizophrenia Proneness Instrument (SP1-A) which constitute the
basic symptoms pattern termed cognitive disturbances (COGDIS),?"? or operationalized as a
UHR syndrome using a modified version of the SIPS.?2226 |ndividuals with ROD met criteria
for an initial major depressive episode within 3 months of intake as determined by the Structured
Clinical Interview for DSM-IV-TR (SCID).?®

The aim of our external validation strategy was to measure the performance of the NAPLS-
2 risk calculator in predicting psychosis transition (PT)*° in the PRONIA sample and vice versa.
Disease transition was established when at least one of the 5 positive symptom items in the Struc-

tured Interview for Psychosis-Risk Syndromes? reached psychotic intensity daily for at least 7
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days. Group-level differences in sociodemographic, clinical, and functional variables were com-
pared between transition (PT) and non-transition (NT) patients in the NAPLS-2 and PRONIA co-

horts (Table 1).

Risk Calculator Assessments

The original NAPLS2 risk calculator was developed with eight variables previously shown to be
associated with PT. Of these variables, six were also assessed in the PRONIA study: age; posi-
tive symptom severity on the individual SIPS items measuring unusual thought content and sus-
piciousness; score on the Brief Assessment of Cognition in Schizophrenia (BACS) symbol cod-
ing test;3! score on the Hopkins Verbal Learning Test-Revised (HVLT-R);*? decline in social
functioning over the past year as measured by the Global Functioning Social Scale (GFS);* and
family history of psychotic disorders in a first-degree relative. The two variables that were omit-
ted from the original risk calculator model, stressful life events as measured by the Research In-
terview Life Events Scale®* and childhood traumas as measured by the Childhood Trauma and
Abuse Scale,® did not have comparable measures in PRONIA and were also not significant at
either the univariate or the multivariate level in the original risk calculator! and thus were ex-

cluded from the models trained and tested in this study.

HARMONY validation framework

A framework for reciprocal validation between the NAPLS-2 and PRONIA studies was made
possible through the Harmonization of At Risk Multisite Observational Networks for

Youth (HARMONY) collaboration, which also includes the PSYSCAN Consortium

(http://psyscan.eu/) and the Philadelphia Neurodevelopmental Cohort (PNC). This framework

facilitates the development and validation of models predictive of psychosis development within

and across independent datasets at the international scale. All analyses were performed using the

9
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Virtual Pooling and Analysis of Research Data (ViPAR) portal.*® This secure, web-based plat-
form utilizes a centralized cloud server to securely and temporarily retrieve anonymized data
from remote servers on demand. Once analyses are complete, output from the analyses can be
accessed by the user and the data are removed from server random-access memory. The use of
the VIPAR portal was approved by the ethics committees of the 15 participating study sites in the

NAPLS-2 and PRONIA consortia.

External validation and evaluation of risk calculators

The original risk calculator described in Cannon et al. (2016) employed Cox-PH to determine the
individual likelihood of PT in the NAPLS-2 sample. Prior to applying this model to the PRONIA
data, we imputed missing values (26 out of 2004) using a standardized Euclidean distance-based
nearest-neighbour approach.?? Then, the regression coefficients of the NAPLS-2 risk calculator
were applied to the full PRONIA sample (CHR+, n=334 total), the CHR-only sample (n =167)
and the UHR-only sample (n=126). Patients were labelled with a future PT at a predicted risk of
0.2, as described in the original publication. Next, we evaluated the effect of adjusting the PRO-
NIA data for consortium-level differences, by mean-centering each PRONIA sample to the
NAPLS-2 data prior to risk estimation. Finally, we removed consortium-level differences in the
entire PRONIA data using the PRONIA-UHR sample as reference and recomputed risk estimates
and prognostic group assignments in each PRONIA sample. The performance of the NAPLS-2
risk calculator in these three external validation iterations was measured in terms of sensitivity,
specificity, balanced accuracy (BAC), positive and negative predictive value (PPV, NPV), prog-
nostic summary index (PSI),%’ positive and negative likelihood ratios (LR+, LR-), and area-un-

der-the curve (AUC; see Table 2 and Figure 1).

10
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Then, we integrated our open-source machine learning software NeuroMiner (version

1.05; https://github.com/neurominer-git) into ViPAR and performed a reciprocal external valida-

tion of the NAPLS-2-based clinical-neurocognitive risk signature. The rationale of this analysis
was to evaluate the impact of different algorithms (univariate logistic regression [LR], Cox-PH,
linear and non-linear Support Vector Machines [SVM]) and increasingly narrow risk definitions
(CHR+, CHR, UHR) on prognostic performance. For all of the following experiments, we em-
ployed a repeated nested cross-validation design that used 10-fold cross-validation with 10 per-
mutations at the inner cycle (CV1) to determine optimal model parameters, and 10 repeats of re-
ciprocal external validation at the outer cycle (CV?>) to estimate model generalizability from
NAPLS-2 to PRONIA, and vice versa. Thus, in contrast to the single-model approach used by
Cannon et al (2016),* we produced 10 CV2-level prognostic ensembles for each consortium, each
composed of 100 CV1 models, which were applied to the respectively left-out data of the other
consortium. All modelling and data pre-processing steps were entirely wrapped into this nested
validation design, which involved scaling of the data to the range [0,1], nearest neighbour-based
imputation of missing values using the Euclidean distance, as well as mean-centering and stand-
ardization of the CV1 test and CV> validation data based on the parameters derived exclusively
from the respective CV1 training samples.

Due to the global risk estimate differences found between the unadjusted PRONIA data
and the NAPLS-2 sample in the external validation analysis, we implemented a new, adaptive
Cox-PH algorithm into NeuroMiner. Instead of using absolute risk cut-offs, this algorithm identi-
fies a risk percentile that maximally separates PT from NT cases and applies this percentile to the
test cases’ distribution of risk estimates. Thus, the Cox-PH model learns to calibrate itself to risk
samples with divergent absolute risks distributions but similar distribution shapes. Due to the

highly unequal samples sizes of PT and non-transition (NT) cases in the two databases, we also

11
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tested whether combining this Cox-PH algorithm with an adaptive synthetic up-sampling method
for the PT minority class would improve prediction performance (ADASY N algorithm® with
pre-defined parameters: p=0.7, ksmote = 5, and Kaensity=11). These multivariate algorithms were
compared with machine learning strategies consisting of linear Lo-regularized, Li-loss SVM3®

— 2[—6E—Z>+4

(regularization parameters C ] ) and non-linear SVM using Radial Basis Functions*

= 21752y In addition, we compared these algo-

(c = 2762 and kernel parameters y
rithms with simple univariate logistic regression. The models’ risk estimates or decision scores
were averaged across CV> repetitions and these out-of-training (OOT) predictions were evalu-
ated using the performance metrics described above (Table 3). In addition, a supplementary
leave-site-out cross-validation analysis across the pooled NAPLS-2 and PRONIA sites was con-
ducted to measure the stability of PT prognostication within the multi-site context of the study.
We compared algorithms in terms of median BAC differences at the CV2 level using
Quade’s non-parametric test**4? (Figure 2). The test was repeated for the classifier sets produced
by the PRONIA-CHR+, CHR, and UHR samples, and hence the omnibus-level P values were
corrected using the false-discovery rate (FDR),* followed by an FDR correction of pairwise
classifier comparisons in each significant test. Statistical significance was determined at 0=0.05.
Finally, we evaluated how the increasingly narrow definition of psychosis risk across the three
PRONIA discovery samples affected the algorithms’ ability to predict PT in NAPLS-2 (Figure

3, A). We also compared the original NAPLS-2 model with the five ensemble-based NeuroMiner

algorithms by evaluating their performance in the three PRONIA samples (Figure 3, B).

RESULTS

Group-level differences between samples

12
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In the NAPLS-2 sample, 84 participants experienced a transition to psychosis during the follow-
up period (transition rate: 14.1%). In the PRONIA sample, 26 (23 CHR and 3 ROD) participants
developed psychosis during follow-up (transition rate: 12.2%). PRONIA and NAPLS-2 cohorts
differed significantly on almost all examined sociodemographic, clinical, and neurocognitive
variables, the including variables analyzed by the NAPLS-2 risk calculator (Table 1, Suppl. Ta-
ble 1). Specifically, the PRONIA cohort was more than 5 years older, had more educational
years, a higher percentage of female patients in the PT group, and a lower percentage of non-
white participants. The PRONIA patients scored significantly lower on the SIPS-P1P2 summary
item. In the BACS symbol coding and HVLT tests, the PRONIA PT cases scored between the

NAPLS-2 non-transition and transition patients.

External validation of the NAPLS-2 model in the PRONIA study

Though based on AUC measures the NAPLS2 model replicated in the PRONIA sample both
overall and at the individual center level (see Supplement), the risk estimates based on the .2 cut-
off in predicted risk produced by the original NAPLS-2 in the unadjusted PRONIA-CHR+,
CHR, and UHR samples did not perform above chance levels due to highly unbalanced relation
between sensitivity and specificity (BAC=49.4%-50.9%, sensitivity=3.8%-4.5%, specific-
ity=94.3%-98.1%, Table 2 and Figure 1, A). The removal of mean variable offsets between
each PRONIA sample and the NAPLS-2 cohort, significantly increased performance across all
PRONIA samples, with a broader risk definition being associated with higher prognostic preci-
sion (CHR+: BAC=69.6%, sensitivity=76.9%, specificity=62.3%; CHR: BAC=69.6%, sensitiv-
ity=78.3%, specificity=61.0%; UHR: BAC=63.6%, sensitivity=68.2%, specificity=59.0%; Table
2 and Figure 1, B). When the PRONIA-UHR group served as reference sample for offset re-

moval, the specificity of the NAPLS-2 model increased at the cost of sensitivity both in the

13
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CHR+ sample (BAC=70.4%, sensitivity=57.7%, specificity=83.1%) and the CHR cohort

(BAC=65.2%, sensitivity=68.1%, specificity=66.7%; Table 2 and Figure 1, C).

Reciprocal external validation analyses

The reciprocal model discovery and validation of five different algorithms across the NAPLS-2
and PRONIA cohorts replicated the gains in prognostic precision when more broadly defined
risk cohorts were included in the analysis (Table 3). This effect was particularly apparent in the
NAPLS-2 UHR sample (Figure 3, A): When the five different PRONIA-derived models where
derived from the PRONIA-CHR+ sample, the average performance measured BAC=67.0%, sen-
sitivity=67.6%, specificity=66.4%. In contrast, when algorithms were developed using the PRO-
NIA-UHR group, their average performance in the NAPLS-2 cohort was BAC=58.1%, sensitiv-
ity=60.7%, specificity=55.5%. This increase could be observed across all tested algorithms, ex-
cept for the linear SVM, whose BAC ranged between 64.7% (CHR+) and 66.6% (CHR), and
which performed best in the NAPLS-2 UHR (BAC=65.1%). Statistical classifier comparisons
conducted across the full reciprocal external validation analysis (Figure 2, A & B) confirmed
this finding by showing that the linear SVM outperformed all other algorithms when the PRO-
NIA-training and validation sample was confined to the UHR or CHR subgroups. In contrast, our
adaptive Cox-PH algorithm (with or without ADASY N) achieved superior prediction perfor-
mance in the CHR+ sample, which included both the PRONIA-CHR and ROD patients. The
supplementary leave-site-out analysis conducted across the UHR, CHR and CHR+ risk levels
showed that the site-level variability of prognostic performance decreased from UHR to CHR+,
as measured by the difference between the full sample and the mean (SD) performance metrics

computed across sites (see Suppl. Table 5).

14
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A qualitative comparison of predictive feature relevance between the Linear SVM and adap-
tive Cox-PH, as measured using the cross-validation ratio,?? revealed commonalities and differ-
ence between algorithms, varying with the three risk enrichment levels (Figure 2, C): When the
discovery sample was limited to UHR patients, feature profiles were similar between algorithms,
except for the HVLT, which showed a high negative association with PT prediction in the linear
SV M. Broadening the risk cohort to all PRONIA patients, increased the predictive value of both
age and the BACS digit symbol coding test, while the HVLT importance was reduced in the lin-
ear SVM. Finally, differences between the five algorithms and the original NAPLS-2 risk calcu-
lator emerged when NAPLS-2 served for model discovery (Figure 3, C): In the PRONIA data,
the highest prognostic performance was measured for the adaptive Cox-PH algorithm with
(mean[SD] BAC=68.3%[4.4%]) or without ADASYN (68.6%[2.1%]), which was slightly in-
creased compared to the original NAPLS-2 model combined with a priori mean-centering of

each PRONIA sample to the NAPLS-2 data (67.6%[3.5%]).

INTERPETATION

The external validation of prognostic models has been identified as the major bottleneck and
translational step for their implementation in clinical real-world settings.** In this regard, a recip-
rocal external validation environment that facilitates a standardized framework for model ex-
change and comparison between independent single- and multi-site projects may have the poten-
tial to mitigate multiple sources of bias caused by the idiosyncrasies of study purposes, patient
recruitment strategies and predictive model designs.*® To our knowledge, the HARMONY con-
sortium, which authored the present study, is the first initiative to set up such a secure interna-
tional forum for collaborative model discovery and validation in the field of psychosis prediction

research and data analytics.
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The HARMONY framework allowed us to test the generalizability and prognostic value of
the NAPLS-2 psychosis risk signature! both at the international scale and across diverse risk
samples provided by the European PRONIA project.?? We encountered significant consortium-
level differences between the NAPLS-2 and PRONIA cohorts, which were likely fuelled by sys-
tematic variation in participant referral, ascertainment, enrolment and retainment, resulting in
two study cohorts that differed on sociodemographic (age, ethnicity) and clinical parameters (se-
verity of attenuated psychotic symptoms). A key observation of the current work was that these
differences considerably impaired the generalizability of the original risk calculator but could be
overcome by mean-centering each predictor of the PRONIA sample to the respective variable of
the NAPLS-2 cohort. This simple calibration procedure enabled the original model to predict PT
in the PRONIA-UHR cohort with a 5.4% lower BAC compared to the NAPLS-2 discovery pop-
ulation (BAC=69%). Based on the observation of project-level differences between NAPLS-2
and PRONIA, we developed a new Cox-PH algorithm which learns an optimal relative risk cut-
off compared to the fixed, absolute risk threshold (p=0.2) of the original risk calculator.! Based
on this algorithm, we were able to show that the generalizability gap can be reduced to 2.8%.
This finding is highly relevant for the successful clinical implementation of the risk calculator, as
target populations will inevitably differ in their levels of absolute risk for the development of PT,
as encountered in the NAPLS-2 sample (optimal probability cut-off for PT assignment: p=0.267)
and the PRONIA-UHR cohort (p=0.184).

Furthermore, we observed that univariate logistic regression significantly trailed behind all
multivariate methods, suggesting that generalizable prognostic precision can only be achieved
when the relationships between psychosis risk variables are algorithmically modelled into a risk

pattern. Among the pattern recognition algorithms, the linear SVM algorithm slightly but signifi-
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cantly outperformed Cox-PH in target populations encompassing only patients with CHR syn-
dromes. The analysis of feature relevance indicated that the former algorithm learned a more
complex clinical-neurocognitive pattern, while the Cox-PH model put less emphasis on neu-
rocognitive information. As SVMs intrinsically learn decision boundaries between opposite clas-
ses by maximizing the distance between most similar cases, the higher complexity of the SVM
pattern may have increased prognostic precision within a more homogenous risk population.*® In
contrast, the Cox-PH algorithm attained higher prognostic precision when the target population
comprised both patients with CHR syndromes as well as patients with ROD. In this broader risk
sample, the Cox-PH model identified attenuated psychotic symptoms, social functioning decline,
and a positive family history as most reliable core predictors of subsequent PT. However, in
summary, we did not find major differences between multivariate survival algorithms and SVM-
based machine learning approaches. This finding was expected because the analysed risk space
was spanned by just 6 variables, previously picked among many other potential sociodemo-
graphic, clinical, behavioural and neurocognitive predictors through a decade-long literature-
driven and expert-based feature selection process.l4"8

Strikingly, the present study revealed that a transdiagnostic risk designation which enriches
the core group of CHR individuals with young patients experiencing their first episode of major
depression, leads to risk calculators with superior, more generalizable, and stable prognostic per-
formance. This finding is in line with previous studies,'®?° suggesting that elevated risk for psy-
chosis is not confined to CHR states but extends to other ‘neighbouring’ or comorbid conditions
which typically co-occur with these syndromes. Of note, we observed that the increased prognos-
tic performance of CHR+-based models was not driven by higher specificity due to the inclusion
of ROD patients properly labelled as NT. Instead, we found that model performance increased

particularly in the NAPLS-UHR sample, and, in addition, was more stable across study sites
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compared to UHR-only derived algorithms. This finding may point to an increased representa-
tional power of the CHR+-trained models due to the extension of the risk spectrum towards
lower-risk individuals with early-onset affective disorders, who may share bio-behavioural fea-
tures of psychosis.**~? Future studies should investigate whether this enrichment effect is spe-
cific to affective disorders or can also be traced in other conditions which evolve in adolescence
and young adulthood.>

In summary, we found that the clinical-neurocognitive risk calculator previously described
by the NAPLS-2 study provides an internationally scalable tool for individualised psychosis risk
ascertainment in youth with diverse psychosis risk syndromes. The underlying risk signature
may extend beyond the prevailing CHR-focused concepts of the current early recognition litera-
ture. This may have important ramifications for the design of future prognostic studies and the
development of transdiagnostic precision medicine tools in the youth mental health field. The
HARMONY initiative provided a useful resource for integrated model discovery and validation
at the highest level of validity achievable with retrospective data. Future work should assess the
prospective generalizability of the NAPLS-2 derived risk signature, its clinical utility for treat-

ment stratification and the potential additive value of biological information.
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Table 1. Sociodemographic, clinical, and functional differences between non-transition and transition cases in the
NAPLS-2 and PRONIA samples.

NAPLS-2 PRONIA
Variable NT PT NT PT Wald »?(df) P

Age, mean (SD) 18.6 (4.4) 18.1 (3.6) 24.7 (5.8) 23.5(5.9) ¥?(3) = 352.6 0.008
Sex, % Female 43% 38.1% 49.1% 61.5% ¥’(3)=8.8 0.033
Race, % non-white 41.8% 44% 13% 7.7% ¥?(3) =76.9 0.017
Years of education, mean  11.3 (2.9) 11.0(2.5) 14.3 (2.9) 13.3(2.5) v2(3) = 228.9 0.008
SD

I(:am)ily history, % no his-  84.4% 81% 90.6% 80.8% ¥’(3)=8.7 0.042
tory

Baseline positive symp- 5.9 (2.2) 7.1(2.3) 2.6 (2.6) 5.5(2.8) v2(3) = 466.5 0.008
toms (p1+p2), mean (SD)

HVLT, mean (SD) 258 (5.1) 242(55) 285(27)  265(30) #3)=938  0.008
BACS, mean (SD) 57.4(13.2) 53.2(11.6) 61.1(11.8) 55.0(13.0) #(3)=331  0.025
Change in GFS, mean 070(1.0)  099(12) 075(0.9) 096(L1) #3)=76 0.054
(SD)

Abbreviations: NT non-transition cases, PT transition cases, P P value of comparison
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Table 2. Results of the external model validation of the original NAPLS-2 risk calculator in the three PRONIA sam-
ples (CHR+, CHR, and UHR) with and without prior centering of the predictor variables to the means of the respective
NAPLS variables. Offsets corrections were computed between the NAPLS-2 cohort and the PRONIA UHR sample.

PRONIA Sens Spec BAC PPV NPV . )
SAmples TP TN FP FN [%] [%6] [%6] [%] [%] PSI[%] LR+ LR AUC
PRONIA data not mean-centered to NAPLS-2

CHR+ 1 302 6 25| 38 98.1 50.9 14.3 924 6.6 197 0.98 0.51

CHR 1 135 6 22| 43 95.7 50.0 14.3 86.0 0.3 1.02 1.00 0.50

UHR 1 99 6 21| 45 94.3 49.4 14.3 82.5 -32 080 101 0.49
PRONIA data mean-centered to NAPLS-2 using respective PRONIA sample as reference

CHR+ 20 192 116 6 | 76.9 62.3 69.6 14.7 97.0 11.7 204 037 0.70

CHR 18 8 55 5| 783 61.0 69.6 24.7 94.5 192 201 0.36 0.70

UHR 15 62 43 7| 682 59.0 63.6 25.9 89.9 157 166 054 0.64
PRONIA data mean-centered to NAPLS-2 using the PRONIA UHR sample as reference

CHR+ 15 256 52 11| 57.7 83.1 70.4 22.4 95.9 183 342 051 0.70

CHR 15 96 45 8| 65.2 68.1 66.7 25.0 92.3 173 204 051 0.67

UHR 15 62 43 7| 682 59.0 63.6 25.9 89.9 157 166 054 0.64

Abbreviations: TP number of true positives, TN number of true negatives, FP number of false positives, FN number
of false negatives, Sens Sensitivity, Spec Specificity, BAC Balanced Accuracy, PPV Positive Predictive Value, NPV
Negative Predictive Value, PSI Prognostic Summary Index, LR+ Positive Likelihood Ratio, LR- Negative Likelihood
Ratio, AUC Area-under-the Curve.
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Table 3. Algorithm comparisons in the reciprocal external validation (REV) experiments with performance measures com-
puted separately for the risk calculators trained on the NAPLS-2 UHR cohort or on the three PRONIA samples (CHR+,

CHR, and UHR).

Confusion matrix

Performance measures

25

Predictors TP TN FP FN ?g;]s S[(E}ﬁ]c '?{2)(]: 'E(;)\]/ 'E';)\]/ FO/SO ; LR+ LR- AUC
CHR+ enrichment level
LR [Full Sample] | 94 328 491 16 855 400 628 161 953 114 143 036 0.70
LR [NAPLS-2] | 68 270 241 16 810 528 669 220 944 164 172 036 074
LR [PRONIA] 26 58 250 0 100 18.8 59.4 9.4 100 9.4 123 0.00 0.79
Cox-PH [Full Sample] | 72 579 240 38 655 707 681 231 938 169 223 049 073
Cox-PH [NAPLS-2] 52 385 126 32 61.9 75.3 68.6 29.2 92.3 215 251 051 074
Cox-PH [PRONIA] 20 194 114 6 76.9 63.0 70.0 149 97.0 119 208 037 0.79
Cox-PH (+A) [Full Sample] | 78 560 259 32 709 684 696 231 946 177 224 043 074
Cox-PH (+A) [NAPLS-2] 60 333 178 24 714 65.2 68.3 25.2 93.3 185 205 044 0.72
Cox-PH (+A) [PRONIA] 18 227 81 8 69.2 73.7 715 18.2 96.6 148 263 042 0.78
Linear SVM [Full Sample] 82 478 341 28 74.5 58.4 66.5 194 94.5 139 179 044 0.73
Linear SVM [NAPLS-2] 63 278 233 21 75.0 54.4 64.7 21.3 93.0 143 164 046 0.72
Linear SVM [PRONIA] | 19 200 108 7 731 649 690 150 966 116 2.08 041 0.78
RBF-SVM [Full Sample] 58 680 139 52 52.7 83.0 67.9 29.4 92.9 223 311 057 074
RBF-SVM [NAPLS-2] | 41 431 80 43 488 843 666 339 909 248 312 061 0.73
RBF-SVM [PRONIA] 17 249 59 9 65.4 80.8 73.1 22.4 96.5 189 341 043 0.78
CHR enrichment level
LR [Full Sample] | 106 71 584 99.1 108 550 154 986 140 111 0.09 0.73
LR [NAPLS-2] 83 34 477 98.8 6.7 52.7 14.8 97.1 120 106 018 0.73
LR [PRONIA] 23 37 107 100.0 25.7 62.8 17.7 100 177 135 000 0.74
Cox-PH [Full Sample] 81 371 284 26 75.7 56.6 66.2 22.2 935 156 175 043 071
Cox-PH [NAPLS-2] 64 277 234 20 76.2 54.2 65.2 215 93.3 147 166 044 071
Cox-PH [PRONIA] | 17 94 50 6 739 653 696 254 940 194 213 040 0.75
Cox-PH (+A) [Full Sample] | 79 385 270 28 738 588 663 226 932 159 179 045 0.68
Cox-PH (+A) [NAPLS-2] 64 277 234 20 76.2 54.2 65.2 215 93.3 147 166 044 0.68
Cox-PH (+A) [PRONIA] | 15 108 36 8 652 750 701 294 931 225 261 046 0.74
Linear SVM [Full Sample] 80 381 274 27 74.8 58.2 66.5 22.6 934 160 179 043 0.72
Linear SVM [NAPLS-2] 64 291 220 20 76.2 56.9 66.6 22.5 93.6 161 177 042 0.72
Linear SVM [PRONIA] | 16 90 54 7 696 625 660 229 928 156 1.86 049 074
RBF-SVM [Full Sample] | 56 495 160 51 523 756 640 259 907 166 214 063 0.70
RBF-SVM [NAPLS-2] 44 384 127 40 52.4 75.1 63.8 25.7 90.6 16.3 211 0.63 0.70
RBF-SVM [PRONIA] 12 111 33 11 52.2 77.1 64.6 26.7 91.0 17.7 2.28 0.62 0.73
UHR enrichment level
LR [Full Sample] | 102 31 585 97.1 5.0 511 148 912 6.0 102 057 0.69
LR [NAPLS-2] 84 3 508 100 0.6 50.3 142 100 142 101 0.00 0.70
LR [PRONIA] | 18 28 77 857 267 562 189 903 93 117 054 0.69
Cox-PH [Full Sample] | 51 496 120 54 486 805 645 298 902 200 249 064 0.68
Cox-PH [NAPLS-2] | 37 427 84 47 440 836 638 306 901 207 268 0.67 0.68
Cox-PH [PRONIA] | 14 69 36 7 66.7 657 662 280 908 188 1.94 051 0.69
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Cox-PH (+A) [Full Sample] | 83 265 351 22 79.0 43.0 610 191 92.3 115 139 049 0.65
Cox-PH (+A) [NAPLS-2] | 72 187 324 12 85.7 36.6 61.2 18.2 94.0 122 135 039 0.66
Cox-PH (+A) [PRONIA] | 11 78 27 10 524 74.3 63.3 289 88.6 176 204 064 0.68

Linear SVM [Full Sample] | 75 366 250 30 71.4 594 654 231 924 155 176 048 0.69
Linear SVM [NAPLS-2] | 60 300 211 24 71.4 58.7 651 221 92.6 147 173 049 0.70
Linear SVM [PRONIA] | 15 66 39 6 71.4 62.9 671 278 91.7 194 192 045 0.69

RBF-SVM [Full Sample] | 12 583 33 93 114 94.6 530 26.7 86.2 129 213 094 0.70
RBF-SVM [NAPLS-2] 2 500 11 82 24 97.8 50.1 154 859 13 111 100 071
RBF-SVM [PRONIA] | 10 83 22 11 47.6 790 633 313 88.3 195 227 066 0.68

Abbreviations: LR Logistic regression, Cox-PH Cox Proportional Hazard model, SVM Support Vector Machine, RBF-
SVM Support Vector Machine with Radial Basis Kernel, +A Cox-PH (+ADASYN), TP number of true positives, TN num-
ber of true negatives, FP number of false positives, FN number of false negatives, Sens Sensitivity, Spec Specificity, BAC
Balanced Accuracy, PPV Positive Predictive Value, NPV Negative Predictive Value, PSI Prognostic Summary Index, LR+
Positive Likelihood Ratio, LR- Negative Likelihood Ratio, AUC Area-under-the Curve.
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Figure 1. NAPLS-2 risk calculator estimates for the 2-year transition risk of PT (red) versus NT cases (blue) in three
different risk cohorts of PRONIA (CHR+: Sample comprising both CHR and ROD patients, CHR: Sample consisting
only of CHR patients, UHR: Sample consisting only of patients fulfilling UHR criteria). Predictor variables were
either not adjusted for mean differences to the NAPLS-2 data (A), adjusted using the respective PRONIA sample (B),

or adjusted using the PRONIA-UHR sample as reference group (C).
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Figure 2. Analysis of classifier differences in the reciprocal external validation experiments. A: Balanced accuracy
distributions of each classifier at the leave-project-out level described by the median, the 5% and 95% percentiles.
Quade test omnibus analysis results were provided for each risk enrichment level (CHR+, CHR, UHR). B: Post hoc
tests of pairwise BAC differences between risk calculators. C: Analysis of feature relevance for prediction of PT in
the reciprocal external validation analysis (left: linear SVM, right: Cox-PH). Abbreviations: see Table 3.
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Figure 3. PRONIA risk enrichment effects on PT prediction in the NAPLS-2 cohort and algorithm effects on the

External validation of the NAPLS-2 psychosis risk calculator

prediction of PT in the PRONIA risk enrichment samples. A: Balanced accuracy of the 5 different prognostic algo-
rithms in the NAPLS-2 cohort as a function of the PRONIA risk sample used to train these algorithms. B: Differ-

ences in balanced accuracy as a function of the type of algorithm applied to the three different PRONIA samples.

Additionally, means and standard deviations are depicted for both A and B.
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Supplementary Table 1. Descriptive analysis of means and standard deviations of the NAPLS-2 risk calculator
variables shared between the two consortia.

NAPLS-2 PRONIA-UHR PRONIA-CHR PRONIA-CHR+

N  mean SD N  mean SD N  mean SD N  mean SD
Full sample
Age [years] 596 1851 427 |126 2311 497 |167 23.79 537 [334 2471 576
BACS-DSST score 596 56.80 13.04 |119 5892 1223|160 59,51 12.21 |323 60.68 11.96
HVLT-Total score 596 25.61 5.15 |121 2789 3.04 | 162 27.94 3.07 |322 2832 277
GFS-Decline past year 596 074 104 |126 0.74 092 |167 071 092 (334 0.79 095
Family history 596 0.16 037 |126 0.20 040 |167 0.17 037 [334 0.10 0.30
SIPS-P1P2 596 261 157 |126 2.13 187 |167 1.72 184 334 091 156
Transition cases
Age [years] 84 1806 358 |21 2394 593 |23 2413 584 |26 2350 592
BACS-DSST score 84 5320 1160 | 18 5550 13.78 | 20 54.70 1355 | 23 55.00 12.97
HVLT-Total score 84 2418 554 |18 2611 3.07 | 20 26.15 291 |23 2652 298
GFS-Decline past year 84 099 116 |21 105 124 | 23 1.09 120 | 26 0.96 1.12
Family history 8 019 040 |21 024 044 |23 022 042 |26 019 040
SIPS-P1P2 8 351 177 |21 262 180 | 23 252 181 | 26 223 188
Months to transition 8 722 570 |21 734 742 |23 7132 708 | 26 823 815
Non-transition cases
Age [years] 512 1859 437 |105 2295 4.77 | 144 23774 531 |[308 2472 577
BACS-DSST score 512 57.39 13.17 |101 5953 1191 |140 60.19 11.90 |300 61.12 1179
HVLT-Total score 512 25.84 505 |103 2820 295 |142 2820 3.02 [299 2845 271
GFS-Decline past year 512 070 101 |105 0.68 0.84 |144 065 0.86 [308 0.75 0.93
Family history 512 0.16 036 |[105 0.19 039 |144 016 037 |308 0.09 0.29
SIPS-P1P2 512 246 149 |105 2.03 1.88 | 144 1.60 1.82 |308 0.80 1.48




Supplementary Table 2. Leave-site-out cross-validation analysis in the CHR+ sample comparing the five
different PT prediction algorithms. The out-of-training performance of the given algorithm was broken down per
site. In addition, the respective means and standards deviation of the given algorithm’s performance measures
were computed across sites. To avoid a biased estimate of the average leave-site-out performances, the PRONIA
Udine site was excluded from this analysis because of no reported transition cases.

Predictors TP TN FP FN Sens Spec BAC PPV NPV PSI LR+ LR- AUC
LR [Full Sample] 107 155 634 3 973 196 585 144 981 125 121 014 0.74
LR [Basel] 2 10 22 0 100.0 313 656 83 1000 83 1.45 0.00 0.86
LR [Birmingham] 2 3 31 0 1000 88 544 6.1 1000 6.1 1.10 0.00 0.51
LR [Calgary] 18 25 89 1 947 219 583 168 96.2 130 1.21 0.24 0.67
LR [Cologne] 4 8 51 0 1000 136 568 7.3 1000 7.3 1.16 0.00 0.75
LR [Emory] 8 15 41 0 100.0 26.8 634 16.3 100.0 16.3 1.37 0.00 0.66
LR [Harvard] 3 4 40 0 1000 91 545 7.0 1000 7.0 1.10 0.00 0.45
LR [Hillside] 6 12 53 0 100.0 185 59.2 10.2 1000 10.2 1.23 0.00 0.94
LR [Milan] 2 6 17 0 100.0 26.1 63.0 105 1000 10.5 1.35 0.00 0.70
LR [Munich] 10 12 87 0 100.0 121 56.1 103 1000 10.3 1.14 0.00 0.80
LR [Turku] 5 16 15 1 833 516 675 250 941 191 172 032 081
LR [UCLA] 14 13 46 0 100.0 22.0 61.0 233 1000 23.3 1.28 0.00 0.77
LR [UCSD] 9 15 35 0 100.0 30.0 65.0 205 1000 20.5 1.43 0.00 0.68
LR [UNC] 15 10 54 0 100.0 156 57.8 21.7 100.0 217 1.19 0.00 0.84
LR [Yale] 9 6 53 1 900 102 50.1 145 857 0.2 1.00 098 0.70
LR [mean] 97.7 213 595 141 983 124 127 0.11 0.72
LR [SD] 51 116 50 65 40 6.8 019 027 013
Cox-PH [Full Sample] 68 562 227 42 618 712 665 231 930 16.1 215 054 0.72
Cox-PH [Basel] 2 20 12 0 100.0 625 813 143 1000 143 2.67 0.00 0.86
Cox-PH [Birmingham] 0 23 11 2 00 676 338 0.0 920 -8.0 0.00 1.48 0.47
Cox-PH [Calgary] 9 8 30 10 474 737 605 231 894 124 1.80 0.71 0.68
Cox-PH [Cologne] 3 37 22 1 750 627 689 120 974 94 201 040 0.75
Cox-PH [Emory] 3 40 16 5 375 714 545 158 889 47 131 0.88 0.65
Cox-PH [Harvard] 1 25 19 2 333 568 451 50 926 -24 0.77 117 042
Cox-PH [Hillside] 6 50 15 0 100.0 769 885 286 1000 286 4.33 0.00 0.94
Cox-PH [Milan] 2 16 7 0 100.0 69.6 848 222 100.0 222 3.29 0.00 0.70
Cox-PH [Munich] 8 74 25 2 800 747 774 242 974 216 3.17 0.27 0.80
Cox-PH [Turku] 4 24 7 2 667 774 720 364 923 287 295 043 0381
Cox-PH [UCLA] 10 47 12 4 714 797 755 455 922 376 351 036 0.78
Cox-PH [UCSD] 3 3% 15 6 333 700 517 167 854 2.0 1.11 0.95 0.68
Cox-PH [UNC] 11 44 20 4 733 688 710 355 917 272 235 039 0.84
Cox-PH [Yale] 6 43 16 4 600 729 664 273 915 188 221 055 0.68
Cox-PH [mean] 62.7 70.3 665 219 936 155 225 054 0.72
Cox-PH [SD] 296 6.4 157 124 46 132 1.18 045 0.14

68 583 206 42 618 739 679 248 933 181 237 052 0.72

Cox-PH (+A) [Full Sample]

Cox-PH (+A) [Basel] 2 24 8 0 1000 750 875 20.0 100.0 20.0 4.00 0.00 0.84
Cox-PH (+A) [Birmingham] 1 24 10 1 500 706 603 91 960 51 170 0.71 056
Cox-PH (+A) [Calgary] 9 83 31 10 474 728 601 225 89.2 117 174 0.72 0.64
Cox-PH (+A) [Cologne] 2 42 17 2 500 712 606 105 955 6.0 174 0.70 0.74
Cox-PH (+A) [Emory] 2 39 17 6 250 696 473 105 867 -28 082 1.08 0.67
Cox-PH (+A) [Harvard] 1 27 17 2 333 614 473 56 931 -13 086 1.09 0.5
Cox-PH (+A) [Hillside] 6 50 15 0 1000 769 885 28.6 1000 286 4.33 0.00 0.94
Cox-PH (+A) [Milan] 1 16 7 1 500 696 598 125 941 6.6 1.64 072 0.70
Cox-PH (+A) [Munich] 8 75 24 2 800 758 779 250 974 224 330 026 0.80
Cox-PH (+A) [Turku] 4 24 7 2 667 774 720 364 923 287 295 043 081
Cox-PH (+A) [UCLA] 10 47 12 4 714 797 755 455 922 376 351 036 0.78
Cox-PH (+A) [UCSD] 5 38 12 4 556 760 658 294 905 199 231 058 0.71
Cox-PH (+A) [UNC] 10 51 13 5 667 797 732 435 911 345 328 042 084
Cox-PH (+A) [Yale] 7 43 16 3 700 729 714 304 935 239 258 041 0.70

Cox-PH (+A) [mean] 619 735 677 235 937 172 248 053 0.73




Predictors TP TN FP FEN Sens Spec BAC PPV NPV PSI LR+ LR- AUC
Cox-PH (+A) [SD] 220 49 127 129 39 131 111 0.33 0.12
Linear SVM [Full Sample] 86 476 313 24 782 603 693 216 952 16.8 1.97 036 0.74
Linear SVM [Basel] 2 21 1 0 100.0 656 828 154 100.0 154 291 0.00 0.89
Linear SVM [Birmingham] 1 20 14 1 500 588 544 67 952 19 121 085 043
Linear SVM [Calgary] 13 65 49 6 684 570 627 210 915 125 159 055 0.69
Linear SVM [Cologne] 3 41 18 1 750 695 722 143 97.6 119 246 036 0.78
Linear SVM [Emory] 8 34 22 0 100.0 60.7 80.4 26.7 100.0 26.7 255 0.00 0.71
Linear SVM [Harvard] 1 23 21 2 333 523 428 45 920 -35 0.70 128 0.52
Linear SVM [Hillside] 6 36 29 0 100.0 554 77.7 17.1 100.0 17.1 2.24 0.00 0.92
Linear SVM [Milan] 2 16 7 0 100.0 69.6 84.8 222 100.0 22.2 3.29 0.00 0.70
Linear SVM [Munich] 8 65 34 2 800 657 728 190 970 16.1 233 0.30 0.83
Linear SVM [Turku] 5 22 9 1 833 710 772 357 957 314 287 023 0.80
Linear SVM [UCLA] 11 36 23 3 786 610 69.8 324 923 247 2.02 035 0.76
Linear SVM [UCSD] 7 27 23 2 778 540 659 233 931 164 1.69 041 0.65
Linear SVM [UNC] 12 41 23 3 800 641 720 343 932 275 223 031 0.3
Linear SVM [Yale] 7 29 30 3 700 49.2 59.6 189 906 9.5 1.38 0.61 0.65
Linear SVM [mean] 783 61.0 69.6 208 956 16.4 210 0.38 0.73
Linear SVM [SD] 194 69 117 93 35 9.8 072 036 0.14
RBF-SVM [Full Sample] 53 634 155 57 482 804 643 255 918 172 245 064 0.74
RBF-SVM [Basel] 2 25 7 0 100.0 781 89.1 222 1000 22.2 457 0.00 0.83
RBF-SVM [Birmingham] 0 27 7 2 00 794 397 00 931 -6.9 0.00 1.26 0.43
RBF-SVM [Calgary] 9 91 23 10 474 798 636 281 90.1 182 235 0.66 0.70
RBF-SVM [Cologne] 2 48 11 2 500 814 657 154 96.0 114 2.68 0.61 0.78
RBF-SVM [Emory] 2 40 16 6 250 714 482 111 870 -1.9 0.88 1.05 0.69
RBF-SVM [Harvard] 1 34 10 2 333 773 553 91 944 35 147 0.86 047
RBF-SVM [Hillside] 6 55 10 0 100.0 84.6 923 375 1000 375 6.50 0.00 0.93
RBF-SVM [Milan] 0 16 7 2 00 696 348 0.0 889 -11.1 0.00 144 0.70
RBF-SVM [Munich] 5 81 18 5 500 818 659 217 942 159 275 0.61 0.1
RBF-SVM [Turku] 3 24 7 3 500 774 637 300 889 189 221 065 0.77
RBF-SVM [UCLA] 7 48 11 7 500 814 657 389 873 262 268 061 0.76
RBF-SVM [UCSD] 3 38 12 6 333 76.0 547 200 864 64 139 0.88 0.65
RBF-SVM [UNC] 10 57 7 5 667 891 77.9 588 919 50.8 6.10 0.37 0.85
RBF-SVM [Yale] 3 50 9 7 300 847 574 250 87.7 127 197 0.83 0.66
RBF SVM [mean] 454 794 624 227 918 146 254 0.70 0.72
RBF SVM [SD] 298 51 164 159 46 168 198 041 0.14

Abbreviations. Algorithms: LR Logistic regression, Cox-PH Cox Proportional Hazard model, SVM Support Vector Machine,
RBF-SVM Support Vector Machine with Radial Basis Kernel, +A Cox-PH (+ADASYN); Performance Measures: TP number
of true positives, TN number of true negatives, FP number of false positives, FN number of false negatives, Sens Sensitivity,
Spec Specificity, BAC Balanced Accuracy, PPV Positive Predictive Value, NPV Negative Predictive Value, PSI Prognostic
Summary Index, LR+ Positive Likelihood Ratio, LR- Negative Likelihood Ratio, AUC Area-under-the Curve; Test sites: UCLA
University of California, Los Angeles, UCSD University of Californa, San Diego, UNC University of North Carolina.



Supplementary Table 3. Leave-site-out cross-validation analysis in the CHR sample comparing the five
different PT prediction algorithms. The out-of-training performance of the given algorithm was broken down per
site. In addition, the respective means and standards deviation of the given algorithm’s performance measures

were computed across sites. To avoid a biased estimate of the average leave-site-out performances, the PRONIA

Udine site was excluded from this analysis because of no reported transition cases.

Predictors TP TN FP FN Sens Spec BAC PPV NPV PSI LR+ LR- AUC
LR [Full Sample] 104 80 560 3 9072 125 548 157 964 120 110 020 0.72
LR [Basel] 2 4 13 0 1000 235 618 133 1000 133 1.31 0.00 0.82
LR [Birmingham] 1 1 15 0 1000 63 531 6.3 1000 6.3 107 0.00 0.50
LR [Calgary] 18 10 104 1 947 88 518 148 909 57 1.04 060 0.68
LR [Cologne] 3 3 17 0 1000 150 575 150 1000 150 1.18 0.00 0.80
LR [Emory] 8 11 45 0 1000 196 59.8 151 100.0 151 1.24 0.00 0.68
LR [Harvard] 3 3 41 0 1000 68 534 68 1000 6.8 1.07 0.00 048
LR [Hillside] 6 7 58 0 1000 108 554 9.4 1000 9.4 1.12 0.00 0.93
LR [Milan] 2 4 9 0 1000 308 654 182 100.0 182 1.44 0.00 0.46
LR [Munich] 9 5 39 0 1000 114 557 188 1000 188 1.13 0.00 0.72
LR [Turku] 5 7 12 1 833 368 601 294 87.5 169 1.32 045 0.76
LR [UCLA] 14 8 51 0 1000 136 568 215 1000 215 1.16 0.00 0.77
LR [UCSD] 9 8 42 0 1000 160 580 17.6 1000 17.6 1.19 0.00 0.69
LR [UNC] 15 5 59 0 1000 7.8 539 203 1000 203 1.08 0.00 0.82
LR [Yale] 9 4 55 1 900 68 484 141 800 -59 097 148 068
LR [mean] 97.7 153 565 157 97.0 128 1.17 0.8 0.70
LR [SD] 51 94 44 61 63 7.5 013 042 014
Cox-PH [Full Sample] 74 419 221 33 69.2 655 67.3 251 927 17.8 2.00 050 0.73
Cox-PH [Basel] 2 11 6 0 1000 647 824 250 1000 250 2.83 0.00 0.82
Cox-PH [Birmingham] 0 9 7 1 00 563 281 00 900 -100 0.00 1.78 0.50
Cox-PH [Calgary] 13 73 41 6 684 640 662 241 924 165 1.90 049 0.69
Cox-PH [Cologne] 2 13 7 1 667 650 658 222 929 151 1.90 051 0.80
Cox-PH [Emory] 6 36 20 2 750 643 696 231 947 17.8 2.10 039 0.67
Cox-PH [Harvard] 1 27 17 2 333 614 473 56 931 -13 086 1.09 047
Cox-PH [Hillside] 6 43 22 0 1000 662 831 214 1000 214 2.95 0.00 0.92
Cox-PH [Milan] 0 7 6 2 00 538 269 00 778 -222 0.00 1.86 0.46
Cox-PH [Munich] 6 29 15 3 667 659 663 286 906 192 196 051 0.72
Cox-PH [Turku] 4 13 6 2 667 684 675 400 867 267 211 049 0.76
Cox-PH [UCLA] 10 40 19 4 714 678 696 345 909 254 222 042 0.76
Cox-PH [UCSD] 6 35 15 3 667 700 683 286 921 207 222 048 0.68
Cox-PH [UNC] 11 44 20 4 733 688 710 355 917 272 235 039 081
Cox-PH [Yale] 7 39 20 3 700 661 681 259 929 188 2.07 045 0.66
Cox-PH [mean] 613 645 629 225 918 143 182 063 0.70
Cox-PH [SD] 303 46 171 124 54 149 091 056 0.14
Cox-PH (+A) [Full Sample] 72 415 225 35 67.3 648 661 242 922 165 1.90 0.50 0.72
Cox-PH (+A) [Basel] 2 11 6 0 1000 647 824 250 1000 250 2.83 0.00 0.82
Cox-PH (+A) [Birmingham] 0 9 7 1 00 563 281 00 900 -100 0.00 178 0.56
Cox-PH (+A) [Calgary] 10 71 43 9 526 623 575 189 888 7.6 140 076 0.65
Cox-PH (+A) [Cologne] 2 13 7 1 667 650 658 222 929 151 1.90 051 0.77
Cox-PH (+A) [Emory] 6 37 19 2 750 661 705 240 949 189 221 038 0.67
Cox-PH (+A) [Harvard] 1 27 17 2 333 614 473 56 931 -13 086 1.09 0.45
Cox-PH (+A) [Hillside] 6 42 23 0 1000 646 823 207 100.0 20.7 2.83 0.00 0.94
Cox-PH (+A) [Milan] 0 7 6 2 00 538 269 00 77.8 -222 0.00 1.86 0.46
Cox-PH (+A) [Munich] 6 28 16 3 667 636 652 27.3 903 176 1.83 052 071
Cox-PH (+A) [Turku] 4 13 6 2 667 684 675 400 867 267 211 049 0.78
Cox-PH (+A) [UCLA] 10 41 18 4 714 695 705 357 911 268 234 041 0.78
Cox-PH (+A) [UCSD] 7 34 16 2 778 680 729 304 944 249 243 033 0.69
Cox-PH (+A) [UNC] 11 44 20 4 733 688 710 355 917 272 235 039 0.83
Cox-PH (+A) [Yale] 7 38 21 3 700 644 672 250 927 17.7 1.97 047 0.69
Cox-PH (+A) [mean] 610 641 625 222 917 139 1.79 064 0.70




Predictors TP TN FP FN Sens Spec BAC PPV NPV PSI LR+ LR- AUC

Cox-PH (+A) [SD] 30.7 45 172 126 55 152 092 057 014
Linear SVM [Full Sample] 78 378 262 29 729 591 66.0 229 929 158 1.80 050 0.73
Linear SVM [Basel] 2 10 7 0 100.0 588 79.4 222 1000 222 243 0.00 0.82
Linear SVM [Birmingham] 0 9 7 1 0.0 56.3 281 0.0 90.0 -10.0 0.00 1.78 0.44
Linear SVM [Calgary] 13 66 48 6 684 579 632 213 917 130 163 055 0.69
Linear SVM [Cologne] 2 14 6 1 667 700 683 250 933 183 222 048 0.82
Linear SVM [Emory] 7 34 22 1 875 607 741 241 971 213 223 021 0.71
Linear SVM [Harvard] 1 23 21 2 333 523 428 45 920 -35 0.70 1.28 0.52
Linear SVM [Hillside] 6 35 30 0 100.0 538 769 16.7 100.0 16.7 2.17 0.00 0.92
Linear SVM [Milan] 0 6 7 2 0.0 46.2 231 0.0 750 -25.0 0.00 2.17 0.6
Linear SVM [Munich] 7 271 17 2 778 614 696 292 931 223 201 036 0.73
Linear SVM [Turku] 4 13 6 2 66.7 684 675 400 86.7 26.7 211 049 0.76
Linear SVM [UCLA] 11 41 18 3 786 695 740 379 932 311 258 031 0.77
Linear SVM [UCSD] 7 28 22 2 778 560 669 241 933 175 177 040 0.68
Linear SVM [UNC] 11 42 22 4 733 656 695 333 913 246 213 041 084
Linear SVM [Yale] 7 30 29 3 700 508 604 194 909 104 1.42 059 0.66
Linear SVM [mean] 643 59.1 617 213 920 133 1.67 0.64 0.70
Linear SVM [SD] 317 73 17.7 126 6.1 157 0.85 064 0.14
RBF-SVM [Full Sample] 48 514 126 59 449 803 626 276 89.7 173 230 0.70 0.72

RBF-SVM [Basel] 1 12 5 1 500 706 603 167 923 9.0 170 071 0.82
RBF-SVM [Birmingham] 0 13 3 1 00 8.3 406 00 929 -7.1 000 123 056
RBF-SVM [Calgary] 8 90 24 11 421 789 605 250 89.1 141 200 0.73 0.68
RBF-SVM [Cologne] 2 17 3 1 667 850 758 400 944 344 444 039 0.80
RBF-SVM [Emory] 1 45 11 7 125 804 464 83 865 -51 064 1.09 0.68
RBF-SVM [Harvard] 1 33 11 2 333 750 542 83 943 26 133 089 0.52
RBF-SVM [Hillside] 6 52 13 0 1000 800 90.0 316 100.0 31.6 5.00 0.00 0.93
RBF-SVM [Milan] 0 9 4 2 00 692 346 00 818 -182 000 144 046
RBF-SVM [Munich] 4 36 8 5 444 818 631 333 87.8 211 244 068 0.69
RBF-SVM [Turku] 3 16 3 3 500 842 671 500 842 342 3.7 059 0.77
RBF-SVM [UCLA] 7 46 13 7 500 780 640 350 868 218 227 064 075
RBF-SVM [UCSD] 2 39 11 7 222 780 501 154 848 02 1.01 1.00 0.66
RBF-SVM [UNC] 9 56 8 6 600 875 738 529 903 433 4.80 046 0.83
RBF-SVM [Yale] 4 50 9 6 400 847 624 308 893 201 262 071 0.66
RBF SVM [mean] 408 796 602 248 896 144 224 075 0.70
RBF SVM [SD] 268 53 146 172 48 183 165 036 0.13

Abbreviations. Algorithms: LR Logistic regression, Cox-PH Cox Proportional Hazard model, SVM Support Vector Machine,
RBF-SVM Support Vector Machine with Radial Basis Kernel, +A Cox-PH (+ADASYN); Performance Measures: TP number
of true positives, TN number of true negatives, FP number of false positives, FN number of false negatives, Sens Sensitivity,
Spec Specificity, BAC Balanced Accuracy, PPV Positive Predictive Value, NPV Negative Predictive Value, PSI Prognostic
Summary Index, LR+ Positive Likelihood Ratio, LR- Negative Likelihood Ratio, AUC Area-under-the Curve; Test sites: UCLA
University of California, Los Angeles, UCSD University of Californa, San Diego, UNC University of North Carolina.



Supplementary Table 4. Leave-site-out cross-validation analysis in the UHR sample comparing the five
different PT prediction algorithms. The out-of-training performance of the given algorithm was broken down per
site. In addition, the respective means and standards deviation of the given algorithm’s performance measures

were computed across sites. To avoid a biased estimate of the average leave-site-out performances, the PRONIA

Udine site was excluded from this analysis because of no reported transition cases.

Predictors TP TN FP FN Sens Spec BAC PPV NPV PSI LR+ LR- AUC
LR [Full Sample] 103 62 542 2 981 103 542 160 969 128 110 020 0.71
LR [Basel] 2 3 8 0 1000 273 63.6 200 100.0 20.0 1.38 0.00 0.68
LR [Birmingham] 1 0 8 0 1000 0.0 500 111 1.00 0.25
LR [Calgary] 18 9 105 1 947 79 513 146 900 46 1.03 0.67 0.68
LR [Cologne] 3 1 14 0 1000 6.7 533 176 1000 17.6 1.07 0.00 0.73
LR [Emory] 8 10 46 0 1000 179 589 148 1000 148 1.22 0.00 0.67
LR [Harvard] 3 2 42 0 1000 45 523 6.7 1000 6.7 1.05 0.00 0.48
LR [Hillside] 6 7 58 0 100.0 108 554 9.4 1000 94 112 0.00 0.92
LR [Milan] 1 3 7 0 1000 30.0 650 125 1000 125 1.43 0.00 0.40
LR [Munich] 8 3 34 0 1000 81 541 19.0 1000 19.0 1.09 0.00 0.71
LR [Turku] 5 4 8 1 833 333 583 385 800 185 125 0.50 0.69
LR [UCLA] 14 6 53 0 1000 10.2 551 209 100.0 209 1.11 0.00 0.77
LR [UCSD] 9 7 43 0 1000 140 570 17.3 1000 173 116 0.00 0.69
LR [UNC] 15 4 60 0 1000 6.3 531 20.0 1000 20.0 1.07 0.00 0.82
LR [Yale] 10 3 56 0 1000 51 525 152 1000 152 1.05 0.00 0.67
LR [mean] 984 13.0 557 170 97.7 151 114 0.09 0.66
LR [SD] 46 103 44 7.5 6.0 53 0.13 022 0.17
Cox-PH [Full Sample] 69 397 207 36 657 657 657 250 917 16.7 1.90 050 0.72
Cox-PH [Basel] 1 7 4 1 500 636 568 200 875 75 138 0.79 0.73
Cox-PH [Birmingham] 0 4 4 1 00 500 250 00 800 -200 0.00 2.00 0.38
Cox-PH [Calgary] 12 73 41 7 632 640 636 226 913 139 1.76 058 0.69
Cox-PH [Cologne] 2 10 5 1 66.7 667 66.7 286 909 195 200 050 0.71
Cox-PH [Emory] 6 37 19 2 750 661 705 240 949 189 221 0.38 0.67
Cox-PH [Harvard] 1 26 18 2 333 591 462 53 929 -19 081 1.13 0.46
Cox-PH [Hillside] 6 43 22 0 1000 66.2 831 214 100.0 214 2.95 0.00 0.93
Cox-PH [Milan] 0 6 4 1 00 600 300 00 857 -143 0.00 1.67 0.40
Cox-PH [Munich] 6 25 12 2 750 676 713 333 926 259 231 037 0.71
Cox-PH [Turku] 3 8 4 3 500 66.7 583 429 727 156 150 0.75 0.68
Cox-PH [UCLA] 10 40 19 4 714 678 696 345 909 254 222 042 0.76
Cox-PH [UCSD] 4 36 14 5 444 720 582 222 878 100 159 0.77 0.68
Cox-PH [UNC] 11 43 21 4 733 672 703 344 915 259 223 040 081
Cox-PH [Yale] 7 3 20 3 700 661 681 259 929 188 2.07 045 0.66
Cox-PH [mean] 552 645 59.8 225 894 119 164 0.73 0.66
Cox-PH [SD] 285 53 162 130 66 145 0.86 0.54 0.15
Cox-PH (+A] [Full Sample] 63 401 203 42 60.0 664 632 237 905 142 1.80 0.60 0.70
Cox-PH (+A) [Basel] 1 8 3 1 500 727 614 250 889 139 183 0.69 0.73
Cox-PH (+A) [Birmingham] 0 4 4 1 0.0 50.0 250 0.0 80.0 -20.0 0.00 2.00 0.25
Cox-PH (+A) [Calgary] 9 69 45 10 474 605 539 167 873 40 120 0.87 0.64
Cox-PH (+A) [Cologne] 2 11 4 1 667 733 700 333 917 250 250 045 0.71
Cox-PH (+A) [Emory] 3 3 17 5 375 696 536 150 886 3.6 1.24 090 0.66
Cox-PH (+A) [Harvard] 1 27 17 2 333 614 473 56 931 -13 0.86 1.09 0.45
Cox-PH (+A) [Hillside] 6 43 22 0 1000 66.2 831 214 100.0 214 2.95 0.00 0.93
Cox-PH (+A) [Milan] 0 6 4 1 00 600 300 0.0 857 -143 0.00 1.67 0.40
Cox-PH (+A) [Munich] 5 28 9 3 625 757 691 357 903 260 257 050 0.71
Cox-PH (+A) [Turku] 4 9 3 2 66.7 750 708 571 818 390 267 044 0.63
Cox-PH (+A) [UCLA] 10 40 19 4 714 678 696 345 909 254 222 042 0.78
Cox-PH (+A) [UCSD] 3 3 15 6 333 700 517 167 854 20 111 095 0.69
Cox-PH (+A) [UNC] 12 44 20 3 800 688 744 375 936 311 256 0.29 0.82
Cox-PH (+A) [Yale] 7 38 21 3 700 644 672 250 927 17.7 1.97 047 0.70
Cox-PH (+A) [mean] 513 66.8 59.1 231 893 124 1.69 0.77 0.65




Predictors TP TN FP FN Sens Spec BAC PPV NPV PSI LR+ LR- AUC
Cox-PH (+A) [SD] 286 /.1 16/ 159 51 173 097 054 0.8
Linear SVM [Full Sample] 74 346 258 31 705 573 639 223 918 141 160 050 0.71
Linear SVM [Basel] 1 6 5 1 500 545 523 167 857 24 110 092 0.73
Linear SVM [Birmingham] 0 4 4 1 0.0 50.0 250 0.0 80.0 -20.0 0.00 2.00 0.38
Linear SVM [Calgary] 12 60 54 7 632 526 579 182 896 7.7 1.33 0.70 0.67
Linear SVM [Cologne] 2 12 3 1 667 800 733 400 923 323 333 042 0.71
Linear SVM [Emory] 7 34 22 1 875 607 741 241 971 213 223 021 0.71
Linear SVM [Harvard] 1 23 21 2 333 523 428 45 920 -35 0.70 128 0.49
Linear SVM [Hillside] 6 37 28 0 1000 569 785 176 1000 17.6 232 0.00 0.91
Linear SVM [Milan] 0 4 6 1 0.0 40.0 200 0.0 80.0 -20.0 0.00 2.50 0.40
Linear SVM [Munich] 6 21 16 2 750 568 659 273 913 186 173 044 0.71
Linear SVM [Turku] 3 9 3 3 500 750 625 500 750 250 200 0.67 0.68
Linear SVM [UCLA] 11 38 21 3 786 644 715 344 927 271 221 033 0.77
Linear SVM [UCSD] 7 28 22 2 778 560 669 241 933 175 177 040 0.68
Linear SVM [UNC] 11 42 22 4 733 656 695 333 913 246 213 041 0.82
Linear SVM [Yale] 7 28 31 3 700 475 587 184 903 8.7 133 063 0.67
Linear SVM [mean] 59.0 58.0 585 221 893 114 158 0.78 0.67
Linear SVM [SD] 300 106 179 146 69 16.6 092 0.70 0.15
RBF-SVM [Full Sample] 50 480 124 55 476 795 635 287 89.7 185 230 0.70 0.71
RBF-SVM [Basel] 1 8 3 1 500 727 614 250 889 139 1.83 069 0.73
RBF-SVM [Birmingham] 0 6 2 1 00 750 375 0.0 857 -143 0.00 1.33 0.25
RBF-SVM [Calgary] 8 90 24 11 421 789 605 250 89.1 141 200 0.73 0.68
RBF-SVM [Cologne] 2 13 2 1 667 867 767 500 929 429 500 038 0.71
RBF-SVM [Emory] 2 42 14 6 250 750 500 125 875 0.0 1.00 1.00 0.69
RBF-SVM [Harvard] 1 33 11 2 333 750 542 83 943 26 1.33 0.89 0.52
RBF-SVM [Hillside] 6 50 15 0 1000 769 885 286 100.0 286 4.33 0.00 0.93
RBF-SVM [Milan] 0 6 4 1 00 600 300 0.0 857 -143 0.00 1.67 0.40
RBF-SVM [Munich] 4 32 5 4 500 8.5 682 444 889 333 3.70 058 0.70
RBF-SVM [Turku] 3 1 1 3 500 917 70.8 750 786 53.6 6.00 055 0.71
RBF-SVM [UCLA] 8 46 13 6 571 780 67.6 381 885 26.6 259 055 0.77
RBF-SVM [UCSD] 2 37 13 7 222 740 481 133 841 -26 0.85 1.05 0.67
RBF-SVM [UNC] 9 56 8 6 600 875 738 529 903 433 480 046 0.83
RBF-SVM [Yale] 4 50 9 6 400 847 624 308 893 201 262 0.71 0.67
RBF SVM [mean] 426 788 607 289 88.8 17.7 258 0.76 0.66
RBF SVM [SD] 263 81 157 217 50 216 192 042 0.17

Abbreviations. Algorithms: LR Logistic regression, Cox-PH Cox Proportional Hazard model, SVM Support Vector Machine,
RBF-SVM Support Vector Machine with Radial Basis Kernel, +A Cox-PH (+ADASYN); Performance Measures: TP number
of true positives, TN number of true negatives, FP number of false positives, FN number of false negatives, Sens Sensitivity,
Spec Specificity, BAC Balanced Accuracy, PPV Positive Predictive Value, NPV Negative Predictive Value, PSI Prognostic
Summary Index, LR+ Positive Likelihood Ratio, LR- Negative Likelihood Ratio, AUC Area-under-the Curve; Test sites: UCLA
University of California, Los Angeles, UCSD University of Californa, San Diego, UNC University of North Carolina.



Supplementary Table 5. Summary overview of prognostic performances in terms of sensitivity, specificity and
balanced accuracy of the five different algorithms obtained at the three risk enrichment levels (CHR+, CHR, and
UHR) in the reciprocal external validation analysis and the leave-site-out cross-validation experiment. For latter
validation setup, performance metrics were provided at the full sample level as well as at the level of mean (SD)
computed across participating sites.

Algorithms Reciprocal external Leave-site-out cross- Leave-site-out cross-validation
validation validation [ Full Sample ] [ Mean (SD) |
Sens Spec BAC Sens  Spec BAC Sens Spec BAC
PRONIA-CHR+

LR| 855 400 628 | 973 196 585 97.7(5.1)  21.3(116) 595 (5.0)

Cox-PH| 655 707 681 | 618 712 665 | 627(29.6) 70.3(6.4) 665 (15.7)
Cox-PH(+A)[| 709 684 696 | 618 739 679 | 61.9(220) 735(49)  67.7(12.7)
Linear SYM|| 745 584 665 | 782 603 693 | 783(194) 610(69)  69.6(11.7)
RBF-SVM| 527 830 679 | 482 804 643 | 454(298) 794(5.1)  62.4(16.4)

PRONIA-CHR

LR| 991 108 550 | 972 125 548 97.7(5.1)  153(9.4) 565 (4.4)

Cox-PH| 757 566 662 | 69.2 655 673 | 613(30.3) 645(46)  62.9(17.1)
Cox-PH(+A)| 738 588 663 | 673 648 661 | 61.0(30.7) 641(45)  625(17.2)
Linear SYM| 748 582 665 | 729 591 660 | 643(3L7) 59.1(7.3)  61.7(17.7)
RBF-SVM| 523 756 640 | 449 803 626 | 408(268) 796(53)  60.2(14.6)

PRONIA-UHR

LR| 972 50 511 | 981 103 542 98.4 (4.6) 13 (10.3) 55.7 (4.4)

Cox-PH| 486 805 645 | 657 657 657 | 552(285) 645(5.3) 59.8(16.2)
Cox-PH(+A)[| 790 430 610 | 600 664 632 | 51.3(286) 66.8(7.1)  59.1(16.7)
Linear SYM|| 714 594 654 | 705 573 639 | 59.0(30.0) 58.0(10.6) 585 (17.9)
RBF-SVM| 114 946 530 | 476 795 635 | 426(26.3) 788(8.1)  60.7 (15.7)

Abbreviations. Algorithms: LR Logistic regression, Cox-PH Cox Proportional Hazard model, SVM Support Vector Machine,
RBF-SVM Support Vector Machine with Radial Basis Kernel, +A Cox-PH (+ADASYN); Performance Measures: Sens
Sensitivity, Spec Specificity, BAC Balanced Accuracy.



