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Abstract 

Background: Transition to psychosis (PT) is the most adverse outcome of the Clinical High-

Risk (CHR) syndromes. The second phase of the North American Prodromal Longitudinal Study 

(NAPLS-2) proposed a psychosis risk calculator for patients with ultra-high risk (UHR) states 

operating on 8 clinical-neurocognitive variables.1 The model’s generalizability has not been suf-

ficiently validated across diverse risk cohorts. 

Methods: We validated the original model in the multi-site European PRONIA cohort (334 pa-

tients with CHR or recent-onset depression (ROD); 23/3 PT cases with CHR/ROD) by testing its 

performance in patients with UHR syndromes, UHR and basic symptoms (CHR), and a broader 

risk population encompassing patients with CHR states or ROD (CHR+). Using reciprocal exter-

nal validation, we assessed how the choice of algorithm and the risk enrichment in different dis-

covery populations moderated the prediction of PT in the validation samples. 

Outcomes: After calibrating the PRONIA to the NAPLS-2 data, the original model predicted PT 

with a balanced accuracy [BAC(sensitivity,specificity)] of 64%(68%,59%) in the PRONIA-

UHR, 70%(78%,61%) in CHR, and 70%(77%,62%) in CHR+ patients. Prognostic performance 

improved from UHR to CHR+-based models due to increased precision in NAPLS-2 UHR pa-

tients [UHR-based: 58%(61%,56%), CHR+-based: 67%(68%,66%)]. Attenuated psychotic 

symptoms predicted PT across risk levels, while age and processing speed were additionally pre-

dictive in the CHR+ cohort.  

Interpretation: Multivariate models operating on the NAPLS-2 risk pattern reliably prognosti-

cate PT in youth with diverse risk syndromes. Further studies should investigate the therapeutic 

utility of this risk signature, as well as the additional value of neurobiological information.  
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Research in context 

Evidence before the study 

We systematically searched PubMed to extract the relevant evidence from all papers published 

from inception to June 25th 2020 using the following search terms: (“psychosis” OR “schizophre-

nia”) AND (“risk calculator”) AND (“validation”). We identified 14 unique records, none of 

which involved the validation of a risk calculator model predicting likelihood of conversion to 

psychosis from an at-risk state in an external sample with a sufficiently clinically diverse risk co-

hort. Although multiple risk calculators consisting of clinical-neurocognitive measures, neuroim-

aging measures, or both, have been developed, cross-validation and robust external validation—

which are essential for determining prognostic precision and ultimate clinical utility—has only 

been implemented with the individualized risk calculator developed in the second phase of the 

North American Prodrome Longitudinal Study (NAPLS-2). While this calculator has been vali-

dated in clinical-high risk cohorts in the US and Shanghai, it is still unknown how this model 

generalizes to diverse clinical risk cohorts, such as those in the European-based PRONIA study, 

and how Cox proportional hazard (Cox PH)-based regression models compare to different types 

of predictive algorithms.  

 

Added value of the study 

This is the first study to demonstrate generalizability of a risk prediction model for the develop-

ment of psychosis in an international, multi-site framework within diverse risk samples including 

high-risk individuals with basic symptoms and affective disorders. We implemented strategies to 

account for cross-consortium differences between NAPLS-2 and PRONIA and showed that the 

model initially developed in the NAPLS-2 sample generalizes to a more transdiagnostic risk co-
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hort. Further, not only did we show that the existing model generalizes to a more diverse risk co-

hort, we also demonstrated that the enrichment of the PRONIA validation sample with individu-

als experiencing basic symptoms and/or recent onset-depression resulted in the development of 

even higher performing prediction models when tested using both cross-validation and external 

validation in the NAPLS-2 sample.  

 

Implications of all available evidence 

Our study uses external validation strategies to demonstrate how prognostic models involving 

clinical-neurocognitive measures may be optimized to operate across diverse risk populations 

and healthcare settings across the globe, ultimately contributing to the increasing precision with 

which clinicians may be able to predict the development of psychosis in transdiagnostic popula-

tions.  
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INTRODUCTION 

Over the last 30 years, research criteria defining the Clinical High-Risk (CHR) states for psychosis 

have been successfully established in academic sites around the globe.2–4 The purpose of these 

criteria has been to early detect adolescents and young adults with an increased risk for developing 

psychotic disorders, study potential disease-modifying treatments in these risk cohorts and ulti-

mately implement these strategies as a new approach of preventive psychiatry in real-world clinical 

care. Previous research showed that the pre-test patient referral process combined with the assess-

ment of these CHR criteria identifies a risk population with a several hundred-fold increased inci-

dence for psychosis.5 Yet, the observed three-year transition rates have continuously dropped from 

36% to currently 22% as more sites adopted and intensified early recognition activities.6 Hence, 

due to this low prognostic value and the laborious, skill-dependent assessment of high-risk criteria, 

the clinical utility and scalability of the CHR paradigm have been questioned.7 

 To increase the prognostic value of the CHR designation, previous studies have proposed 

to augment the actual two-tier risk enrichment process—patient referral followed by CHR assess-

ment—using algorithms that accurately measure the risk of psychosis in the individual CHR pa-

tient. These proof-of-principle studies demonstrated that individualized risk quantification could 

be achieved using Cox regression or machine learning models trained to estimate patients’ disease 

transition likelihoods based on clinical, neurocognitive, neuroimaging, metabolic or genetic infor-

mation.1,8–12 If these stratification models could operate across risk cohorts and diverse healthcare 

environments, a more fine-grained and modular clinical management of CHR patients could be 

implemented: practitioners could tailor specific disease-interceptive strategies and flexibly com-

bine them with treatments that target the varying array of psychiatric comorbidities and functional 

impairments present in these patients.13 
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 However, for this vision to become reality major challenges must be addressed. One sig-

nificant concern is that the generalizability of most risk calculators has not even been tested using 

cross-validation, let alone external validation approaches.14 An exception is the clinical-neurocog-

nitive risk calculator developed by the second phase of the North American Prodromal Longitudi-

nal Study (NAPLS-2).1 Based on 8 phenotypic variables, this Cox proportional-hazards (Cox-PH) 

model predicts PT with a sensitivity of 66% and specificity of 72% at a 20% predicted risk cut-

off. So far, the NAPLS-2 model has been validated in independent CHR cohorts from the US15 

(sensitivity=58.3%, specificity=72.6%) and Shanghai (sensitivity=71.7%, specificity=45.8%).16 

 Due to these varying sensitivity and specificity levels, further validation is needed to test 

the model across risk populations and healthcare systems. Furthermore, as attenuated or brief lim-

ited intermittent psychotic symptoms may not mark the only pathway to psychosis,17–20 the 

NAPLS-2 risk calculator should be probed across diverse risk cohorts, including youths with basic 

symptoms and affective disorders, as recently proposed by transdiagnostic studies of psychosis 

risk.19–21 Finally, within this external validation framework, the original model should be compared 

with different predictive algorithms operating on the same NAPLS-2 variables to identify the 

model with the optimal prognostic precision across different risk populations.  

The European PRONIA study (Personalised Prognostic Tools for Early Psychosis Man-

agement; www.pronia.eu)22 recruited and followed such a diverse risk population, encompassing 

adolescents and young adults with different CHR states or recent-onset depression (ROD). In the 

current study, we first performed the external validation of the original NAPLS-2 model in PRO-

NIA and then reciprocally trained, validated and compared different Cox-PH algorithms versus 

Support Vector Machine (SVM) models in the NAPLS-2 and PRONIA cohorts. In these analyses, 

we evaluated whether iteratively narrowing the discovery population from a cohort encompassing 

http://www.pronia.eu/
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both CHR and ROD to patients experiencing only ultra-high-risk syndromes (UHR) moderated 

prognostic performance.   

METHODS 

Participants 

Participants were drawn from the NAPLS-223 and the PRONIA studies.22 NAPLS-2 is an 8-site 

observational consortium study examining the predictors and mechanisms related to transition to 

psychosis in the CHR population. Participants from NAPLS-2 were patients aged 12-35 who met 

criteria for an ultra-high (UHR) risk syndrome for psychosis as determined by the Criteria of 

Prodromal States (COPS)24 and as measured by the Structured Interview for Psychosis-risk Syn-

dromes (SIPS).25,26 The PRONIA consortium is an observational consortium study across 7 sites 

located in 5 European countries aiming to implement personalized prognostic tools for the devel-

opment of affective and non-affective psychoses. Participants from PRONIA were patients aged 

15-40 who experienced (a) clinical high-risk syndromes for psychosis meeting UHR criteria 

and/or basic symptoms criteria, or (b) recent-onset depression (ROD). In PRONIA, CHR states 

were defined by 9 items of the Schizophrenia Proneness Instrument (SPI-A) which constitute the 

basic symptoms pattern termed cognitive disturbances (COGDIS),27,28 or operationalized as a 

UHR syndrome using a modified version of the SIPS.22,25,26 Individuals with ROD met criteria 

for an initial major depressive episode within 3 months of intake as determined by the Structured 

Clinical Interview for DSM-IV-TR (SCID).29  

The aim of our external validation strategy was to measure the performance of the NAPLS-

2 risk calculator in predicting psychosis transition (PT)30 in the PRONIA sample and vice versa. 

Disease transition was established when at least one of the 5 positive symptom items in the Struc-

tured Interview for Psychosis-Risk Syndromes25 reached psychotic intensity daily for at least 7 
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days. Group-level differences in sociodemographic, clinical, and functional variables were com-

pared between transition (PT) and non-transition (NT) patients in the NAPLS-2 and PRONIA co-

horts (Table 1). 

Risk Calculator Assessments 

The original NAPLS2 risk calculator was developed with eight variables previously shown to be 

associated with PT. Of these variables, six were also assessed in the PRONIA study: age; posi-

tive symptom severity on the individual SIPS items measuring unusual thought content and sus-

piciousness; score on the Brief Assessment of Cognition in Schizophrenia (BACS) symbol cod-

ing test;31 score on the Hopkins Verbal Learning Test-Revised (HVLT-R);32 decline in social 

functioning over the past year as measured by the Global Functioning Social Scale (GFS);33 and 

family history of psychotic disorders in a first-degree relative. The two variables that were omit-

ted from the original risk calculator model, stressful life events as measured by the Research In-

terview Life Events Scale34 and childhood traumas as measured by the Childhood Trauma and 

Abuse Scale,35 did not have comparable measures in PRONIA and were also not significant at 

either the univariate or the multivariate level in the original risk calculator1 and thus were ex-

cluded from the models trained and tested in this study.  

HARMONY validation framework 

A framework for reciprocal validation between the NAPLS-2 and PRONIA studies was made 

possible through the Harmonization of At Risk Multisite Observational Networks for 

Youth (HARMONY) collaboration, which also includes the PSYSCAN Consortium 

(http://psyscan.eu/) and the Philadelphia Neurodevelopmental Cohort (PNC). This framework 

facilitates the development and validation of models predictive of psychosis development within 

and across independent datasets at the international scale. All analyses were performed using the 

http://psyscan.eu/
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Virtual Pooling and Analysis of Research Data (ViPAR) portal.36 This secure, web-based plat-

form utilizes a centralized cloud server to securely and temporarily retrieve anonymized data 

from remote servers on demand. Once analyses are complete, output from the analyses can be 

accessed by the user and the data are removed from server random-access memory. The use of 

the ViPAR portal was approved by the ethics committees of the 15 participating study sites in the 

NAPLS-2 and PRONIA consortia. 

External validation and evaluation of risk calculators 

The original risk calculator described in Cannon et al. (2016) employed Cox-PH to determine the 

individual likelihood of PT in the NAPLS-2 sample. Prior to applying this model to the PRONIA 

data, we imputed missing values (26 out of 2004) using a standardized Euclidean distance-based 

nearest-neighbour approach.22 Then, the regression coefficients of the NAPLS-2 risk calculator 

were applied to the full PRONIA sample (CHR+, n=334 total), the CHR-only sample (n =167) 

and the UHR-only sample (n=126). Patients were labelled with a future PT at a predicted risk of 

0.2, as described in the original publication. Next, we evaluated the effect of adjusting the PRO-

NIA data for consortium-level differences, by mean-centering each PRONIA sample to the 

NAPLS-2 data prior to risk estimation. Finally, we removed consortium-level differences in the 

entire PRONIA data using the PRONIA-UHR sample as reference and recomputed risk estimates 

and prognostic group assignments in each PRONIA sample. The performance of the NAPLS-2 

risk calculator in these three external validation iterations was measured in terms of sensitivity, 

specificity, balanced accuracy (BAC), positive and negative predictive value (PPV, NPV), prog-

nostic summary index (PSI),37 positive and negative likelihood ratios (LR+, LR-), and area-un-

der-the curve (AUC; see Table 2 and Figure 1).  
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Then, we integrated our open-source machine learning software NeuroMiner (version 

1.05; https://github.com/neurominer-git) into ViPAR and performed a reciprocal external valida-

tion of the NAPLS-2-based clinical-neurocognitive risk signature. The rationale of this analysis 

was to evaluate the impact of different algorithms (univariate logistic regression [LR], Cox-PH, 

linear and non-linear Support Vector Machines [SVM]) and increasingly narrow risk definitions 

(CHR+, CHR, UHR) on prognostic performance. For all of the following experiments, we em-

ployed a repeated nested cross-validation design that used 10-fold cross-validation with 10 per-

mutations at the inner cycle (CV1) to determine optimal model parameters, and 10 repeats of re-

ciprocal external validation at the outer cycle (CV2) to estimate model generalizability from 

NAPLS-2 to PRONIA, and vice versa. Thus, in contrast to the single-model approach used by 

Cannon et al (2016),1 we produced 10 CV2-level prognostic ensembles for each consortium, each 

composed of 100 CV1 models, which were applied to the respectively left-out data of the other 

consortium. All modelling and data pre-processing steps were entirely wrapped into this nested 

validation design, which involved scaling of the data to the range [0,1], nearest neighbour-based 

imputation of missing values using the Euclidean distance, as well as mean-centering and stand-

ardization of the CV1 test and CV2 validation data based on the parameters derived exclusively 

from the respective CV1 training samples. 

Due to the global risk estimate differences found between the unadjusted PRONIA data 

and the NAPLS-2 sample in the external validation analysis, we implemented a new, adaptive 

Cox-PH algorithm into NeuroMiner. Instead of using absolute risk cut-offs, this algorithm identi-

fies a risk percentile that maximally separates PT from NT cases and applies this percentile to the 

test cases’ distribution of risk estimates. Thus, the Cox-PH model learns to calibrate itself to risk 

samples with divergent absolute risks distributions but similar distribution shapes. Due to the 

highly unequal samples sizes of PT and non-transition (NT) cases in the two databases, we also 

https://github.com/neurominer-git
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tested whether combining this Cox-PH algorithm with an adaptive synthetic up-sampling method 

for the PT minority class would improve prediction performance (ADASYN algorithm38 with 

pre-defined parameters: β=0.7, kSMOTE = 5, and kdensity=11). These multivariate algorithms were 

compared with machine learning strategies consisting of linear L2-regularized, L1-loss SVM39 

(regularization parameters 𝐶 = 2
[−6

∈ℤ
→ +4]

 ) and non-linear SVM using Radial Basis Functions40 

(𝐶 = 2
[−6

∈ℤ
→ +4]

 and kernel parameters 𝛾 = 2
[−15

∈ℤ
→ +2]

). In addition, we compared these algo-

rithms with simple univariate logistic regression. The models’ risk estimates or decision scores 

were averaged across CV2 repetitions and these out-of-training (OOT) predictions were evalu-

ated using the performance metrics described above (Table 3). In addition, a supplementary 

leave-site-out cross-validation analysis across the pooled NAPLS-2 and PRONIA sites was con-

ducted to measure the stability of PT prognostication within the multi-site context of the study. 

We compared algorithms in terms of median BAC differences at the CV2 level using 

Quade’s non-parametric test41,42 (Figure 2). The test was repeated for the classifier sets produced 

by the PRONIA-CHR+, CHR, and UHR samples, and hence the omnibus-level P values were 

corrected using the false-discovery rate (FDR),43 followed by an FDR correction of pairwise 

classifier comparisons in each significant test. Statistical significance was determined at α=0.05. 

Finally, we evaluated how the increasingly narrow definition of psychosis risk across the three 

PRONIA discovery samples affected the algorithms’ ability to predict PT in NAPLS-2 (Figure 

3, A). We also compared the original NAPLS-2 model with the five ensemble-based NeuroMiner 

algorithms by evaluating their performance in the three PRONIA samples (Figure 3, B). 

RESULTS 

Group-level differences between samples 
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In the NAPLS-2 sample, 84 participants experienced a transition to psychosis during the follow-

up period (transition rate: 14.1%). In the PRONIA sample, 26 (23 CHR and 3 ROD) participants 

developed psychosis during follow-up (transition rate: 12.2%). PRONIA and NAPLS-2 cohorts 

differed significantly on almost all examined sociodemographic, clinical, and neurocognitive 

variables, the including variables analyzed by the NAPLS-2 risk calculator (Table 1, Suppl. Ta-

ble 1). Specifically, the PRONIA cohort was more than 5 years older, had more educational 

years, a higher percentage of female patients in the PT group, and a lower percentage of non-

white participants. The PRONIA patients scored significantly lower on the SIPS-P1P2 summary 

item. In the BACS symbol coding and HVLT tests, the PRONIA PT cases scored between the 

NAPLS-2 non-transition and transition patients.  

External validation of the NAPLS-2 model in the PRONIA study 

Though based on AUC measures the NAPLS2 model replicated in the PRONIA sample both 

overall and at the individual center level (see Supplement), the risk estimates based on the .2 cut-

off in predicted risk produced by the original NAPLS-2 in the unadjusted PRONIA-CHR+, 

CHR, and UHR samples did not perform above chance levels due to highly unbalanced relation 

between sensitivity and specificity (BAC=49.4%-50.9%, sensitivity=3.8%-4.5%, specific-

ity=94.3%-98.1%, Table 2 and Figure 1, A). The removal of mean variable offsets between 

each PRONIA sample and the NAPLS-2 cohort, significantly increased performance across all 

PRONIA samples, with a broader risk definition being associated with higher prognostic preci-

sion (CHR+: BAC=69.6%, sensitivity=76.9%, specificity=62.3%; CHR: BAC=69.6%, sensitiv-

ity=78.3%, specificity=61.0%; UHR: BAC=63.6%, sensitivity=68.2%, specificity=59.0%; Table 

2 and Figure 1, B). When the PRONIA-UHR group served as reference sample for offset re-

moval, the specificity of the NAPLS-2 model increased at the cost of sensitivity both in the 
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CHR+ sample (BAC=70.4%, sensitivity=57.7%, specificity=83.1%) and the CHR cohort 

(BAC=65.2%, sensitivity=68.1%, specificity=66.7%; Table 2 and Figure 1, C).  

Reciprocal external validation analyses  

The reciprocal model discovery and validation of five different algorithms across the NAPLS-2 

and PRONIA cohorts replicated the gains in prognostic precision when more broadly defined 

risk cohorts were included in the analysis (Table 3). This effect was particularly apparent in the 

NAPLS-2 UHR sample (Figure 3, A): When the five different PRONIA-derived models where 

derived from the PRONIA-CHR+ sample, the average performance measured BAC=67.0%, sen-

sitivity=67.6%, specificity=66.4%. In contrast, when algorithms were developed using the PRO-

NIA-UHR group, their average performance in the NAPLS-2 cohort was BAC=58.1%, sensitiv-

ity=60.7%, specificity=55.5%. This increase could be observed across all tested algorithms, ex-

cept for the linear SVM, whose BAC ranged between 64.7% (CHR+) and 66.6% (CHR), and 

which performed best in the NAPLS-2 UHR (BAC=65.1%). Statistical classifier comparisons 

conducted across the full reciprocal external validation analysis (Figure 2, A & B) confirmed 

this finding by showing that the linear SVM outperformed all other algorithms when the PRO-

NIA-training and validation sample was confined to the UHR or CHR subgroups. In contrast, our 

adaptive Cox-PH algorithm (with or without ADASYN) achieved superior prediction perfor-

mance in the CHR+ sample, which included both the PRONIA-CHR and ROD patients. The 

supplementary leave-site-out analysis conducted across the UHR, CHR and CHR+ risk levels 

showed that the site-level variability of prognostic performance decreased from UHR to CHR+, 

as measured by the difference between the full sample and the mean (SD) performance metrics 

computed across sites (see Suppl. Table 5).  
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A qualitative comparison of predictive feature relevance between the Linear SVM and adap-

tive Cox-PH, as measured using the cross-validation ratio,22 revealed commonalities and differ-

ence between algorithms, varying with the three risk enrichment levels (Figure 2, C): When the 

discovery sample was limited to UHR patients, feature profiles were similar between algorithms, 

except for the HVLT, which showed a high negative association with PT prediction in the linear 

SVM. Broadening the risk cohort to all PRONIA patients, increased the predictive value of both 

age and the BACS digit symbol coding test, while the HVLT importance was reduced in the lin-

ear SVM. Finally, differences between the five algorithms and the original NAPLS-2 risk calcu-

lator emerged when NAPLS-2 served for model discovery (Figure 3, C): In the PRONIA data, 

the highest prognostic performance was measured for the adaptive Cox-PH algorithm with 

(mean[SD] BAC=68.3%[4.4%]) or without ADASYN (68.6%[2.1%]), which was slightly in-

creased compared to the original NAPLS-2 model combined with a priori mean-centering of 

each PRONIA sample to the NAPLS-2 data (67.6%[3.5%]). 

INTERPETATION 

The external validation of prognostic models has been identified as the major bottleneck and 

translational step for their implementation in clinical real-world settings.44 In this regard, a recip-

rocal external validation environment that facilitates a standardized framework for model ex-

change and comparison between independent single- and multi-site projects may have the poten-

tial to mitigate multiple sources of bias caused by the idiosyncrasies of study purposes, patient 

recruitment strategies and predictive model designs.45 To our knowledge, the HARMONY con-

sortium, which authored the present study, is the first initiative to set up such a secure interna-

tional forum for collaborative model discovery and validation in the field of psychosis prediction 

research and data analytics.  
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The HARMONY framework allowed us to test the generalizability and prognostic value of 

the NAPLS-2 psychosis risk signature1 both at the international scale and across diverse risk 

samples provided by the European PRONIA project.22 We encountered significant consortium-

level differences between the NAPLS-2 and PRONIA cohorts, which were likely fuelled by sys-

tematic variation in participant referral, ascertainment, enrolment and retainment, resulting in 

two study cohorts that differed on sociodemographic (age, ethnicity) and clinical parameters (se-

verity of attenuated psychotic symptoms). A key observation of the current work was that these 

differences considerably impaired the generalizability of the original risk calculator but could be 

overcome by mean-centering each predictor of the PRONIA sample to the respective variable of 

the NAPLS-2 cohort. This simple calibration procedure enabled the original model to predict PT 

in the PRONIA-UHR cohort with a 5.4% lower BAC compared to the NAPLS-2 discovery pop-

ulation (BAC=69%). Based on the observation of project-level differences between NAPLS-2 

and PRONIA, we developed a new Cox-PH algorithm which learns an optimal relative risk cut-

off compared to the fixed, absolute risk threshold (p=0.2) of the original risk calculator.1 Based 

on this algorithm, we were able to show that the generalizability gap can be reduced to 2.8%. 

This finding is highly relevant for the successful clinical implementation of the risk calculator, as 

target populations will inevitably differ in their levels of absolute risk for the development of PT, 

as encountered in the NAPLS-2 sample (optimal probability cut-off for PT assignment: p=0.267) 

and the PRONIA-UHR cohort (p=0.184). 

Furthermore, we observed that univariate logistic regression significantly trailed behind all 

multivariate methods, suggesting that generalizable prognostic precision can only be achieved 

when the relationships between psychosis risk variables are algorithmically modelled into a risk 

pattern. Among the pattern recognition algorithms, the linear SVM algorithm slightly but signifi-
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cantly outperformed Cox-PH in target populations encompassing only patients with CHR syn-

dromes. The analysis of feature relevance indicated that the former algorithm learned a more 

complex clinical-neurocognitive pattern, while the Cox-PH model put less emphasis on neu-

rocognitive information. As SVMs intrinsically learn decision boundaries between opposite clas-

ses by maximizing the distance between most similar cases, the higher complexity of the SVM 

pattern may have increased prognostic precision within a more homogenous risk population.46 In 

contrast, the Cox-PH algorithm attained higher prognostic precision when the target population 

comprised both patients with CHR syndromes as well as patients with ROD. In this broader risk 

sample, the Cox-PH model identified attenuated psychotic symptoms, social functioning decline, 

and a positive family history as most reliable core predictors of subsequent PT. However, in 

summary, we did not find major differences between multivariate survival algorithms and SVM-

based machine learning approaches. This finding was expected because the analysed risk space 

was spanned by just 6 variables, previously picked among many other potential sociodemo-

graphic, clinical, behavioural and neurocognitive predictors through a decade-long literature-

driven and expert-based feature selection process.1,47,48 

Strikingly, the present study revealed that a transdiagnostic risk designation which enriches 

the core group of CHR individuals with young patients experiencing their first episode of major 

depression, leads to risk calculators with superior, more generalizable, and stable prognostic per-

formance. This finding is in line with previous studies,19,20 suggesting that elevated risk for psy-

chosis is not confined to CHR states but extends to other ‘neighbouring’ or comorbid conditions 

which typically co-occur with these syndromes. Of note, we observed that the increased prognos-

tic performance of CHR+-based models was not driven by higher specificity due to the inclusion 

of ROD patients properly labelled as NT. Instead, we found that model performance increased 

particularly in the NAPLS-UHR sample, and, in addition, was more stable across study sites 
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compared to UHR-only derived algorithms. This finding may point to an increased representa-

tional power of the CHR+-trained models due to the extension of the risk spectrum towards 

lower-risk individuals with early-onset affective disorders, who may share bio-behavioural fea-

tures of psychosis.49–52 Future studies should investigate whether this enrichment effect is spe-

cific to affective disorders or can also be traced in other conditions which evolve in adolescence 

and young adulthood.53 

In summary, we found that the clinical-neurocognitive risk calculator previously described 

by the NAPLS-2 study provides an internationally scalable tool for individualised psychosis risk 

ascertainment in youth with diverse psychosis risk syndromes. The underlying risk signature 

may extend beyond the prevailing CHR-focused concepts of the current early recognition litera-

ture. This may have important ramifications for the design of future prognostic studies and the 

development of transdiagnostic precision medicine tools in the youth mental health field. The 

HARMONY initiative provided a useful resource for integrated model discovery and validation 

at the highest level of validity achievable with retrospective data. Future work should assess the 

prospective generalizability of the NAPLS-2 derived risk signature, its clinical utility for treat-

ment stratification and the potential additive value of biological information.  
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Table 1. Sociodemographic, clinical, and functional differences between non-transition and transition cases in the 

NAPLS-2 and PRONIA samples. 

Abbreviations: NT non-transition cases, PT transition cases, P P value of comparison 

 NAPLS-2 PRONIA    

Variable NT PT NT PT Wald χ2(df) P 

Age, mean (SD) 18.6 (4.4) 18.1 (3.6) 24.7 (5.8) 23.5 (5.9) χ2(3) = 352.6 0.008 

Sex, % Female 43% 38.1% 49.1% 61.5% χ2(3) = 8.8 0.033 

Race, % non-white  41.8% 44% 13% 7.7% χ2(3) = 76.9 0.017 

Years of education, mean 

(SD) 

11.3 (2.9) 11.0 (2.5) 14.3 (2.9) 13.3 (2.5) χ2(3) = 228.9 0.008 

Family history, % no his-

tory 

84.4% 81% 90.6% 80.8% χ2(3) = 8.7 0.042 

Baseline positive symp-

toms (p1+p2), mean (SD) 

5.9 (2.2) 7.1 (2.3) 2.6 (2.6) 5.5 (2.8) χ2(3) = 466.5 0.008 

HVLT, mean (SD) 25.8 (5.1) 24.2 (5.5) 28.5 (2.7) 26.5 (3.0) χ2(3) = 93.8 0.008 

BACS, mean (SD) 57.4 (13.2) 53.2 (11.6) 61.1 (11.8) 55.0 (13.0) χ2(3) = 33.1 0.025 

Change in GFS, mean 

(SD) 

0.70 (1.0) 0.99 (1.2) 0.75 (0.9) 0.96 (1.1) χ2(3) = 7.6 0.054 
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Table 2. Results of the external model validation of the original NAPLS-2 risk calculator in the three PRONIA sam-

ples (CHR+, CHR, and UHR) with and without prior centering of the predictor variables to the means of the respective 

NAPLS variables. Offsets corrections were computed between the NAPLS-2 cohort and the PRONIA UHR sample. 

 

PRONIA 

samples 
TP TN FP FN 

Sens 

[%] 

Spec 

[%] 

BAC 

[%] 

PPV 

[%] 

NPV 

[%] 
PSI [%] LR+ LR- AUC 

PRONIA data not mean-centered to NAPLS-2 

CHR+ 1 302 6 25 3.8 98.1 50.9 14.3 92.4 6.6 1.97 0.98 0.51 

CHR 1 135 6 22 4.3 95.7 50.0 14.3 86.0 0.3 1.02 1.00 0.50 

UHR 1 99 6 21 4.5 94.3 49.4 14.3 82.5 -3.2 0.80 1.01 0.49 

PRONIA data mean-centered to NAPLS-2 using respective PRONIA sample as reference 

CHR+ 20 192 116 6 76.9 62.3 69.6 14.7 97.0 11.7 2.04 0.37 0.70 

CHR 18 86 55 5 78.3 61.0 69.6 24.7 94.5 19.2 2.01 0.36 0.70 

UHR 15 62 43 7 68.2 59.0 63.6 25.9 89.9 15.7 1.66 0.54 0.64 

PRONIA data mean-centered to NAPLS-2 using the PRONIA UHR sample as reference 

CHR+ 15 256 52 11 57.7 83.1 70.4 22.4 95.9 18.3 3.42 0.51 0.70 

CHR 15 96 45 8 65.2 68.1 66.7 25.0 92.3 17.3 2.04 0.51 0.67 

UHR 15 62 43 7 68.2 59.0 63.6 25.9 89.9 15.7 1.66 0.54 0.64 

Abbreviations: TP number of true positives, TN number of true negatives, FP number of false positives, FN number 

of false negatives, Sens Sensitivity, Spec Specificity, BAC Balanced Accuracy, PPV Positive Predictive Value, NPV 

Negative Predictive Value, PSI Prognostic Summary Index, LR+ Positive Likelihood Ratio, LR- Negative Likelihood 

Ratio, AUC Area-under-the Curve. 
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Table 3. Algorithm comparisons in the reciprocal external validation (REV) experiments with performance measures com-

puted separately for the risk calculators trained on the NAPLS-2 UHR cohort or on the three PRONIA samples (CHR+, 

CHR, and UHR).  

 Confusion matrix Performance measures 

Predictors TP TN FP FN 
Sens 

[%] 

Spec 

[%] 

BAC 

[%] 

PPV 

[%] 

NPV 

[%] 

PSI 

[%] 
LR+ LR- AUC 

CHR+ enrichment level                           

LR [Full Sample] 94 328 491 16 85.5 40.0 62.8 16.1 95.3 11.4 1.43 0.36 0.70 

LR [NAPLS-2] 68 270 241 16 81.0 52.8 66.9 22.0 94.4 16.4 1.72 0.36 0.74 

LR [PRONIA] 26 58 250 0 100 18.8 59.4 9.4 100 9.4 1.23 0.00 0.79 

Cox-PH [Full Sample] 72 579 240 38 65.5 70.7 68.1 23.1 93.8 16.9 2.23 0.49 0.73 

Cox-PH [NAPLS-2] 52 385 126 32 61.9 75.3 68.6 29.2 92.3 21.5 2.51 0.51 0.74 

Cox-PH [PRONIA] 20 194 114 6 76.9 63.0 70.0 14.9 97.0 11.9 2.08 0.37 0.79 

Cox-PH (+A) [Full Sample] 78 560 259 32 70.9 68.4 69.6 23.1 94.6 17.7 2.24 0.43 0.74 

Cox-PH (+A) [NAPLS-2] 60 333 178 24 71.4 65.2 68.3 25.2 93.3 18.5 2.05 0.44 0.72 

Cox-PH (+A) [PRONIA] 18 227 81 8 69.2 73.7 71.5 18.2 96.6 14.8 2.63 0.42 0.78 

Linear SVM [Full Sample] 82 478 341 28 74.5 58.4 66.5 19.4 94.5 13.9 1.79 0.44 0.73 

Linear SVM [NAPLS-2] 63 278 233 21 75.0 54.4 64.7 21.3 93.0 14.3 1.64 0.46 0.72 

Linear SVM [PRONIA] 19 200 108 7 73.1 64.9 69.0 15.0 96.6 11.6 2.08 0.41 0.78 

RBF-SVM [Full Sample] 58 680 139 52 52.7 83.0 67.9 29.4 92.9 22.3 3.11 0.57 0.74 

RBF-SVM [NAPLS-2] 41 431 80 43 48.8 84.3 66.6 33.9 90.9 24.8 3.12 0.61 0.73 

RBF-SVM [PRONIA] 17 249 59 9 65.4 80.8 73.1 22.4 96.5 18.9 3.41 0.43 0.78 

CHR enrichment level         
         

LR [Full Sample] 106 71 584 1 99.1 10.8 55.0 15.4 98.6 14.0 1.11 0.09 0.73 

LR [NAPLS-2] 83 34 477 1 98.8 6.7 52.7 14.8 97.1 12.0 1.06 0.18 0.73 

LR [PRONIA] 23 37 107 0 100.0 25.7 62.8 17.7 100 17.7 1.35 0.00 0.74 

Cox-PH [Full Sample] 81 371 284 26 75.7 56.6 66.2 22.2 93.5 15.6 1.75 0.43 0.71 

Cox-PH [NAPLS-2] 64 277 234 20 76.2 54.2 65.2 21.5 93.3 14.7 1.66 0.44 0.71 

Cox-PH [PRONIA] 17 94 50 6 73.9 65.3 69.6 25.4 94.0 19.4 2.13 0.40 0.75 

Cox-PH (+A) [Full Sample] 79 385 270 28 73.8 58.8 66.3 22.6 93.2 15.9 1.79 0.45 0.68 

Cox-PH (+A) [NAPLS-2] 64 277 234 20 76.2 54.2 65.2 21.5 93.3 14.7 1.66 0.44 0.68 

Cox-PH (+A) [PRONIA] 15 108 36 8 65.2 75.0 70.1 29.4 93.1 22.5 2.61 0.46 0.74 

Linear SVM [Full Sample] 80 381 274 27 74.8 58.2 66.5 22.6 93.4 16.0 1.79 0.43 0.72 

Linear SVM [NAPLS-2] 64 291 220 20 76.2 56.9 66.6 22.5 93.6 16.1 1.77 0.42 0.72 

Linear SVM [PRONIA] 16 90 54 7 69.6 62.5 66.0 22.9 92.8 15.6 1.86 0.49 0.74 

RBF-SVM [Full Sample] 56 495 160 51 52.3 75.6 64.0 25.9 90.7 16.6 2.14 0.63 0.70 

RBF-SVM [NAPLS-2] 44 384 127 40 52.4 75.1 63.8 25.7 90.6 16.3 2.11 0.63 0.70 

RBF-SVM [PRONIA] 12 111 33 11 52.2 77.1 64.6 26.7 91.0 17.7 2.28 0.62 0.73 

UHR enrichment level                 
 

LR [Full Sample] 102 31 585 3 97.1 5.0 51.1 14.8 91.2 6.0 1.02 0.57 0.69 

LR [NAPLS-2] 84 3 508 0 100 0.6 50.3 14.2 100 14.2 1.01 0.00 0.70 

LR [PRONIA] 18 28 77 3 85.7 26.7 56.2 18.9 90.3 9.3 1.17 0.54 0.69 

Cox-PH [Full Sample] 51 496 120 54 48.6 80.5 64.5 29.8 90.2 20.0 2.49 0.64 0.68 

Cox-PH [NAPLS-2] 37 427 84 47 44.0 83.6 63.8 30.6 90.1 20.7 2.68 0.67 0.68 

Cox-PH [PRONIA] 14 69 36 7 66.7 65.7 66.2 28.0 90.8 18.8 1.94 0.51 0.69 
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Cox-PH (+A) [Full Sample] 83 265 351 22 79.0 43.0 61.0 19.1 92.3 11.5 1.39 0.49 0.65 

Cox-PH (+A) [NAPLS-2] 72 187 324 12 85.7 36.6 61.2 18.2 94.0 12.2 1.35 0.39 0.66 

Cox-PH (+A) [PRONIA] 11 78 27 10 52.4 74.3 63.3 28.9 88.6 17.6 2.04 0.64 0.68 

Linear SVM [Full Sample] 75 366 250 30 71.4 59.4 65.4 23.1 92.4 15.5 1.76 0.48 0.69 

Linear SVM [NAPLS-2] 60 300 211 24 71.4 58.7 65.1 22.1 92.6 14.7 1.73 0.49 0.70 

Linear SVM [PRONIA] 15 66 39 6 71.4 62.9 67.1 27.8 91.7 19.4 1.92 0.45 0.69 

RBF-SVM [Full Sample] 12 583 33 93 11.4 94.6 53.0 26.7 86.2 12.9 2.13 0.94 0.70 

RBF-SVM [NAPLS-2] 2 500 11 82 2.4 97.8 50.1 15.4 85.9 1.3 1.11 1.00 0.71 

RBF-SVM [PRONIA] 10 83 22 11 47.6 79.0 63.3 31.3 88.3 19.5 2.27 0.66 0.68 

Abbreviations: LR Logistic regression, Cox-PH Cox Proportional Hazard model, SVM Support Vector Machine, RBF-

SVM Support Vector Machine with Radial Basis Kernel, +A Cox-PH (+ADASYN), TP number of true positives, TN num-

ber of true negatives, FP number of false positives, FN number of false negatives, Sens Sensitivity, Spec Specificity, BAC 

Balanced Accuracy, PPV Positive Predictive Value, NPV Negative Predictive Value, PSI Prognostic Summary Index, LR+ 

Positive Likelihood Ratio, LR- Negative Likelihood Ratio, AUC Area-under-the Curve. 
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Figure 1. NAPLS-2 risk calculator estimates for the 2-year transition risk of PT (red) versus NT cases (blue) in three 

different risk cohorts of PRONIA (CHR+: Sample comprising both CHR and ROD patients, CHR: Sample consisting 

only of CHR patients, UHR: Sample consisting only of patients fulfilling UHR criteria). Predictor variables were 

either not adjusted for mean differences to the NAPLS-2 data (A), adjusted using the respective PRONIA sample (B), 

or adjusted using the PRONIA-UHR sample as reference group (C). 
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Figure 2. Analysis of classifier differences in the reciprocal external validation experiments. A: Balanced accuracy 

distributions of each classifier at the leave-project-out level described by the median, the 5% and 95% percentiles. 

Quade test omnibus analysis results were provided for each risk enrichment level (CHR+, CHR, UHR). B: Post hoc 

tests of pairwise BAC differences between risk calculators. C: Analysis of feature relevance for prediction of PT in 

the reciprocal external validation analysis (left: linear SVM, right: Cox-PH). Abbreviations: see Table 3. 
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Figure 3. PRONIA risk enrichment effects on PT prediction in the NAPLS-2 cohort and algorithm effects on the 

prediction of PT in the PRONIA risk enrichment samples. A: Balanced accuracy of the 5 different prognostic algo-

rithms in the NAPLS-2 cohort as a function of the PRONIA risk sample used to train these algorithms. B: Differ-

ences in balanced accuracy as a function of the type of algorithm applied to the three different PRONIA samples. 

Additionally, means and standard deviations are depicted for both A and B. 

 

 



Supplementary Table 1. Descriptive analysis of means and standard deviations of the NAPLS-2 risk calculator 

variables shared between the two consortia. 

  NAPLS-2 PRONIA-UHR PRONIA-CHR PRONIA-CHR+ 

  N mean SD N mean SD N mean SD N mean SD 

Full sample 

Age [years] 596 18.51 4.27 126 23.11 4.97 167 23.79 5.37 334 24.71 5.76 

BACS-DSST score 596 56.80 13.04 119 58.92 12.23 160 59.51 12.21 323 60.68 11.96 

HVLT-Total score 596 25.61 5.15 121 27.89 3.04 162 27.94 3.07 322 28.32 2.77 

GFS-Decline past year 596 0.74 1.04 126 0.74 0.92 167 0.71 0.92 334 0.79 0.95 

Family history  596 0.16 0.37 126 0.20 0.40 167 0.17 0.37 334 0.10 0.30 

SIPS-P1P2 596 2.61 1.57 126 2.13 1.87 167 1.72 1.84 334 0.91 1.56 

Transition cases 

Age [years] 84 18.06 3.58 21 23.94 5.93 23 24.13 5.84 26 23.50 5.92 

BACS-DSST score 84 53.20 11.60 18 55.50 13.78 20 54.70 13.55 23 55.00 12.97 

HVLT-Total score 84 24.18 5.54 18 26.11 3.07 20 26.15 2.91 23 26.52 2.98 

GFS-Decline past year 84 0.99 1.16 21 1.05 1.24 23 1.09 1.20 26 0.96 1.12 

Family history 84 0.19 0.40 21 0.24 0.44 23 0.22 0.42 26 0.19 0.40 

SIPS-P1P2 84 3.51 1.77 21 2.62 1.80 23 2.52 1.81 26 2.23 1.88 

Months to transition 84 7.22 5.70 21 7.34 7.42 23 7.32 7.08 26 8.23 8.15 

Non-transition cases  

Age [years] 512 18.59 4.37 105 22.95 4.77 144 23.74 5.31 308 24.72 5.77 

BACS-DSST score 512 57.39 13.17 101 59.53 11.91 140 60.19 11.90 300 61.12 11.79 

HVLT-Total score 512 25.84 5.05 103 28.20 2.95 142 28.20 3.02 299 28.45 2.71 

GFS-Decline past year 512 0.70 1.01 105 0.68 0.84 144 0.65 0.86 308 0.75 0.93 

Family history 512 0.16 0.36 105 0.19 0.39 144 0.16 0.37 308 0.09 0.29 

SIPS-P1P2 512 2.46 1.49 105 2.03 1.88 144 1.60 1.82 308 0.80 1.48 

 

  



Supplementary Table 2. Leave-site-out cross-validation analysis in the CHR+ sample comparing the five 

different PT prediction algorithms. The out-of-training performance of the given algorithm was broken down per 

site. In addition, the respective means and standards deviation of the given algorithm’s performance measures 

were computed across sites. To avoid a biased estimate of the average leave-site-out performances, the PRONIA 

Udine site was excluded from this analysis because of no reported transition cases. 

Predictors TP TN FP FN Sens Spec BAC PPV NPV PSI LR+ LR- AUC 

LR [Full Sample] 107 155 634 3 97.3 19.6 58.5 14.4 98.1 12.5 1.21 0.14 0.74 

LR [Basel] 2 10 22 0 100.0 31.3 65.6 8.3 100.0 8.3 1.45 0.00 0.86 

LR [Birmingham] 2 3 31 0 100.0 8.8 54.4 6.1 100.0 6.1 1.10 0.00 0.51 

LR [Calgary] 18 25 89 1 94.7 21.9 58.3 16.8 96.2 13.0 1.21 0.24 0.67 

LR [Cologne] 4 8 51 0 100.0 13.6 56.8 7.3 100.0 7.3 1.16 0.00 0.75 

LR [Emory] 8 15 41 0 100.0 26.8 63.4 16.3 100.0 16.3 1.37 0.00 0.66 

LR [Harvard] 3 4 40 0 100.0 9.1 54.5 7.0 100.0 7.0 1.10 0.00 0.45 

LR [Hillside] 6 12 53 0 100.0 18.5 59.2 10.2 100.0 10.2 1.23 0.00 0.94 

LR [Milan] 2 6 17 0 100.0 26.1 63.0 10.5 100.0 10.5 1.35 0.00 0.70 

LR [Munich] 10 12 87 0 100.0 12.1 56.1 10.3 100.0 10.3 1.14 0.00 0.80 

LR [Turku] 5 16 15 1 83.3 51.6 67.5 25.0 94.1 19.1 1.72 0.32 0.81 

LR [UCLA] 14 13 46 0 100.0 22.0 61.0 23.3 100.0 23.3 1.28 0.00 0.77 

LR [UCSD] 9 15 35 0 100.0 30.0 65.0 20.5 100.0 20.5 1.43 0.00 0.68 

LR [UNC] 15 10 54 0 100.0 15.6 57.8 21.7 100.0 21.7 1.19 0.00 0.84 

LR [Yale] 9 6 53 1 90.0 10.2 50.1 14.5 85.7 0.2 1.00 0.98 0.70 

LR [mean]         97.7 21.3 59.5 14.1 98.3 12.4 1.27 0.11 0.72 

LR [SD]         5.1 11.6 5.0 6.5 4.0 6.8 0.19 0.27 0.13 

Cox-PH [Full Sample] 68 562 227 42 61.8 71.2 66.5 23.1 93.0 16.1 2.15 0.54 0.72 

Cox-PH [Basel] 2 20 12 0 100.0 62.5 81.3 14.3 100.0 14.3 2.67 0.00 0.86 

Cox-PH [Birmingham] 0 23 11 2 0.0 67.6 33.8 0.0 92.0 -8.0 0.00 1.48 0.47 

Cox-PH [Calgary] 9 84 30 10 47.4 73.7 60.5 23.1 89.4 12.4 1.80 0.71 0.68 

Cox-PH [Cologne] 3 37 22 1 75.0 62.7 68.9 12.0 97.4 9.4 2.01 0.40 0.75 

Cox-PH [Emory] 3 40 16 5 37.5 71.4 54.5 15.8 88.9 4.7 1.31 0.88 0.65 

Cox-PH [Harvard] 1 25 19 2 33.3 56.8 45.1 5.0 92.6 -2.4 0.77 1.17 0.42 

Cox-PH [Hillside] 6 50 15 0 100.0 76.9 88.5 28.6 100.0 28.6 4.33 0.00 0.94 

Cox-PH [Milan] 2 16 7 0 100.0 69.6 84.8 22.2 100.0 22.2 3.29 0.00 0.70 

Cox-PH [Munich] 8 74 25 2 80.0 74.7 77.4 24.2 97.4 21.6 3.17 0.27 0.80 

Cox-PH [Turku] 4 24 7 2 66.7 77.4 72.0 36.4 92.3 28.7 2.95 0.43 0.81 

Cox-PH [UCLA] 10 47 12 4 71.4 79.7 75.5 45.5 92.2 37.6 3.51 0.36 0.78 

Cox-PH [UCSD] 3 35 15 6 33.3 70.0 51.7 16.7 85.4 2.0 1.11 0.95 0.68 

Cox-PH [UNC] 11 44 20 4 73.3 68.8 71.0 35.5 91.7 27.2 2.35 0.39 0.84 

Cox-PH [Yale] 6 43 16 4 60.0 72.9 66.4 27.3 91.5 18.8 2.21 0.55 0.68 

Cox-PH [mean]         62.7 70.3 66.5 21.9 93.6 15.5 2.25 0.54 0.72 

Cox-PH [SD]         29.6 6.4 15.7 12.4 4.6 13.2 1.18 0.45 0.14 

Cox-PH (+A) [Full Sample] 68 583 206 42 61.8 73.9 67.9 24.8 93.3 18.1 2.37 0.52 0.72 

Cox-PH (+A) [Basel] 2 24 8 0 100.0 75.0 87.5 20.0 100.0 20.0 4.00 0.00 0.84 

Cox-PH (+A) [Birmingham] 1 24 10 1 50.0 70.6 60.3 9.1 96.0 5.1 1.70 0.71 0.56 

Cox-PH (+A) [Calgary] 9 83 31 10 47.4 72.8 60.1 22.5 89.2 11.7 1.74 0.72 0.64 

Cox-PH (+A) [Cologne] 2 42 17 2 50.0 71.2 60.6 10.5 95.5 6.0 1.74 0.70 0.74 

Cox-PH (+A) [Emory] 2 39 17 6 25.0 69.6 47.3 10.5 86.7 -2.8 0.82 1.08 0.67 

Cox-PH (+A) [Harvard] 1 27 17 2 33.3 61.4 47.3 5.6 93.1 -1.3 0.86 1.09 0.45 

Cox-PH (+A) [Hillside] 6 50 15 0 100.0 76.9 88.5 28.6 100.0 28.6 4.33 0.00 0.94 

Cox-PH (+A) [Milan] 1 16 7 1 50.0 69.6 59.8 12.5 94.1 6.6 1.64 0.72 0.70 

Cox-PH (+A) [Munich] 8 75 24 2 80.0 75.8 77.9 25.0 97.4 22.4 3.30 0.26 0.80 

Cox-PH (+A) [Turku] 4 24 7 2 66.7 77.4 72.0 36.4 92.3 28.7 2.95 0.43 0.81 

Cox-PH (+A) [UCLA] 10 47 12 4 71.4 79.7 75.5 45.5 92.2 37.6 3.51 0.36 0.78 

Cox-PH (+A) [UCSD] 5 38 12 4 55.6 76.0 65.8 29.4 90.5 19.9 2.31 0.58 0.71 

Cox-PH (+A) [UNC] 10 51 13 5 66.7 79.7 73.2 43.5 91.1 34.5 3.28 0.42 0.84 

Cox-PH (+A) [Yale] 7 43 16 3 70.0 72.9 71.4 30.4 93.5 23.9 2.58 0.41 0.70 

Cox-PH (+A) [mean]         61.9 73.5 67.7 23.5 93.7 17.2 2.48 0.53 0.73 



Predictors TP TN FP FN Sens Spec BAC PPV NPV PSI LR+ LR- AUC 

Cox-PH (+A) [SD]         22.0 4.9 12.7 12.9 3.9 13.1 1.11 0.33 0.12 

Linear SVM [Full Sample] 86 476 313 24 78.2 60.3 69.3 21.6 95.2 16.8 1.97 0.36 0.74 

Linear SVM [Basel] 2 21 11 0 100.0 65.6 82.8 15.4 100.0 15.4 2.91 0.00 0.89 

Linear SVM [Birmingham] 1 20 14 1 50.0 58.8 54.4 6.7 95.2 1.9 1.21 0.85 0.43 

Linear SVM [Calgary] 13 65 49 6 68.4 57.0 62.7 21.0 91.5 12.5 1.59 0.55 0.69 

Linear SVM [Cologne] 3 41 18 1 75.0 69.5 72.2 14.3 97.6 11.9 2.46 0.36 0.78 

Linear SVM [Emory] 8 34 22 0 100.0 60.7 80.4 26.7 100.0 26.7 2.55 0.00 0.71 

Linear SVM [Harvard] 1 23 21 2 33.3 52.3 42.8 4.5 92.0 -3.5 0.70 1.28 0.52 

Linear SVM [Hillside] 6 36 29 0 100.0 55.4 77.7 17.1 100.0 17.1 2.24 0.00 0.92 

Linear SVM [Milan] 2 16 7 0 100.0 69.6 84.8 22.2 100.0 22.2 3.29 0.00 0.70 

Linear SVM [Munich] 8 65 34 2 80.0 65.7 72.8 19.0 97.0 16.1 2.33 0.30 0.83 

Linear SVM [Turku] 5 22 9 1 83.3 71.0 77.2 35.7 95.7 31.4 2.87 0.23 0.80 

Linear SVM [UCLA] 11 36 23 3 78.6 61.0 69.8 32.4 92.3 24.7 2.02 0.35 0.76 

Linear SVM [UCSD] 7 27 23 2 77.8 54.0 65.9 23.3 93.1 16.4 1.69 0.41 0.65 

Linear SVM [UNC] 12 41 23 3 80.0 64.1 72.0 34.3 93.2 27.5 2.23 0.31 0.83 

Linear SVM [Yale] 7 29 30 3 70.0 49.2 59.6 18.9 90.6 9.5 1.38 0.61 0.65 

Linear SVM [mean]         78.3 61.0 69.6 20.8 95.6 16.4 2.10 0.38 0.73 

Linear SVM [SD]         19.4 6.9 11.7 9.3 3.5 9.8 0.72 0.36 0.14 

RBF-SVM [Full Sample] 53 634 155 57 48.2 80.4 64.3 25.5 91.8 17.2 2.45 0.64 0.74 

RBF-SVM [Basel] 2 25 7 0 100.0 78.1 89.1 22.2 100.0 22.2 4.57 0.00 0.83 

RBF-SVM [Birmingham] 0 27 7 2 0.0 79.4 39.7 0.0 93.1 -6.9 0.00 1.26 0.43 

RBF-SVM [Calgary] 9 91 23 10 47.4 79.8 63.6 28.1 90.1 18.2 2.35 0.66 0.70 

RBF-SVM [Cologne] 2 48 11 2 50.0 81.4 65.7 15.4 96.0 11.4 2.68 0.61 0.78 

RBF-SVM [Emory] 2 40 16 6 25.0 71.4 48.2 11.1 87.0 -1.9 0.88 1.05 0.69 

RBF-SVM [Harvard] 1 34 10 2 33.3 77.3 55.3 9.1 94.4 3.5 1.47 0.86 0.47 

RBF-SVM [Hillside] 6 55 10 0 100.0 84.6 92.3 37.5 100.0 37.5 6.50 0.00 0.93 

RBF-SVM [Milan] 0 16 7 2 0.0 69.6 34.8 0.0 88.9 -11.1 0.00 1.44 0.70 

RBF-SVM [Munich] 5 81 18 5 50.0 81.8 65.9 21.7 94.2 15.9 2.75 0.61 0.81 

RBF-SVM [Turku] 3 24 7 3 50.0 77.4 63.7 30.0 88.9 18.9 2.21 0.65 0.77 

RBF-SVM [UCLA] 7 48 11 7 50.0 81.4 65.7 38.9 87.3 26.2 2.68 0.61 0.76 

RBF-SVM [UCSD] 3 38 12 6 33.3 76.0 54.7 20.0 86.4 6.4 1.39 0.88 0.65 

RBF-SVM [UNC] 10 57 7 5 66.7 89.1 77.9 58.8 91.9 50.8 6.10 0.37 0.85 

RBF-SVM [Yale] 3 50 9 7 30.0 84.7 57.4 25.0 87.7 12.7 1.97 0.83 0.66 

RBF SVM [mean]         45.4 79.4 62.4 22.7 91.8 14.6 2.54 0.70 0.72 

RBF SVM [SD]         29.8 5.1 16.4 15.9 4.6 16.8 1.98 0.41 0.14 

Abbreviations. Algorithms: LR Logistic regression, Cox-PH Cox Proportional Hazard model, SVM Support Vector Machine, 

RBF-SVM Support Vector Machine with Radial Basis Kernel, +A Cox-PH (+ADASYN); Performance Measures: TP number 

of true positives, TN number of true negatives, FP number of false positives, FN number of false negatives, Sens Sensitivity, 

Spec Specificity, BAC Balanced Accuracy, PPV Positive Predictive Value, NPV Negative Predictive Value, PSI Prognostic 

Summary Index, LR+ Positive Likelihood Ratio, LR- Negative Likelihood Ratio, AUC Area-under-the Curve; Test sites: UCLA 

University of California, Los Angeles, UCSD University of Californa, San Diego, UNC University of North Carolina. 

 

  



Supplementary Table 3. Leave-site-out cross-validation analysis in the CHR sample comparing the five 

different PT prediction algorithms. The out-of-training performance of the given algorithm was broken down per 

site. In addition, the respective means and standards deviation of the given algorithm’s performance measures 

were computed across sites. To avoid a biased estimate of the average leave-site-out performances, the PRONIA 

Udine site was excluded from this analysis because of no reported transition cases. 

Predictors TP TN FP FN Sens Spec BAC PPV NPV PSI LR+ LR- AUC 

LR [Full Sample] 104 80 560 3 97.2 12.5 54.8 15.7 96.4 12.0 1.10 0.20 0.72 

LR [Basel] 2 4 13 0 100.0 23.5 61.8 13.3 100.0 13.3 1.31 0.00 0.82 

LR [Birmingham] 1 1 15 0 100.0 6.3 53.1 6.3 100.0 6.3 1.07 0.00 0.50 

LR [Calgary] 18 10 104 1 94.7 8.8 51.8 14.8 90.9 5.7 1.04 0.60 0.68 

LR [Cologne] 3 3 17 0 100.0 15.0 57.5 15.0 100.0 15.0 1.18 0.00 0.80 

LR [Emory] 8 11 45 0 100.0 19.6 59.8 15.1 100.0 15.1 1.24 0.00 0.68 

LR [Harvard] 3 3 41 0 100.0 6.8 53.4 6.8 100.0 6.8 1.07 0.00 0.48 

LR [Hillside] 6 7 58 0 100.0 10.8 55.4 9.4 100.0 9.4 1.12 0.00 0.93 

LR [Milan] 2 4 9 0 100.0 30.8 65.4 18.2 100.0 18.2 1.44 0.00 0.46 

LR [Munich] 9 5 39 0 100.0 11.4 55.7 18.8 100.0 18.8 1.13 0.00 0.72 

LR [Turku] 5 7 12 1 83.3 36.8 60.1 29.4 87.5 16.9 1.32 0.45 0.76 

LR [UCLA] 14 8 51 0 100.0 13.6 56.8 21.5 100.0 21.5 1.16 0.00 0.77 

LR [UCSD] 9 8 42 0 100.0 16.0 58.0 17.6 100.0 17.6 1.19 0.00 0.69 

LR [UNC] 15 5 59 0 100.0 7.8 53.9 20.3 100.0 20.3 1.08 0.00 0.82 

LR [Yale] 9 4 55 1 90.0 6.8 48.4 14.1 80.0 -5.9 0.97 1.48 0.68 

LR [mean] 
    

97.7 15.3 56.5 15.7 97.0 12.8 1.17 0.18 0.70 

LR [SD] 
    

5.1 9.4 4.4 6.1 6.3 7.5 0.13 0.42 0.14 

Cox-PH [Full Sample] 74 419 221 33 69.2 65.5 67.3 25.1 92.7 17.8 2.00 0.50 0.73 

Cox-PH [Basel] 2 11 6 0 100.0 64.7 82.4 25.0 100.0 25.0 2.83 0.00 0.82 

Cox-PH [Birmingham] 0 9 7 1 0.0 56.3 28.1 0.0 90.0 -10.0 0.00 1.78 0.50 

Cox-PH [Calgary] 13 73 41 6 68.4 64.0 66.2 24.1 92.4 16.5 1.90 0.49 0.69 

Cox-PH [Cologne] 2 13 7 1 66.7 65.0 65.8 22.2 92.9 15.1 1.90 0.51 0.80 

Cox-PH [Emory] 6 36 20 2 75.0 64.3 69.6 23.1 94.7 17.8 2.10 0.39 0.67 

Cox-PH [Harvard] 1 27 17 2 33.3 61.4 47.3 5.6 93.1 -1.3 0.86 1.09 0.47 

Cox-PH [Hillside] 6 43 22 0 100.0 66.2 83.1 21.4 100.0 21.4 2.95 0.00 0.92 

Cox-PH [Milan] 0 7 6 2 0.0 53.8 26.9 0.0 77.8 -22.2 0.00 1.86 0.46 

Cox-PH [Munich] 6 29 15 3 66.7 65.9 66.3 28.6 90.6 19.2 1.96 0.51 0.72 

Cox-PH [Turku] 4 13 6 2 66.7 68.4 67.5 40.0 86.7 26.7 2.11 0.49 0.76 

Cox-PH [UCLA] 10 40 19 4 71.4 67.8 69.6 34.5 90.9 25.4 2.22 0.42 0.76 

Cox-PH [UCSD] 6 35 15 3 66.7 70.0 68.3 28.6 92.1 20.7 2.22 0.48 0.68 

Cox-PH [UNC] 11 44 20 4 73.3 68.8 71.0 35.5 91.7 27.2 2.35 0.39 0.81 

Cox-PH [Yale] 7 39 20 3 70.0 66.1 68.1 25.9 92.9 18.8 2.07 0.45 0.66 

Cox-PH [mean] 
    

61.3 64.5 62.9 22.5 91.8 14.3 1.82 0.63 0.70 

Cox-PH [SD] 
    

30.3 4.6 17.1 12.4 5.4 14.9 0.91 0.56 0.14 

Cox-PH (+A) [Full Sample] 72 415 225 35 67.3 64.8 66.1 24.2 92.2 16.5 1.90 0.50 0.72 

Cox-PH (+A) [Basel] 2 11 6 0 100.0 64.7 82.4 25.0 100.0 25.0 2.83 0.00 0.82 

Cox-PH (+A) [Birmingham] 0 9 7 1 0.0 56.3 28.1 0.0 90.0 -10.0 0.00 1.78 0.56 

Cox-PH (+A) [Calgary] 10 71 43 9 52.6 62.3 57.5 18.9 88.8 7.6 1.40 0.76 0.65 

Cox-PH (+A) [Cologne] 2 13 7 1 66.7 65.0 65.8 22.2 92.9 15.1 1.90 0.51 0.77 

Cox-PH (+A) [Emory] 6 37 19 2 75.0 66.1 70.5 24.0 94.9 18.9 2.21 0.38 0.67 

Cox-PH (+A) [Harvard] 1 27 17 2 33.3 61.4 47.3 5.6 93.1 -1.3 0.86 1.09 0.45 

Cox-PH (+A) [Hillside] 6 42 23 0 100.0 64.6 82.3 20.7 100.0 20.7 2.83 0.00 0.94 

Cox-PH (+A) [Milan] 0 7 6 2 0.0 53.8 26.9 0.0 77.8 -22.2 0.00 1.86 0.46 

Cox-PH (+A) [Munich] 6 28 16 3 66.7 63.6 65.2 27.3 90.3 17.6 1.83 0.52 0.71 

Cox-PH (+A) [Turku] 4 13 6 2 66.7 68.4 67.5 40.0 86.7 26.7 2.11 0.49 0.78 

Cox-PH (+A) [UCLA] 10 41 18 4 71.4 69.5 70.5 35.7 91.1 26.8 2.34 0.41 0.78 

Cox-PH (+A) [UCSD] 7 34 16 2 77.8 68.0 72.9 30.4 94.4 24.9 2.43 0.33 0.69 

Cox-PH (+A) [UNC] 11 44 20 4 73.3 68.8 71.0 35.5 91.7 27.2 2.35 0.39 0.83 

Cox-PH (+A) [Yale] 7 38 21 3 70.0 64.4 67.2 25.0 92.7 17.7 1.97 0.47 0.69 

Cox-PH (+A) [mean] 
    

61.0 64.1 62.5 22.2 91.7 13.9 1.79 0.64 0.70 



Predictors TP TN FP FN Sens Spec BAC PPV NPV PSI LR+ LR- AUC 

Cox-PH (+A) [SD] 
    

30.7 4.5 17.2 12.6 5.5 15.2 0.92 0.57 0.14 

Linear SVM [Full Sample] 78 378 262 29 72.9 59.1 66.0 22.9 92.9 15.8 1.80 0.50 0.73 

Linear SVM [Basel] 2 10 7 0 100.0 58.8 79.4 22.2 100.0 22.2 2.43 0.00 0.82 

Linear SVM [Birmingham] 0 9 7 1 0.0 56.3 28.1 0.0 90.0 -10.0 0.00 1.78 0.44 

Linear SVM [Calgary] 13 66 48 6 68.4 57.9 63.2 21.3 91.7 13.0 1.63 0.55 0.69 

Linear SVM [Cologne] 2 14 6 1 66.7 70.0 68.3 25.0 93.3 18.3 2.22 0.48 0.82 

Linear SVM [Emory] 7 34 22 1 87.5 60.7 74.1 24.1 97.1 21.3 2.23 0.21 0.71 

Linear SVM [Harvard] 1 23 21 2 33.3 52.3 42.8 4.5 92.0 -3.5 0.70 1.28 0.52 

Linear SVM [Hillside] 6 35 30 0 100.0 53.8 76.9 16.7 100.0 16.7 2.17 0.00 0.92 

Linear SVM [Milan] 0 6 7 2 0.0 46.2 23.1 0.0 75.0 -25.0 0.00 2.17 0.46 

Linear SVM [Munich] 7 27 17 2 77.8 61.4 69.6 29.2 93.1 22.3 2.01 0.36 0.73 

Linear SVM [Turku] 4 13 6 2 66.7 68.4 67.5 40.0 86.7 26.7 2.11 0.49 0.76 

Linear SVM [UCLA] 11 41 18 3 78.6 69.5 74.0 37.9 93.2 31.1 2.58 0.31 0.77 

Linear SVM [UCSD] 7 28 22 2 77.8 56.0 66.9 24.1 93.3 17.5 1.77 0.40 0.68 

Linear SVM [UNC] 11 42 22 4 73.3 65.6 69.5 33.3 91.3 24.6 2.13 0.41 0.84 

Linear SVM [Yale] 7 30 29 3 70.0 50.8 60.4 19.4 90.9 10.4 1.42 0.59 0.66 

Linear SVM [mean] 
    

64.3 59.1 61.7 21.3 92.0 13.3 1.67 0.64 0.70 

Linear SVM [SD] 
    

31.7 7.3 17.7 12.6 6.1 15.7 0.85 0.64 0.14 

RBF-SVM [Full Sample] 48 514 126 59 44.9 80.3 62.6 27.6 89.7 17.3 2.30 0.70 0.72 

RBF-SVM [Basel] 1 12 5 1 50.0 70.6 60.3 16.7 92.3 9.0 1.70 0.71 0.82 

RBF-SVM [Birmingham] 0 13 3 1 0.0 81.3 40.6 0.0 92.9 -7.1 0.00 1.23 0.56 

RBF-SVM [Calgary] 8 90 24 11 42.1 78.9 60.5 25.0 89.1 14.1 2.00 0.73 0.68 

RBF-SVM [Cologne] 2 17 3 1 66.7 85.0 75.8 40.0 94.4 34.4 4.44 0.39 0.80 

RBF-SVM [Emory] 1 45 11 7 12.5 80.4 46.4 8.3 86.5 -5.1 0.64 1.09 0.68 

RBF-SVM [Harvard] 1 33 11 2 33.3 75.0 54.2 8.3 94.3 2.6 1.33 0.89 0.52 

RBF-SVM [Hillside] 6 52 13 0 100.0 80.0 90.0 31.6 100.0 31.6 5.00 0.00 0.93 

RBF-SVM [Milan] 0 9 4 2 0.0 69.2 34.6 0.0 81.8 -18.2 0.00 1.44 0.46 

RBF-SVM [Munich] 4 36 8 5 44.4 81.8 63.1 33.3 87.8 21.1 2.44 0.68 0.69 

RBF-SVM [Turku] 3 16 3 3 50.0 84.2 67.1 50.0 84.2 34.2 3.17 0.59 0.77 

RBF-SVM [UCLA] 7 46 13 7 50.0 78.0 64.0 35.0 86.8 21.8 2.27 0.64 0.75 

RBF-SVM [UCSD] 2 39 11 7 22.2 78.0 50.1 15.4 84.8 0.2 1.01 1.00 0.66 

RBF-SVM [UNC] 9 56 8 6 60.0 87.5 73.8 52.9 90.3 43.3 4.80 0.46 0.83 

RBF-SVM [Yale] 4 50 9 6 40.0 84.7 62.4 30.8 89.3 20.1 2.62 0.71 0.66 

RBF SVM [mean] 
    

40.8 79.6 60.2 24.8 89.6 14.4 2.24 0.75 0.70 

RBF SVM [SD] 
    

26.8 5.3 14.6 17.2 4.8 18.3 1.65 0.36 0.13 

Abbreviations. Algorithms: LR Logistic regression, Cox-PH Cox Proportional Hazard model, SVM Support Vector Machine, 

RBF-SVM Support Vector Machine with Radial Basis Kernel, +A Cox-PH (+ADASYN); Performance Measures: TP number 

of true positives, TN number of true negatives, FP number of false positives, FN number of false negatives, Sens Sensitivity, 

Spec Specificity, BAC Balanced Accuracy, PPV Positive Predictive Value, NPV Negative Predictive Value, PSI Prognostic 

Summary Index, LR+ Positive Likelihood Ratio, LR- Negative Likelihood Ratio, AUC Area-under-the Curve; Test sites: UCLA 

University of California, Los Angeles, UCSD University of Californa, San Diego, UNC University of North Carolina. 

 

  



Supplementary Table 4. Leave-site-out cross-validation analysis in the UHR sample comparing the five 

different PT prediction algorithms. The out-of-training performance of the given algorithm was broken down per 

site. In addition, the respective means and standards deviation of the given algorithm’s performance measures 

were computed across sites. To avoid a biased estimate of the average leave-site-out performances, the PRONIA 

Udine site was excluded from this analysis because of no reported transition cases. 

Predictors TP TN FP FN Sens Spec BAC PPV NPV PSI LR+ LR- AUC 

LR [Full Sample] 103 62 542 2 98.1 10.3 54.2 16.0 96.9 12.8 1.10 0.20 0.71 

LR [Basel] 2 3 8 0 100.0 27.3 63.6 20.0 100.0 20.0 1.38 0.00 0.68 

LR [Birmingham] 1 0 8 0 100.0 0.0 50.0 11.1 
  

1.00 
 

0.25 

LR [Calgary] 18 9 105 1 94.7 7.9 51.3 14.6 90.0 4.6 1.03 0.67 0.68 

LR [Cologne] 3 1 14 0 100.0 6.7 53.3 17.6 100.0 17.6 1.07 0.00 0.73 

LR [Emory] 8 10 46 0 100.0 17.9 58.9 14.8 100.0 14.8 1.22 0.00 0.67 

LR [Harvard] 3 2 42 0 100.0 4.5 52.3 6.7 100.0 6.7 1.05 0.00 0.48 

LR [Hillside] 6 7 58 0 100.0 10.8 55.4 9.4 100.0 9.4 1.12 0.00 0.92 

LR [Milan] 1 3 7 0 100.0 30.0 65.0 12.5 100.0 12.5 1.43 0.00 0.40 

LR [Munich] 8 3 34 0 100.0 8.1 54.1 19.0 100.0 19.0 1.09 0.00 0.71 

LR [Turku] 5 4 8 1 83.3 33.3 58.3 38.5 80.0 18.5 1.25 0.50 0.69 

LR [UCLA] 14 6 53 0 100.0 10.2 55.1 20.9 100.0 20.9 1.11 0.00 0.77 

LR [UCSD] 9 7 43 0 100.0 14.0 57.0 17.3 100.0 17.3 1.16 0.00 0.69 

LR [UNC] 15 4 60 0 100.0 6.3 53.1 20.0 100.0 20.0 1.07 0.00 0.82 

LR [Yale] 10 3 56 0 100.0 5.1 52.5 15.2 100.0 15.2 1.05 0.00 0.67 

LR [mean] 
    

98.4 13.0 55.7 17.0 97.7 15.1 1.14 0.09 0.66 

LR [SD] 
    

4.6 10.3 4.4 7.5 6.0 5.3 0.13 0.22 0.17 

Cox-PH [Full Sample] 69 397 207 36 65.7 65.7 65.7 25.0 91.7 16.7 1.90 0.50 0.72 

Cox-PH [Basel] 1 7 4 1 50.0 63.6 56.8 20.0 87.5 7.5 1.38 0.79 0.73 

Cox-PH [Birmingham] 0 4 4 1 0.0 50.0 25.0 0.0 80.0 -20.0 0.00 2.00 0.38 

Cox-PH [Calgary] 12 73 41 7 63.2 64.0 63.6 22.6 91.3 13.9 1.76 0.58 0.69 

Cox-PH [Cologne] 2 10 5 1 66.7 66.7 66.7 28.6 90.9 19.5 2.00 0.50 0.71 

Cox-PH [Emory] 6 37 19 2 75.0 66.1 70.5 24.0 94.9 18.9 2.21 0.38 0.67 

Cox-PH [Harvard] 1 26 18 2 33.3 59.1 46.2 5.3 92.9 -1.9 0.81 1.13 0.46 

Cox-PH [Hillside] 6 43 22 0 100.0 66.2 83.1 21.4 100.0 21.4 2.95 0.00 0.93 

Cox-PH [Milan] 0 6 4 1 0.0 60.0 30.0 0.0 85.7 -14.3 0.00 1.67 0.40 

Cox-PH [Munich] 6 25 12 2 75.0 67.6 71.3 33.3 92.6 25.9 2.31 0.37 0.71 

Cox-PH [Turku] 3 8 4 3 50.0 66.7 58.3 42.9 72.7 15.6 1.50 0.75 0.68 

Cox-PH [UCLA] 10 40 19 4 71.4 67.8 69.6 34.5 90.9 25.4 2.22 0.42 0.76 

Cox-PH [UCSD] 4 36 14 5 44.4 72.0 58.2 22.2 87.8 10.0 1.59 0.77 0.68 

Cox-PH [UNC] 11 43 21 4 73.3 67.2 70.3 34.4 91.5 25.9 2.23 0.40 0.81 

Cox-PH [Yale] 7 39 20 3 70.0 66.1 68.1 25.9 92.9 18.8 2.07 0.45 0.66 

Cox-PH [mean] 
    

55.2 64.5 59.8 22.5 89.4 11.9 1.64 0.73 0.66 

Cox-PH [SD] 
    

28.5 5.3 16.2 13.0 6.6 14.5 0.86 0.54 0.15 

Cox-PH (+A] [Full Sample] 63 401 203 42 60.0 66.4 63.2 23.7 90.5 14.2 1.80 0.60 0.70 

Cox-PH (+A) [Basel] 1 8 3 1 50.0 72.7 61.4 25.0 88.9 13.9 1.83 0.69 0.73 

Cox-PH (+A) [Birmingham] 0 4 4 1 0.0 50.0 25.0 0.0 80.0 -20.0 0.00 2.00 0.25 

Cox-PH (+A) [Calgary] 9 69 45 10 47.4 60.5 53.9 16.7 87.3 4.0 1.20 0.87 0.64 

Cox-PH (+A) [Cologne] 2 11 4 1 66.7 73.3 70.0 33.3 91.7 25.0 2.50 0.45 0.71 

Cox-PH (+A) [Emory] 3 39 17 5 37.5 69.6 53.6 15.0 88.6 3.6 1.24 0.90 0.66 

Cox-PH (+A) [Harvard] 1 27 17 2 33.3 61.4 47.3 5.6 93.1 -1.3 0.86 1.09 0.45 

Cox-PH (+A) [Hillside] 6 43 22 0 100.0 66.2 83.1 21.4 100.0 21.4 2.95 0.00 0.93 

Cox-PH (+A) [Milan] 0 6 4 1 0.0 60.0 30.0 0.0 85.7 -14.3 0.00 1.67 0.40 

Cox-PH (+A) [Munich] 5 28 9 3 62.5 75.7 69.1 35.7 90.3 26.0 2.57 0.50 0.71 

Cox-PH (+A) [Turku] 4 9 3 2 66.7 75.0 70.8 57.1 81.8 39.0 2.67 0.44 0.63 

Cox-PH (+A) [UCLA] 10 40 19 4 71.4 67.8 69.6 34.5 90.9 25.4 2.22 0.42 0.78 

Cox-PH (+A) [UCSD] 3 35 15 6 33.3 70.0 51.7 16.7 85.4 2.0 1.11 0.95 0.69 

Cox-PH (+A) [UNC] 12 44 20 3 80.0 68.8 74.4 37.5 93.6 31.1 2.56 0.29 0.82 

Cox-PH (+A) [Yale] 7 38 21 3 70.0 64.4 67.2 25.0 92.7 17.7 1.97 0.47 0.70 

Cox-PH (+A) [mean] 
    

51.3 66.8 59.1 23.1 89.3 12.4 1.69 0.77 0.65 



Predictors TP TN FP FN Sens Spec BAC PPV NPV PSI LR+ LR- AUC 

Cox-PH (+A) [SD] 
    

28.6 7.1 16.7 15.9 5.1 17.3 0.97 0.54 0.18 

Linear SVM [Full Sample] 74 346 258 31 70.5 57.3 63.9 22.3 91.8 14.1 1.60 0.50 0.71 

Linear SVM [Basel] 1 6 5 1 50.0 54.5 52.3 16.7 85.7 2.4 1.10 0.92 0.73 

Linear SVM [Birmingham] 0 4 4 1 0.0 50.0 25.0 0.0 80.0 -20.0 0.00 2.00 0.38 

Linear SVM [Calgary] 12 60 54 7 63.2 52.6 57.9 18.2 89.6 7.7 1.33 0.70 0.67 

Linear SVM [Cologne] 2 12 3 1 66.7 80.0 73.3 40.0 92.3 32.3 3.33 0.42 0.71 

Linear SVM [Emory] 7 34 22 1 87.5 60.7 74.1 24.1 97.1 21.3 2.23 0.21 0.71 

Linear SVM [Harvard] 1 23 21 2 33.3 52.3 42.8 4.5 92.0 -3.5 0.70 1.28 0.49 

Linear SVM [Hillside] 6 37 28 0 100.0 56.9 78.5 17.6 100.0 17.6 2.32 0.00 0.91 

Linear SVM [Milan] 0 4 6 1 0.0 40.0 20.0 0.0 80.0 -20.0 0.00 2.50 0.40 

Linear SVM [Munich] 6 21 16 2 75.0 56.8 65.9 27.3 91.3 18.6 1.73 0.44 0.71 

Linear SVM [Turku] 3 9 3 3 50.0 75.0 62.5 50.0 75.0 25.0 2.00 0.67 0.68 

Linear SVM [UCLA] 11 38 21 3 78.6 64.4 71.5 34.4 92.7 27.1 2.21 0.33 0.77 

Linear SVM [UCSD] 7 28 22 2 77.8 56.0 66.9 24.1 93.3 17.5 1.77 0.40 0.68 

Linear SVM [UNC] 11 42 22 4 73.3 65.6 69.5 33.3 91.3 24.6 2.13 0.41 0.82 

Linear SVM [Yale] 7 28 31 3 70.0 47.5 58.7 18.4 90.3 8.7 1.33 0.63 0.67 

Linear SVM [mean] 
    

59.0 58.0 58.5 22.1 89.3 11.4 1.58 0.78 0.67 

Linear SVM [SD] 
    

30.0 10.6 17.9 14.6 6.9 16.6 0.92 0.70 0.15 

RBF-SVM [Full Sample] 50 480 124 55 47.6 79.5 63.5 28.7 89.7 18.5 2.30 0.70 0.71 

RBF-SVM [Basel] 1 8 3 1 50.0 72.7 61.4 25.0 88.9 13.9 1.83 0.69 0.73 

RBF-SVM [Birmingham] 0 6 2 1 0.0 75.0 37.5 0.0 85.7 -14.3 0.00 1.33 0.25 

RBF-SVM [Calgary] 8 90 24 11 42.1 78.9 60.5 25.0 89.1 14.1 2.00 0.73 0.68 

RBF-SVM [Cologne] 2 13 2 1 66.7 86.7 76.7 50.0 92.9 42.9 5.00 0.38 0.71 

RBF-SVM [Emory] 2 42 14 6 25.0 75.0 50.0 12.5 87.5 0.0 1.00 1.00 0.69 

RBF-SVM [Harvard] 1 33 11 2 33.3 75.0 54.2 8.3 94.3 2.6 1.33 0.89 0.52 

RBF-SVM [Hillside] 6 50 15 0 100.0 76.9 88.5 28.6 100.0 28.6 4.33 0.00 0.93 

RBF-SVM [Milan] 0 6 4 1 0.0 60.0 30.0 0.0 85.7 -14.3 0.00 1.67 0.40 

RBF-SVM [Munich] 4 32 5 4 50.0 86.5 68.2 44.4 88.9 33.3 3.70 0.58 0.70 

RBF-SVM [Turku] 3 11 1 3 50.0 91.7 70.8 75.0 78.6 53.6 6.00 0.55 0.71 

RBF-SVM [UCLA] 8 46 13 6 57.1 78.0 67.6 38.1 88.5 26.6 2.59 0.55 0.77 

RBF-SVM [UCSD] 2 37 13 7 22.2 74.0 48.1 13.3 84.1 -2.6 0.85 1.05 0.67 

RBF-SVM [UNC] 9 56 8 6 60.0 87.5 73.8 52.9 90.3 43.3 4.80 0.46 0.83 

RBF-SVM [Yale] 4 50 9 6 40.0 84.7 62.4 30.8 89.3 20.1 2.62 0.71 0.67 

RBF SVM [mean] 
    

42.6 78.8 60.7 28.9 88.8 17.7 2.58 0.76 0.66 

RBF SVM [SD] 
    

26.3 8.1 15.7 21.7 5.0 21.6 1.92 0.42 0.17 

Abbreviations. Algorithms: LR Logistic regression, Cox-PH Cox Proportional Hazard model, SVM Support Vector Machine, 

RBF-SVM Support Vector Machine with Radial Basis Kernel, +A Cox-PH (+ADASYN); Performance Measures: TP number 

of true positives, TN number of true negatives, FP number of false positives, FN number of false negatives, Sens Sensitivity, 

Spec Specificity, BAC Balanced Accuracy, PPV Positive Predictive Value, NPV Negative Predictive Value, PSI Prognostic 

Summary Index, LR+ Positive Likelihood Ratio, LR- Negative Likelihood Ratio, AUC Area-under-the Curve; Test sites: UCLA 

University of California, Los Angeles, UCSD University of Californa, San Diego, UNC University of North Carolina. 

 

  



Supplementary Table 5. Summary overview of prognostic performances in terms of sensitivity, specificity and 

balanced accuracy of the five different algorithms obtained at the three risk enrichment levels (CHR+, CHR, and 

UHR) in the reciprocal external validation analysis and the leave-site-out cross-validation experiment. For latter 

validation setup, performance metrics were provided at the full sample level as well as at the level of mean (SD) 

computed across participating sites. 

Algorithms Reciprocal external 

validation 

Leave-site-out cross-

validation [ Full Sample ] 

Leave-site-out cross-validation 

[ Mean (SD) ] 

Sens Spec BAC Sens Spec BAC Sens Spec BAC 

PRONIA-CHR+ 

LR 85.5 40.0 62.8 97.3 19.6 58.5 97.7 (5.1) 21.3 (11.6) 59.5 (5.0) 

Cox-PH 65.5 70.7 68.1 61.8 71.2 66.5 62.7 (29.6) 70.3 (6.4) 66.5 (15.7) 

Cox-PH (+A) 70.9 68.4 69.6 61.8 73.9 67.9 61.9 (22.0) 73.5 (4.9) 67.7 (12.7) 

Linear SVM 74.5 58.4 66.5 78.2 60.3 69.3 78.3 (19.4) 61.0 (6.9) 69.6 (11.7) 

RBF-SVM 52.7 83.0 67.9 48.2 80.4 64.3 45.4 (29.8) 79.4 (5.1) 62.4 (16.4) 

PRONIA-CHR 

LR 99.1 10.8 55.0 97.2 12.5 54.8 97.7 (5.1) 15.3 (9.4) 56.5 (4.4) 

Cox-PH 75.7 56.6 66.2 69.2 65.5 67.3 61.3 (30.3) 64.5 (4.6) 62.9 (17.1) 

Cox-PH (+A) 73.8 58.8 66.3 67.3 64.8 66.1 61.0 (30.7) 64.1 (4.5) 62.5 (17.2) 

Linear SVM 74.8 58.2 66.5 72.9 59.1 66.0 64.3 (31.7) 59.1 (7.3) 61.7 (17.7) 

RBF-SVM 52.3 75.6 64.0 44.9 80.3 62.6 40.8 (26.8) 79.6 (5.3) 60.2 (14.6) 

PRONIA-UHR 

LR 97.1 5.0 51.1 98.1 10.3 54.2 98.4 (4.6) 13 (10.3) 55.7 (4.4) 

Cox-PH 48.6 80.5 64.5 65.7 65.7 65.7 55.2 (28.5) 64.5 (5.3) 59.8 (16.2) 

Cox-PH (+A) 79.0 43.0 61.0 60.0 66.4 63.2 51.3 (28.6) 66.8 (7.1) 59.1 (16.7) 

Linear SVM 71.4 59.4 65.4 70.5 57.3 63.9 59.0 (30.0) 58.0 (10.6) 58.5 (17.9) 

RBF-SVM 11.4 94.6 53.0 47.6 79.5 63.5 42.6 (26.3) 78.8 (8.1) 60.7 (15.7) 

Abbreviations. Algorithms: LR Logistic regression, Cox-PH Cox Proportional Hazard model, SVM Support Vector Machine, 

RBF-SVM Support Vector Machine with Radial Basis Kernel, +A Cox-PH (+ADASYN); Performance Measures: Sens 

Sensitivity, Spec Specificity, BAC Balanced Accuracy. 


