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ABSTRACT A robustness-driven hybrid descriptor (RDHD) for noise-deterrent texture classification is
presented in this paper. This paper offers the ability to categorize a variety of textures under challenging
image acquisition conditions. An image is initially resolved into its low-frequency components by applying
wavelet decomposition. The resulting low-frequency components are further processed for feature extraction
using completed joint-scale local binary patterns (CJLBP). Moreover, a second feature set is obtained by
computing the low order derivatives of the original sample. The evaluated feature sets are integrated to
get a final feature vector representation. The texture-discriminating performance of the hybrid descriptor
is analyzed using renowned datasets: Outex original, Outex extended, and KTH-TIPS. The experimental
results demonstrate a stable and robust performance of the descriptor under a variety of noisy conditions.
An accuracy of 95.86%, 32.52%, and 88.74% at noise variance of 0.025 is achieved for the given
datasets, respectively. A comparison between performance parameters of the proposed paper with its parent
descriptors and recently published paper is also presented.

INDEX TERMS Feature descriptor, texture classification, Gaussian derivatives, wavelet decomposition,
local binary pattern, noise robust.

I. INTRODUCTION
In image processing, the texture is a measure of the visual
appearance of an object such as smoothness, roughness,
and grainy nature, etc., It is a fundamental feature of nat-
ural images and represents the complexity of the spatial
arrangement of local pixels. A plethora of texture cate-
gories exist in nature. Texture classification is the process
of categorization based on its unique characteristics [1], [2].
Applications of texture classification include: detection of
surface defects [3], [4], identification of tissues in tomogra-
phy images [5]–[7], robotic vision [8]–[11], analysis of sonar
imagery [12], recognition of facial expressions [13], [14],
detection of a moving object [15], [16]. The performance of

The associate editor coordinating the review of this manuscript and
approving it for publication was Wenming Cao.

texture classification depends on two main factors: 1) image
feature representation and (2) feature classification. A feature
vector must uniquely be able to distinguish an image. If the
features are not unique to the texture, accurate classification
performance cannot be achieved [1]. The properties for a
desirable feature vector are as follows: The features should
be (1) discriminating [17]–[20], (2) noise robust [8], [9],
(3) invariant to image orientation and lighting changes [2],
[21], [22], (4) smaller in dimension [23], [24], and (5) effi-
cient in implementation [25], [38]. The proposedworkmainly
focuses on the performance of texture classification in the
presence of noise. Noise is the random change in the image
pixel intensities that can occur either during image acquisi-
tion or in the transmission link [26]. This random variation
affects the feature representation of the image and thus results
in inaccurate classification [27], [28]. In recent literature,
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numerous methods for noise-robust categorization of texture
have been proposed.

This work proposes a method for robust classification of
texture by transforming an image into a noiseless represen-
tation. This is accomplished by using a wavelet transform
that effectively represents an image into its low-frequency
components. The presented framework is divided into the
following steps: Initially, an image is resolved into its low
noise coefficients using a wavelet transform and LBP based
textural features are extracted. Afterward, the first and sec-
ond order differential responses of the original sample are
calculated and transformed into a feature representation. The
two feature sets are integrated to form a final feature rep-
resentation. Experimental results prove the continuous high
discriminating and robust performance in the presence of
Additive White Gaussian Noise. The proposed RDHD pro-
vide more deterrence against additive white Gaussian noise,
as well as invariance to orientation, scale, and illumination
changes when evaluated on Outex, Outex extended [52],
and KTH-TIPS [53] dataset on several recently reported
descriptors.

Remaining contents of the paper are organized as follows.
Sect. II reviews methodology of important related texture
descriptors, Sect. III discusses proposed hybrid descriptor,
Sect. IV details the experimental setup (noise conditions,
datasets and classification algorithm), Sect. V covers the
analysis of noise robustness and discusses the results of the
proposed descriptor while Sect. VI concludes the paper.

II. RELATED WORK
We start our discussion from a popular feature descriptor,
Local Binary Pattern (LBP), proposed by Ojala et al. [29].
The texture operator fulfills the characteristics necessary for
an ideal feature descriptor, except that it is noise intoler-
ant [45]. LBP considers a small circular area of pixels in
an image and computes pixel differences against the center
pixel value. The differences are then converted to binary
representation using a threshold function. The problem arises
when noise corrupts the center pixel value in the smooth gray
intensity region; thus the texture pattern is changed [34], [48].

The issue of noise intolerance associated with LBP is
solved by another operator LTP (Local Ternary Pattern) [30].
The authors propose to introduce a user-defined threshold that
changes the central pixel value. This, in turn, allows preserv-
ing the original textural pattern in the smooth gray intensity
region. Some other methods that add noise robustness to the
LBP texture representation are as follows. Soft LBP (SLBP)
has been proposed by Ahonen and Pietikainen [31]. The
operator achieves noise robustness by replacing the thresh-
old dependent function in LBP with a fuzzy logic func-
tion. Another method, Noise Resistant LBP (NRLBP) is
proposed in [32], which recovers the noise-free LBP pattern
from a noisy pattern by assigning a random state to the
minute pixel differences in the smooth region and then sets
a value such that a noise-free coded pattern is formed. If no
noise free pattern can be formed, then a noisy non-uniform

pattern is maintained. Chen et al. have proposed Robust
LBP (RLBP) [33]. It translates the noisy codes to noise-free
uniform codes by changing the specified bit of LBP. The
results show that RLBP is more noise robust than LBP.

In [40] Haar wavelet, Ridgelet, and Fourier transform
applied to the input image before the feature extraction
process. This approach provides rotation invariance for the
noisy texture, but in the presence of scale, and illumination
variations its performance degrades. In [41], the rotation
and scale invariant texture representation is obtained through
Local Gabor Wavelets Binary Patterns (LGWBPs). However,
LGWBPs contain redundant features, which increases the
time complexity as well as degrade the efficiency. In [42]
Extended Mapping Local Binary Pattern (EMLBP) is pro-
posed, which provides the rotation invariant version of the
local binary pattern. However, the descriptor is very sensitive
to the noise in the input images. The Overlapped Multi-
oriented Tri-scale Local Binary Pattern (OMTLBP) [43] is
robust against AWGN noise even in the presence of variations
in orientation, scale, and illumination. However, the feature
vector of OMTLBP is large.

A completed representation of LBP (CLBP) is proposed
by Guo et al. [44]. In contrast to LBP, which considers only
the signs of differences for the feature representation, CLBP
considers the sign along with the magnitude of differences
as well as the center gray value of the local circular region.
The features corresponding to the sign, magnitude, and center
components are integrated to obtain an improved texture char-
acterization. Themagnitude and center components are based
on global mean thresholding operation, which provides noise
robustness. Song et al. [35] have computed local contrast
patterns (LCPs) from their own designed set of difference ker-
nels. After application of kernels, the LCPs are obtained by
converting the resulting responses into their coded versions.
A final texture feature representation is obtained by combin-
ing LCPs from each kernel. LCP outperforms LBP, LTP, and
CLBP in the presence of noise. In MRELBP [38], Liu et al.
employ local image medians of pixels rather than local pixel
brightness to achieve a noise robust feature representation.

BRINT (Binary Rotation Invariant and Noise Tolerant)
texture operator is proposed by Liu et al. [34]. BRINT is
established on the rotation invariant version of LBP. In con-
trast to LBP, BRINT can represent a circular pixel area of any
size. It produces permanent dimensionality feature histogram
irrespective of the scale chosen. BRINT takes an average of
the pixels along a circular arc for a given scale of the region.
The approach keeps the number of pixels in the local patch
fixed at eight. Pan et al. proposed a highly robust and low
dimensional descriptor, DLABP (Diamond Local Adaptive
Binary Pattern) [39]. It employs a diamond-shaped local
neighbor structure. A fixed number of eight neighbor pixels
in the diamond-shaped local patch provides a discriminative
and low dimensional feature vector. In contrast to BRINT,
averaging is done in the radial direction alongmultiple scales.
DALBP shows performance close to BRINT while it sur-
passes LBP, LTP, CLBP and MRELBP. Averaging operation
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FIGURE 1. The flow diagram of our proposed Robustness-Driven Hybrid Descriptor (RDHD) for texture representation.

on pixels results in a low frequency extraction of texture
information and thus making the pattern more robust to noise.
Joint of scales Local Binary Pattern, JLBP [45] goes one
step ahead of the approaches devised in BRINT and DALBP.
JLBP performs pixel averaging first on the same scale and
then on multiple scales, starting from the largest scale. There-
fore, JLBP achieves better noise robustness. In [47], a noise
robust texture descriptor LETRIST (Locally Encoded Trans-
form Feature Histogram) is presented. In LETRIST noise
robustness is achieved using low order filters and global mean
for preparation of texture codes.

III. PROPOSED HYBRID DESCRIPTOR
This section outlines the steps to formulate a discriminat-
ing and noise-deterrent representation of image texture. The
proposed framework is a combination of two feature sets.
The first feature set is extracted from wavelet approximated
sub-image, while the second feature set is obtained through
the Gaussian derivative filter response. The DWT provides
shift invariance and noise robustness to the first feature set of
our proposed method [49]. The CJLBP descriptor contains a
multi-scale fusion stage, which offers scale invariance to the
proposed framework. The multi-scale fusion stage of CJLBP
is modified to enhance the scale invariance of the descriptor

as shown in Fig. 1. Equal weight is assigned to each element
of the fused patch in the modified CJLBP. Using a feature set
based on Gaussian derivative filters enhances the discrimina-
tive power of the proposed hybrid texture descriptor. Fig. 1
provides a road-map for the proposed scheme composed of
three sequential stages detailed as follows.

A. MULTI-RESOLUTION DECOMPOSITION
Conversion of the input image data into low-frequency com-
ponents serve as the first step towards setting up a discrim-
inant and noise-robust texture representation. The proposed
descriptor requires to transform the input image into a noise-
free representation while retaining spatial information. The
above is achieved using multi-resolution analysis wherein
efficient representation of the input image in the spatial-
frequency joint domain allows for spectral components to be
analyzed locally. 2D discrete wavelet transform is used to
decompose the input image into its constituent low-frequency
components via discrete approximation of Meyer (commonly
referred to as demey waveform) [50], [51]. The wavelet
transformation of the input image results in four sub-bands:
one approximate and three detailed images. The proposed
descriptor focuses on low-frequency, noise-free components
present in the approximated sub-image, and largely ignores
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FIGURE 2. Wavelet decomposition using subband coding.

the information content in the detailed sub-images. The
approximate sub-image contains the low-frequency (noise-
less) information from the whole image. The decomposi-
tion of a noisy image into its sub-images is represented in
Fig. 2 (a). Let N (px , py) represent a noisy image of size
Px ×Py, where px and py are the positions of pixel intensities
in horizontal and vertical directions, respectively. Now, let
W (wx) represent a 1-D low pass filter of size wx applied
horizontally along the image N (px , py). The resulting image
NL(px1, py) is represented in (1).

NL(px1, py) = S
(
N (px , py) ∗W (wx)

)
. (1)

where S(.) is a desampling operator applied along x-direction
and px1 = px/2. Similarly, we applyW (wy) vertically on NL .
The image NLL(px1, py1) is represented in (2) and is one
fourth of size of N (px , py).

NLL(px1, py1) = S
(
NL ∗W (wy)

)
. (2)

where, ∗ denotes convolution operation and py1 = py/2.
NLL(px1, py1) represents the approximated sub-image and is
utilized for feature extraction as discussed in the next step.

B. FEATURE COMPUTATION
Feature computation plays a very critical role in the proposed
framework as: 1) the choice of feature descriptors affects
the discrimination power of the proposed hybrid descriptor.
2) feature extraction from low-frequency data does not apply
to all kinds of feature descriptors. Therefore, we aim to com-
pute features that are noise potent and discriminative at the
same time. We start our discussion from the computation of
robust noise features. The first set of features is based on LBP
descriptor. The LBP operator does not involve the calculation
of higher order statistics (such as 2nd order pixel-differences);
therefore the extraction of features from the low noise data
improves the performance of the hybrid descriptor. Among
the LBP based descriptors, we use CJLBP operator for feature
portrayal. We choose CJLBP_SMC operator of the CJLBP
descriptor. We have modified the multi-scale fusion stage
of CJLBP to improve the scale invariance of the descriptor
as shown in Fig. 2(b). Equal weight is assigned to each
element of the fused patch in the modified CJLBP. The low-
frequency sub-band NLL as shown in (2) is used for feature

extraction. Since the features are obtained from the wavelet
approximation of the image, the obtained feature vector is
notated as WCJ_SMC since the features are obtained from
the wavelet approximation of the image.

WCJ_SMC = X (WCJ_S,WCJ_M ,WCJ_C). (3)

where X(.) presents the combination of the three individual
operators WCJ_S, WCJ_M, and WCJ_C into a final operator
WCJ_SMC shown in Fig. 1 (c). WCJ_S is extracted from
the approximated image in a similar way as described in
CJLBP_S [45]. The magnitude and center operators for two
scales Y = (y1, y2) and sample points T are presented as
follows.

WCJ_MT ,y1,y2 =

T−1∑
t=0

s(mt,y1 + mt,y2 − cy1 − cy2)2t . (4)

where mt,yn is the absolute difference of the t
th neighborhood

of center pixel in the local segment at scale yn. The cyn is the
average value of mt,yn of whole image. The center component
is represented as:

WCJ_CT ,Y = s(2gc,y1,y2 − c). (5)

s (x) =

{
1 x ≥ 0
0 x < 0.

(6)

where gc is the central pixel of the local segment, c represents
mean gray intensity of the whole image and s is binary thresh-
old operator and is defined in (6). The choice of parameters
is discussed as follows. The operator uses a fixed number of
local neighbors, T= 8 and a joint of scales Y= (3, 2) is used
to compute classification performance.

After the computation of robust noise features, we now
calculate a second feature set that improves the discrimination
power of the hybrid descriptor. We choose the quantized
max/min filter response to calculate the second feature set.
This computes texture based on first and second order Gaus-
sian derivative filters as shown in Fig. 1 (d). The choice
of the second feature set contributes diverse features to our
proposed feature vector. The initial feature vector consists of
variables that are based on first order pixel differences. This
implies that the addition of second-order derivative features
will add discrimination to our proposed feature representa-
tion. The second feature set is directly extracted from the
noisy image N , as it requires to compute both low and high-
frequency image statistics, for example, first and second order
derivative responses, respectively. Therefore, it is best to use
the initial image (without wavelet dissection). The feature
vector is computed as followed by LETRIST operator. Firstly,
the low order Gaussian derivative filters are applied to the
noisy image N , and the extrema responses are calculated.
This is represented mathematically as follows.

N θ1max =
√
N x2
1 + N

y2
2 . (7)

N θ2max =
1
2

(
N x
2 + N

y
2 +

√
(N x

2 − N
y
2 )

2 + 4N xy2
2

)
. (8)
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N θ2min =
1
2

(
N x
2 + N

y
2 −

√
(N x

2 − N
y
2 )

2 + 4N xy2
2

)
. (9)

H θ
1 = cos(θ )H x

1 + sin(θ )H y
1 . (10)

and

H θ
2 = cos2(θ )H x

2 + sin2(θ )H y
2 − sin(2θ )H xy

2 . (11)

where N θ1 = N1 ∗H θ
1 and N θ2 = N2 ∗H θ

1 , the first and second
order filters H θ

1 and H θ
2 are described mathematically in

(10) and (11) and ∗ denotes the convolution operation. The
Hn is the Gaussian nth order derivative filter at the rotation
angle θ and H x

1 , H
y
1 , H

x
2 , H

y
2 are the x and y first and second

order derivatives respectively, and cosθ , sinθ are the inter-
polation parameters for the basic functions [47]. The extrema
responses are computed at three scales e.g.,Nσ 2 = 3. Now the
transformed features T = {G,D, S,R} are computed using
the extrema responses as follows.

G = N θ1max =
√
N x2
1 + N

y2
1 . (12)

D = N θ2max − N
θ
2min =

√
(N x

2 + N
y
2 )

2 + 4N xy2
2 . (13)

and

S =
1
2
−

1
π
tan−1

−N θ2max − N
θ
2min

(N θ2max − N
θ
2min)

.

=
1
2
−

1
π
tan−1

−N x
2 − N

y
2√

(N x
2 − N

x
2 )

2 + 4N xy
2

. (14)

R =
2
π
tan−1

N θ2max − N
θ
2min

(N θ1max
.

=
2
π
tan−1

(
sc×

D
G

)
. (15)

where sc is a parameter to control the value of R. Now
the transformed features {G,D} and {S,R} are converted to
binary codes by using the quantizers B1(x) and B2(x) as
shown in (16) and (17), respectively.

B1(x) =

0
X
mX

> p

1 otherwise
(16)

B2(x) =


0 X ∈ [0, δ]
1 X ∈ [δ, 2δ]
· · ·

A− 1 X ∈ [(A− 1)δ, 1]

(17)

where, X ∈ {G,D}, mX and is the average of the transmute
feature map of x and p is a scalar of control. The X ∈
{S,R} and A is the calibration level so the calibration step
is δ = 1

L . For a discerning feature vector calibration level is
set to LS = 3 and LR = 5 for si and r transmute features,
respectively. The quantization levels are set to LS = 3,
LR = 5 and LG = LD = 2. The Quantization stage is shown
in Fig. 1 (e). The three histograms namely LET1, LET2 and
LET3 are built using the combinations of {G,D, S} across
adjacent scales (σ 2

1 , σ
2
2 ) and (σ 2

2 , σ
2
3 ) and {R} across the

three scales, (σ 2
1 , σ

2
2 , σ

2
3 ) respectively. The three histograms

are concatenated to form Robust Locally Encoded Trans-
formed (RLET) feature vector shown in Fig. 1 (f).

RLET = LET1‖LET2‖LET3. (18)

where, ‖ denotes the concatenation operation. RLET fea-
tures contribute necessary discrimination power to the hybrid
descriptor which is required at the high noise level.

C. FEATURE INTEGRATION
After feature computation, we now join the two histogram
based feature sets into a joint representation as shown in
Fig. 1 (g). Let f1(.) and f2(.) represent the computation
of two feature sets on the wavelet resolved image NLL
and noisy image N, respectively. Then, the image statistics
RDHD (Robustness-Driven Hybrid Descriptor) presents a
discriminating and noise robust texture representation. This
is expressed as follows.

RDHD = f1(NLL(px1, py1))‖f2(N (px , py)). (19)

where, ‖ denotes the concatenation operation on the two sets
of features.

The hybrid descriptor RDHD has a feature dimension that
is the sum of the number of variables in individual feature
vectors. The first feature set consists of a 200-bin histogram
while the second feature set represents a 413-bin histogram.
Thus, the final feature set represents a 613-bin histogram.

The proposed hybrid descriptor has the following proper-
ties. It is highly discriminative, invariant to image transforma-
tions, e.g., rotation, illumination, scale and pose variations,
robust to noise, and efficient in implementation. In the results
section, we validate the above arguments through the eval-
uation of classification performance on relevant datasets.
The discrimination is provided by the computation of two
contrasting feature sets. Robustness against the rotation of
texture is provided from the encoding of an individualize
texture pattern at multiple angles using the LBP’s rotation
invariancemethodology and steerable Gaussian derivative fil-
ters. Robustness against gray scaling and shifting is provided
through the use of difference operator while computing the
two feature sets, which effectively cancels out the gray shift.
The Gray scaling is avoided from the use of global gray-mean
value in the quantization step.

IV. EXPERIMENTAL SETUP
To demonstrate the discriminating and noise resistant prop-
erty of our feature descriptor, we perform experimentation
on three texture datasets, Outex Org. (original), Outex Ext.
(extended) and KTH-TIPS. The example images of each
dataset are displayed in Fig. 3. The datasets are modified in
relevance to our work and images are deprived of additive
white Gaussian noise (AWGN), with zero mean. For a com-
prehensive study, we divide the experimental setup into two
parts. The first experiment is carried on three datasets, and
the images are corrupted by AWGNwith noise variance level
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FIGURE 3. Sample images from three datasets: (a) Outex Original, (b) Outex Extended and (c) KTH-TIPS. Four classes from each dataset are displayed
along rows. Three samples from each class are displayed along columns.

FIGURE 4. Comparison of original images (leftmost) vs their noisy
versions with noise variance σ2 = {0.01, 0.02, 0.03} (from left to right).

determined by {σ 2
} [39]. Noise is added in the image using

the following equation.

In(x, y) = Iorg(x, y)+ (
1

√
2πσ

)(e
−(Iorg(x,y)−µ)2

2σ2 ). (20)

where Iorg is the original image and In is the noisy image.
Figure 4 shows the original versus noisy images (σ 2

= {0.01,
0.02, 0.03}) for the three datasets. The second experiment is
performed only on the Outex Org. dataset which is corrupted
with AWGN noise determined by a self defined noise level
discussed in [48].

For a fair comparison, classification accuracy is measured
over a fixed number of train and test samples and under a
similar classification environment. The datasets and classifi-
cation environment is discussed in relevant subsections.

A. OUTEX AND OUTEX EXTENDED
Outex dataset [52] contains images for a variety of image
orientations and lightening intensities. The original dataset
comprises of twenty-four different texture categories while
the extended version contains sixty-eight texture categories
and thus provides a more challenging environment compared
to the original version. Each category has twenty images
of resolution 128 × 128. An image is generated for three
brightness conditions (‘‘Inca’’, ‘‘TL84’’ and ‘‘Horizon’’) and
for nine different angles of orientation. The following two
sub-sets and their extended versions are used:
Outex TC10: There are 4320 (24× 20× 9) sample images

of inca condition. From these images, 480 (24× 20) samples
are at an angle of 0◦ and are used as a training set. While the
left 3840 image samples taken under remaining eight angles
are used for testing of classification accuracy.
Outex TC12: It is a bigger collection having 9120 (24 ×

20 × 9) images. The images have 2 sub-categories, TC12t
and TC12h. The 4320 images for TC12t are captured for
illuminate ‘‘T184’’ and 4320 for TC12h are captured under
‘‘horizon’’ and ‘‘TL84’’. Training samples are 480 (24× 20)
images at an angle of 0◦ under illuminate ‘‘inca’’.
Outex TC20: It is an extended version of the TC10 test

suite. There are 12, 240 (68× 20× 9) sampled images. 1360
(68 × 20) samples are used as a training set. While the left
10880 image samples are used for testing.
Outex TC24: It is an extension of TC12 having 4080

(68 × 20 × 9) images. There are two sub-categories, TC24t
and TC24h. Training samples are 1360 (68×20) imageswhile
2720 (68× 20× 2) are used for testing.

B. KTH-TIPS
The KTH-TIPS (textures under varying illumination, pose
and scale) is a challenging material database for texture
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categorization [53]. It is designed to test the texture opera-
tor for varying conditions of lightning, pose, and scale (the
distance of material from the camera), unlike CURet dataset,
which doesn’t provide scale variations [47]. There are ten
material categories in total; each class contains eighty-one
images. Each material is captured under variable illumina-
tion, for nine scale variations and nine poses. We split images
of each folder in train and test sets in ratio (49.4/50.6), hence
the train set contains 40/81 random samples and rest are taken
for test set [47]. The classification performance is measured
as an average of numerical results from a hundred random
classification turns.

C. CLASSIFICATION ENVIRONMENT
A nearest neighbor classifier (NN Classifier) is used to clas-
sify the extracted feature vectors. Initially, the discriminator
is trained with the train feature vectors, for a given dataset
and a test feature vector is used to measure the classification
performance. The NN classifier classifies the test feature vec-
tor based on the Chi-Square statistic. The Chi-Square statistic
evaluates dissimilarity between the test feature vector and all
the trained feature vectors. Chi-square statistic is expressed
in (21).

C(K ,L) =
B∑
b=1

(Kb − Lb)2

(Kb − Lb)
. (21)

where B is the total number of bins, Kb, Lb are respectively
the values of trained and test image at the bth bin. A small
value of C(K ,L) shows a close similarity between the test
vector K and trained vector L. The classifier assigns to the
test feature vector, the class of train feature vector for which,
the Chi-square statistic is small, e.g., the majority of similar
class train feature vectors in the nearest neighborhood.

V. EXPERIMENTAL RESULTS AND ANALYSIS
This section presents the analysis of the noise-robust per-
formance of the proposed hybrid descriptor under a variety
of noisy conditions and presents comparisons with closely
related descriptors. A variety of parameter settings allows
for a comprehensive comparison of the classification perfor-
mance. The classification accuracy is taken as a measure of
feature descriptor’s noise sensitivity. When the classification
accuracy is high, for a certain variance of the noise, the feature
descriptor is said to be noise tolerant. All implementations
of the algorithm have been carried out using Matlab 2018a,
with core i5, Core 2 Duo 2.6 GHz, 8GB RAM. The compar-
ison of feature dimensionality and computation complexity
is presented in Table 2. The results of the two experimental
phases are discussed as follows.

A. PERFORMANCE ANALYSIS WITH AWGN (σ2)
Firstly, we evaluate the performance of the proposed oper-
ator for Outex Org. dataset. Fig. 5 presents the perfor-
mance comparison of proposed descriptor at two parametric

FIGURE 5. Classification performance vs noise variance plots of various
techniques for Outex Dataset: (a) TC10, (b) TC12h, and (c) TC12t.
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TABLE 1. Classification performance of proposed method vs traditional methods on Outex Org. dataset at σ2 = 0.025.

TABLE 2. Feature dimension and computational complexity compared
with other methods using an image of size 128 × 128.

conditions (T, Y) e.g., (8, [2, 3]) and (8, [1, 2, 3]) with
the techniques CLBP (24, 3), CJLBP (8, [1, 2, 3]), CJLBP
(8, [2, 3]) and LETRIST (LS = 3, LR = 5). From Fig. 5,
it is noticeable that the proposed hybrid operator shows
close performance at the given scale-resolution settings. Sim-
ilar is the case with CJLBP_SMC. Therefore, there is no
need to refer to the parameters while discussing the two
operators.

We perform analysis by assuming three variance regions:
1) noiseless region where σ 2

= 0, 2) low noise region, σ 2
∈

[0.005 0.02], and 3) high noise region, σ 2
∈ [0.025 0.04].

The following observations can be made:
1) In noiseless region, the hybrid descriptor is compa-

rable to LETRIST achieving an accuracy of 99.9%.
LETRIST on the other hand performs better than
CJLBP_SMC showing high discrimination power. This
indicates that LETRIST contributes discriminating fea-
tures to the proposed operator.

2) In low noise region, the hybrid descriptor shows greater
performance than LETRIST with a classification accu-
racy difference of approximately 1.1% at σ 2

= 0.02.

This indicates that the proposed operator is noise robust
than LETRIST and CJLBP_SMC.

3) In high noise region, the hybrid descriptor continues
to show high performance. A classification accuracy
of 94% at σ 2

= 0.04 is achieved. This indicates that the
proposed operator is able to discriminate texture under
high noisy conditions with better accuracy.

To further evaluate the robustness of the proposed operator
on Outex dataset, Table 1 presents the comparison with six
related techniques over a variety of scale-resolution param-
eter setting, at noise variance σ 2

= 0.025. The individ-
ual and average classification performance is computed for
TC10, TC12h, and TC12t testing suits. The hybrid descrip-
tor is compared to LBP, CLBP, CJLBP, LVQP, BRINT,
MRELBP, DALBP, and LETRIST. The operators LVQP
and CLBP_SMC are evaluated for the following paramet-
ric conditions: (T, Y) ε {(8, 1), (16, 2) and (24, 3)}, while
CJLBP_SMC is evaluated for (8, [1 2]), (8, [1 2 3]), and
(8, [2 3]). The best performance of CLBP_SMC is achieved
at (24, 3) since the above parameter setting allows to
compute both the micro as well as macro-texture. There-
fore, the discriminating power of CLBP_SMC is improved.
A similar trend in performance is observed for LVQP and
CJLBP_SMC. While discussing the results, we will compare
the best results of CLBP_SMC, CJLBP_SMC, and LVQP and
will avoid mentioning the parameter setting. Noticeably, our
method achieves the highest average classification accuracy
of 95.86%, indicating that high noise robustness is provided.
The operators LBP, CLBP, andMRELBP show degraded per-
formance because the descriptors are not effective in the pres-
ence of noise. In comparison to BRINT and DALBP, which
show close performance among each other, our descrip-
tor performs with a high margin of approximately 27.23%.
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TABLE 3. Classification performance on outex extended (TC20 and TC24) and KTH-TIPS.

TABLE 4. Classification performance of proposed method vs traditional methods on Outex Org. dataset at noise level k.

The operators LETRIST and LVQP on the other hand, appear
as the second and third best performers, respectively.

Table 3 lists the numerical results for Outex Ext. and
KTH-TIPS datasets. The performance is evaluated over noise
variance of σ 2

= {0.005, 0.01, 0.015, 0.02, 0.025, 0.03,
0.035 and 0.4}. The hybrid descriptor is put in compari-
son with the following two descriptors, CJLBP_SMC [45],
and LETRIST [47], with the following parameter setting
{T = 8,Y = (2, 3)}, and {LS = 3,LR = 5}, respec-
tively. For the Outex Ext. dataset following observations
can be made. Firstly, the classification accuracy is not close
to 90%, indicating the challenging conditions provided by
the dataset. Secondly, the trend of performance among the
descriptors remains same as in Outex Org. dataset. For exam-
ple, LETRIST performs better than CJLBP_SMC and the
hybrid descriptor outperforms both. This indicates that for
the given dataset, the hybrid descriptor also outperforms
BRINT, MRELBP and DLABP. In Table 3 (b), a similar
trend in performance occurs for KTH-TIPS dataset e.g., pro-
posed > LETRIST > LVQP > CJLBP_SMC. In the light
of results of Table 1 and 3 we conclude that the proposed

descriptor successfully categorizes the texture in the pres-
ence of noise and outperforms the noise robust descriptors
e.g., CJLBP_SMC, BRINT, MRELBP, DALBP, LVQP, and
LETRIST.

B. PERFORMANCE ANALYSIS WITH AWGN (K)
Experiment 2 is performed to compare the noise robustness of
our proposed descriptor against Adaptive Hybrid Descriptor
(AHP) [48] over the range of k = {10, 20, 30, 40}. Table 4
lists the robustness measure of the proposed descriptor in
comparison with CLBP, CJLBP and AHP. The operators
AHP and CLBP_SMC are evaluated for the following scale-
resolution conditions: (T, Y) ε {(8, 1), (16, 2) and (24, 3)},
while CJLBP_SMC is evaluated for (8, [1 2]), (8, [1 2 3])
and (8, [2 3]). From Table 4, it is observed that when k
increases for a certain test suit, the classification performance
of the texture descriptors decreases. Therefore, the results are
discussed only for the worst case of k=40.

From the numerical results, it is observed that AHP
achieves the lowest performance. This shows that themethod-
ology adopted by AHP, when compared to the mentioned
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descriptors, is not effective against noise. CLBP_SMC per-
forms better than AHP, since it involves the usage of global
mean magnitude and central gray level. CJLBP_SMC outper-
forms CLBP_SMC since it involves the operation of multi-
scale fusion, which makes it robust against noise. On the
other hand, the proposed descriptor outperforms the above
descriptors by achieving the highest classification accuracy
of 99.71, 98.13, and 99.21 for the respective TC10, TC12h
and TC12t test suits at k = 40.
From the results of experiment 1 and 2, the performance

of the hybrid descriptor on Outex and KTH-TIPS datasets
demonstrates that the use of wavelet transform and the pro-
posed feature computation and integration technique offers a
robust texture representation.

VI. CONCLUSION
In this paper, a method of noise robust classification of texture
is presented and validated. The proposed method is based on
calculating features from low-frequency image information,
which forms the basis of our noise robust image model.
Three stages are involved in the proposed system. Firstly,
multiresolution decomposition of a noisy image is performed,
and the low noise components are achieved using 2DDWT.
Then, the evaluated components are subjected to LBP based
feature extraction. To achieve discrimination power a second
feature set is considered, which is based on first and second
order differential responses from Gaussian derivative filters.
The two feature sets are integrated to obtain a final feature
representation that is robust and discriminative in the pres-
ence of noise. The hybrid descriptor is examined under a
variety of image acquisition conditions provided by following
three renowned datasets: Outex original, Outex extended and
KTH-TIPS. It is found that the presented descriptor per-
forms robust classification of texture for additive Gaussian
noise with varying variance levels of up to σ 2

= 0.04.
The descriptor surpasses other leading techniques such as
CJLBP_SMC, BRINT, MRELBP, DALBP, LVQP, AHP, and
LETRIST. In future studies, the aim is to reduce the length
of the feature vector by considering techniques of feature
dimensionality reduction. Moreover, some other methods of
noise reduction in an image can be considered to improve the
classification performance further.
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