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Resource limitation is a major driver of the ecological and evolutionary dynamics of organ-

isms. Short-term responses to resource limitation include plastic changes in molecular

phenotypes including protein expression. Yet little is known about the evolution of the

molecular phenotype under longer-term resource limitation. Here, we combine experimental

evolution of the green alga Chlamydomonas reinhardtii under multiple different non-

substitutable resource limitation regimes with proteomic measurements to investigate evo-

lutionary adaptation of the molecular phenotype. We demonstrate convergent proteomic

evolution of core metabolic functions, including the Calvin-Benson cycle and gluconeogen-

esis, across different resource limitation environments. We do not observe proteomic

changes consistent with optimized uptake of particular limiting resources. Instead, we report

that adaptation proceeds in similar directions under different types of non-substitutable

resource limitation. This largely convergent evolution of the expression of core metabolic

proteins is associated with an improvement in the resource assimilation efficiency of nitrogen

and phosphorus into biomass.
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The ability to survive on and compete for limited resources
is an important factor governing the abundance and dis-
tribution of all organisms1. Resource limitation can

determine the persistence and dynamics of populations, and the
outcome of competitive interactions among species. Phyto-
plankton, like all photo-autotrophs, compete for non-
substitutable and limiting inorganic resources, such as light,
nitrogen, and phosphorus, among others2. Population-level
responses of phytoplankton to resource limitation vary widely
across the tree of life3–5, and recent evidence suggests that these
responses may evolve rapidly6. In this paper, we investigate the
molecular basis of adaptation to limiting resources in
phytoplankton.

Quantifying metabolic shifts induced by resource limitation
can provide important insights into the plastic and evolutionary
adaption of phytoplankton to environmental change. Whole-
genome sequencing of model organisms, such as Chlamydomonas
reinhardtii, and high-throughput molecular phenotyping meth-
ods, including transcriptomics, proteomics, and metabolomics,
have been used in studies focusing on plastic changes in the
molecular phenotype induced by short-term exposure to resource
limitation7–9. These studies have demonstrated that phyto-
plankton may show significant phenotypic restructuring at the
metabolic and molecular level, which may enable species to cope
with fluctuations and short-term shortages in resource avail-
ability. However, virtually nothing is known about evolutionary
adaptation occurring at the level of the molecular phenotype in
response to longer-term exposure to non-substitutable resource
limitation (but see refs. 10,11). We aim here to address this gap
using a powerful combination of experimental evolution and
proteomic phenotyping.

Phenotypic evolution in response to different nutrient limita-
tion scenarios can be either convergent or divergent. One possi-
bility is that competition for limiting resources causes phenotypic
divergence12–15. For example, variation in the identity of resource
limitation in a heterogeneous environment may select for unique
phenotypes which are each specialized on efficiently consuming
and converting different limiting resources, according to avail-
ability11,16–19. An alternative outcome could be convergent evo-
lution if similar phenotypes are repeatedly selected from
independent origins due to similar types of environmental
selection (e.g., limitation by the same resource)20–22.

Here, we propose that selection under different types of
resource limitation may also select for convergent trait evolution,
particularly when the resources are non-substitutable, and
therefore essential for growth. In the case of non-substitutable
resource limitation, blockage of the cell cycle, growth, and
therefore fitness, cannot be overcome by adaptive specialization
on other, more available resources. In this case, adaptation can
only result from (a) increased capacity to acquire the non-
substitutable limiting resource or (b) increased metabolic effi-
ciency given a fixed ability to acquire the non-substitutable lim-
iting resource. In the first case, phenotypic adaptation may be
specific to the identity of the limiting resource (i.e., divergent in
the case of different limiting resources), but in the second case,
phenotypic adaptation is likely to involve changes in core meta-
bolism that are similar across a variety of limiting resources (i.e.,
convergent), especially when phenotypic changes are strongly
constrained by metabolism.

In phytoplankton, there are several well-known core metabolic
functions that are necessary for reproduction, including photo-
synthesis, respiration, carbon metabolism, transcription, transla-
tion, and protein synthesis. Short-term metabolic changes in
phytoplankton in response to various types of resource-induced
stress, including nitrogen or phosphorus limitation, involve shifts
in core carbon metabolism including photosynthesis, the

Calvin–Benson cycle, glycolysis/gluconeogenesis, and fatty acid
synthesis, as well as shifts in the expression of proteins used to
protect from heat-shock or photo-oxidative damage7,8,10,23–25.
While not universal, resource-induced stress tends to lead to a
reduction in photosynthesis and the Calvin–Benson cycle, and a
concurrent increase in starch production or fatty acid biosynth-
esis7,23,25. More generally, these responses represent tweaks of
core metabolism that allow cells to shift resource allocation from
growth to storage, given the physiochemical constraints on the
cell cycle imposed by the resource limitation. Nevertheless,
resource limitation also induces molecular phenotypic changes
that are unique and targeted to the specific resource and are
functionally targeted at improved resource acquisition. For
example, both nitrogen25 and phosphorus limitation8 result in the
upregulation of the respective nutrient transporters and organic
nutrient assimilation pathways, and low light results in the
upregulation of photosynthesis proteins24. There may therefore
be both convergent and divergent phenotypic adaptations
occurring simultaneously in response to selection under unique
but non-substitutable resource limitation, with convergent
responses occurring in core metabolism and divergent responses
occurring in resource acquisition strategies.

Here we used experimental evolution under different nutrient
limitation scenarios to investigate the metabolic adaptation of the
model green phytoplankton species Chlamydomonas reinhardtii.
We aimed to address three basic questions: (1) Does protein
expression evolve in response to limitation under non-
substitutable resource limitation? (2) If so, is proteomic evolu-
tion generally convergent or divergent in response to different
types of non-substitutable resource limitation? (3) Are convergent
responses overrepresented by core metabolic functions and
divergent responses overrepresented by resource acquisition
functions? We investigated the model alga, C. reinhardtii, because
it is known to evolve rapidly and has exceptional genomic
resources26–30. We grew C. reinhardtii either under light, nitro-
gen or phosphorus limitation, as well as in a biotically-spent
medium (i.e., the medium had been used to grow other algae
prior to being fed to the evolving C. reinhardtii). We used a
biotically-spent medium to mimic the influence that a biodiverse
community of phytoplankton may have on the availability of all
dissolved resources: multiple resources being depleted simulta-
neously according to the requirements of biotic competitors. We
also introduced a salt-stress selection environment, and a crossed
salt-stress by biotically-spent medium environment, because
previous work has suggested that stress may accelerate adaptive
evolution31 and thus accelerate metabolic adaptations over the
course of the period of the experimental evolution. Furthermore,
salt-stress provides an outlier selection treatment which enables a
comparison of adaptation under resource limitation relative to
that under another type of environmental stress. We report
adaptation which proceeds in similar directions under different
types of non-substitutable resource limitation. This convergent
evolution is associated with an improvement in the resource
assimilation efficiency of nitrogen and phosphorus into biomass.

Results
Evidence of proteomic evolution under resource limitation.
Selection under resource limitation (as outlined in Supplementary
Figure 1) resulted in significant evolution of Chlamydomonas
reinhardtii proteomes, as indicated by the redundancy analysis
(RDA) and permutational ANOVA (p < 0.001; Fig. 1). RDA was
performed using all 3347 protein expression levels as response
variables and populations and treatments as explanatory vari-
ables, providing 51 independent observations. The first two RDA
axes explain 74% of the total variation. We treated the
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populations as biological replicates, as there were no differences
in the proteome expression among the populations when placed
in a common garden after the selection treatments (RDA analysis
with permutational ANOVA; p= 0.762) (Supplementary
Figure 2).

We quantified 3347 proteins and found that 1304 displayed
significant differential regulation relative to the ancestral average
(permutation test p < 0.001; Supplementary Figure 4), and
351 showed significant differential regulation relative to the
control selection lines (Fig. 2). We found little evidence for strong
adaptation to life in chemostat, as expression between the control
treatments and ancestors was not significantly different
(ANOVA; TukeyHSD post hoc test of RDA axis 1 p= 0.99;
RDA axis 2 p= 0.75) (Fig. 1, Supplementary Figure 3). However,
we found significant protein expression differences among
treatments — ancestors and control treatment were significantly
different from all other treatments on RDA Axis 1 (ANOVA; p <
0.01) (Fig. 1, Supplementary Figure 3). The low-phosphate
treatment was significantly different from the ancestors and the
control, biotic, low-light, and high-salt treatments on RDA Axis 2
(ANOVA; p < 0.01) (Fig. 1, Supplementary Figure 3). The salt
treatment, included in this experiment as an outlier treatment,
representative of stress in general, was not significantly different
from any of the resource limitation treatments.

Convergence versus divergence in proteomic evolution. We
identified support for convergent proteomic evolution in six out
of seven treatments by measuring the centroid, direction, and
distance of each treatment relative to the ancestral mean. The
selection treatments significantly affected the direction of evolu-
tion relative to the ancestors on the plane of the two first RDA
axes (ANOVA; p < 0.001) (Fig. 1b). The control treatments were
separate from the other treatments in the direction of their evo-
lution (TukeyHSD post hoc test; p < 0.05) (Supplementary Fig-
ure 4). The evolutionary distance, as quantified by the distance
from the ancestral mean on the plane of the first two RDA axes,

was not significantly different among the treatments (ANOVA;
p= 0.297) (Fig. 1b and Supplementary Figure 4).

In order to divide proteins into those showing convergent and
divergent responses to selection across treatments, we first
identified the proteins whose expression was significantly
different relative to the control treatment (Dunnett test p < 0.05;
n= 351) and then divided them into convergent (Friedman test
p >= 0.1; n= 232) and divergent (Friedman test p < 0.1; n= 70)
responses, based on whether or not treatments had significantly
different impacts on protein expression. Both convergent and
divergent proteins are non-uniformly distributed across different
genomic and chromosomal loci, with certain chromosomes
showing little variation (such as chromosomes 14 and 15) and
other chromosomes showing a high degree of variation (such as
chromosomes 6 and 12) (chi-square test p < 0.001) (Fig. 2b). We
found evidence for extensive convergent proteomic evolution in
response to the different selection treatments.

Functional classification of proteins responding to selection.
Among proteins with a convergent response (Friedman test
p >= 0.1), 89 proteins generally responded positively across all
selection treatments (Group 1 in Fig. 3), 178 generally responded
negatively (Group 2). Among proteins with a divergent response
(Friedman test p < 0.1), 43 proteins generally responded positively
(Group 3) and 44 generally negatively (Group 4) (Fig. 3). In
addition, we detected 14 chloroplast-encoded genes, 11 of which
exhibited a convergent, and 3 a divergent response (Supple-
mentary Figure 5). Several proteins across the divergent and
convergent responses have control treatment values, which are
significantly different from the ancestral values (t test p < 0.01;
marked with asterisks; convergent n= 34; divergent n= 11). We
consider these proteins examples of adaptation to chemostat
conditions, which are different from the ancestral growth
environment.

We performed enrichment analysis for proteins within Groups
1, 2, 3, and 4 using DAVID Functional Annotation Tool.
Positively expressed proteins (Groups 1 and 3) in both
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Fig. 1 RDA analysis of protein expression levels explained by treatments and conditioned by population. Protein expression levels include 3347 response
variables and consist of 51 independent observations. a The selection treatments cause significant differences in the protein expression levels (redundancy
analysis, RDA; permutational ANOVA; p < 0.001; error bars represent standard errors). The first two RDA axes explain 74% of the total variation (which
totals at 0.00586 units). Ancestral and control treatments are separated from the other treatments by Axis 1 (ANOVA; TukeyHSD post hoc test p < 0.01)
and the low-phosphate treatment is separated from ancestors, controls, biotic, low-light, and high-salt treatments by Axis 2 (ANOVA; TukeyHSD post hoc
test p < 0.01). b The angles and distances of each treatment from the ancestral mean on the RDA plane. All treatments exhibit convergent trajectories with
the significant exception of the control (p < 0.01; TukeyHSD post hoc test)
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convergent and divergent protein groups consist of ribosome-
and photosynthesis-related proteins (DAVID Functional Anno-
tation Clustering; p < 0.01). Negatively expressed proteins within
the convergent group (Group 2) consists of carbon metabolism-
related proteins, ATP binding proteins, pyridoxal phosphate-
dependent transferases, fatty acid degradation-related proteins,
and plant-type vacuolar proteins (DAVID Functional Annotation
Clustering; p < 0.01). Negatively expressed proteins within the
divergent group (Group 4) do not contain any significantly
enriched functions. Unsurprisingly, chloroplast-encoded genes
were significantly enriched in photosynthesis-related functions
(DAVID Functional Annotation Clustering; p < 0.01) (Supple-
mentary Figure 5). Most divergent responses are either
positive or negative across all treatments; however, we identified
a total of 56 proteins where at least one treatment exhibited a
response in a different direction from the other treatments
(Supplementary Figure 5). Enriched biological functions within
this group include photosynthesis (five proteins) and ribosomal
proteins (six proteins) (DAVID Functional Annotation Cluster-
ing; p < 0.01).

Metabolic context of the protein expression profiles. Overlaying
the protein expression data on KEGG metabolic diagrams shows
that the strongest proteome-level changes are clustered around the
metabolic pathways of photosynthesis, glycolysis/gluconeogenesis,
and TCA cycle (Fig. 4). Specifically, the Calvin–Benson cycle and

gluconeogenetic pathway are near-consistently upregulated across
all treatments, while glycolysis and TCA cycle are downregulated.
Strong upregulation is also prominent among ribosomal compo-
nents and photosynthetic machinery (Supplementary Data 1).
Proteins related to glycolysis (Fig. 4) and TCA cycle (Fig. 4; shaded
in pink) are generally downregulated under non-substitutable
resource limitation and salt stress, suggesting that catabolism of
carbohydrates is suppressed relative to the ancestors and controls.
On the other hand, Calvin–Benson cycle (Fig. 4; shaded in gray) is
active and producing glycerate-3-phosphate (G3P), which is
channeled up the gluconeogenetic pathway into glyceraldehyde-3-
phosphate (Fig. 4; shaded in brown). Glyceraldehyde-3-phosphate
is partly being used to maintain an active Calvin–Benson cycle but
is also channeled toward production of α-D-glucose-6-phosphate,
which is a starting point of further anabolic reactions such as
starch synthesis. The details of further anabolic activity are less
clearly supported by our data; for instance the data show no
upregulation of the synthesis of amino acids, fatty acids, and
nucleotides (Supplementary Data 1), and it remains unclear
whether the cells are synthesizing starch (Fig. 4; shaded in cyan).
We observe a divergent response in the low-phosphate treatment,
which shows an increased conversion of L-methionine to S-
adenosyl-L-methionine and the conversion of S-adenosyl-L-
homocysteine to L-homocysteine (Supplementary Data 1). How-
ever, this response has no obvious relation to increased phos-
phorus uptake or metabolism.
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To determine whether these evolutionary changes in protein
expression influence population-level phenotypes, we grew the
ancestors and descendant populations up in the same common
garden environment used for the proteomics experiment and
measured a number of variables related to carbon and nutrient
metabolism: photosynthesis, respiration, the stoichiometry of
biomass carbon, nitrogen and phosphorus, as well as total
biomass production and nutrient uptake per unit biomass. We
found that the descendants of the evolution experiment under
resource-limitation and salt stress selection treatments tended to
have greater biomass carbon to phosphorus and/or carbon to
nitrogen molar ratios (Supplementary Figure 6). This finding is
consistent with the observed decreased phosphate uptake per unit
of biomass produced in the low-phosphate and biotic treatments
(although we found no-effect on the uptake of nitrogen)
(Supplementary Figure 7). Respiration rates decreased across
the selection treatments, in line with the observed decrease in the
expression of many mitochondrial proteins. However, we also

observed a decrease in photosynthetic carbon assimilation in the
low-nitrogen and biotic treatments (Supplementary Figure 8).

Discussion
Convergent evolution is typically observed in cases where
organisms evolve in similar conditions11,32 or where divergent
selection is weak relative to dispersal, permitting the evolution of
a single-generalist phenotype20. On the other hand, it has been
reported that different nutrient limitation scenarios lead to a
variable range of evolutionary outcomes, with some resource-
limitation environments enabling a broad range of outcomes, and
others resulting in few, apparently constrained, adaptive solu-
tions11. Here, we report convergent proteomic evolution across
variable selective environments. In our experiment, each of the
resource-limitation treatments (low-light, low-nitrogen, and low-
phosphorus) was fundamentally different from any other, because
we imposed limitation of different, non-substitutable resources.
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Fig. 3 Protein expression level heatmaps and annotation for the differentially expressed proteins. Both divergent and convergent responses were divided
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Furthermore, each selection treatment was kept discrete from all
other treatments, allowing no dispersal between the treatments
which precludes selection for a generalist, adapted to all resource-
limitation environments. Finally, the salt-stress treatment pro-
vided a point of comparison with investigate unique adaptations
to resource-limitation as opposed to stress in general. As a result,
it does not seem likely that the convergent evolution we observed
across different types of resource-limitation and salt stress, could
have resulted from either evolution to similar experimental
conditions, or from the evolution of a generalist phenotype via
dispersal.

The upregulated functions across the treatments include very
central, highly conserved metabolic functions, such as photo-
synthesis and protein synthesis33. Convergent selection of such
central functions supports our hypothesis that non-substitutable
resource limitation of any kind obstructs core metabolism,
growth and the completion of the cell cycle, and therefore directs
evolutionary responses to optimize the upregulation and down-
regulation of proteins related to core metabolic functions. We
interpret this optimization as convergent evolution across
resource-limitation environments because regardless of resource
identity, improvements in metabolic efficiency can only result
from a limited set of core metabolic pathways. The lack of distinct
proteomic responses among the salt-stress treatments supports
our hypothesis that these adaptations are convergent responses to
alleviate obstructions of core metabolic pathways.

This convergent evolution proteomic response was also asso-
ciated with an improvement in the resource assimilation effi-
ciency of nitrogen and phosphorus into biomass. We observe no

evidence for increased acquisition of any limiting resources,
observed for instance in refs. 16–19. On the other hand, upregu-
lation of the core metabolic pathways of Calvin–Benson cycle and
gluconeogenesis, and other core functions, such as photosynthesis
and protein synthesis33, strongly support our hypothesis that the
cells use increased metabolic efficiency as an adaptive strategy to
non-substitutable resource limitation. This hypothesis is further
supported by our observation that the descendants of the evo-
lution experiment under resource-limitation and salt-stress
selection treatments tended to have greater biomass carbon to
phosphorus and/or carbon to nitrogen molar ratios, when grown
in the same common garden environment as used for the pro-
teomics experiment. Since the majority of phosphorus in cells is
contained in the rRNA molecules of the ribosomes, and most of
the nitrogen is contained in the protein-rich light-harvesting
machinery of the chloroplasts34,35, the elevated biomass molar C:
P and C:N ratios indicate that more carbon is fixed per ribosome
or per chloroplast within the cells, respectively36–38. The simi-
larity of the responses between the salt stress and resource-
limitation environments suggest that protein expression evolved
so as to mitigate the obstruction of core metabolic pathways.

Despite a general increase in the net assimilation of carbon
relative to other limiting resources (e.g., nitrogen and phos-
phorus), we did not observe an overall increase in the rate of net
carbon assimilation across the treatments. While respiration rates
decreased across selection treatments, in line with the observed
decrease in the expression of many mitochondrial proteins, we
also observed a decrease in photosynthetic carbon assimilation in
the low-nitrogen and biotic treatments. The absence of an
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increase in rates of photosynthetic carbon fixation despite the
upregulation of many chloroplast proteins, may be an example of
evolutionary phenotypic buffering, or compensation, where the
evolved changes in the molecular phenotype buffer the impacts of
stress and serve to maintain levels of functioning at higher levels
of biological organization (i.e., cellular photosynthesis)39. Overall,
the ratio of carbon assimilation to respiration increased sig-
nificantly only in the low-phosphate treatment, indicating a gain
in net carbon metabolic efficiency only in this treatment. So,
while carbon metabolism itself did not generally become more
efficient under long-term low-resource selection, C:N and C:P
biomass ratios tended to increase, indicating that nitrogen and
phosphorus assimilation efficiency improved relative to net car-
bon fixation.

In conclusion, the signature of the evolutionary response of
Chlamydomonas reinhardtii protein expression to non-
substitutable resource limitation is one of improved metabolic
efficiency. Rather than evolving an improved ability to acquire
resources, the descendants of the evolution experiment displayed
signatures of more efficient allocation and assimilation of
resources, with an improvement in the resource assimilation
efficiency of nitrogen and phosphorus into biomass. We found
that adaptation to resource limitation involves significant changes
in protein expression, which show a convergence across the
resource limitation environments. Surprisingly, similar patterns
of adaptation were also observed under salt stress. We propose
that this is because both resource limitation and salt stress
obstruct core metabolic pathways which essentially impose limits
on cell growth and division, and therefore select for similar
evolutionary outcomes. These findings represent a contrast to
previous work which had investigated only the plastic responses
of the proteome observed under resource limitation or salt stress
(but see11). Interestingly, previous studies on plastic responses
have generally reported the opposite patterns on modulation of
core metabolic pathways to that reported here, supporting the
hypothesis that plastic variation in the expression of phenotypes
often occurs in the opposite to the direction of adaptive pheno-
type evolution40. The general agreement between conclusions
drawn from the proteomic data and stoichiometry suggests that
investigations of the evolution of the molecular phenotype may
one day help to link our understanding of evolution across bio-
logical scales: from the genome to the molecular phenotype and
beyond, to macroscopic phenotypes such as stoichiometry, and
perhaps eventually to population- and community-level
dynamics.

Methods
Evolution experiment. The evolution experiment began from an inoculum of
Chlamydomonas reinhardtii CC1690 wild type mt+ obtained from the Chlamy-
domonas Center (http://www.chlamycollection.org/product/cc-1690-wild-type-mt-
sager-21-gr/) in October 2014. Prior to the initiation of the evolution experiment,

the inoculum was maintained in the lab under sterile conditions, in semi-
continuous batch culture in a liquid freshwater medium called COMBO41.
Throughout the following experiment, we used a modified COMBO medium
which did not contain silicon, vitamins, or animal trace elements because they were
unnecessary for C. reinhardtii. We refer to this modified medium as “COMBO”
throughout. We plated a dilute liquid batch culture onto agar after four months,
and on February 19, 2015, we haphazardly isolated four clonal colonies (grown
from single cells) from the agar plates and transferred them into COMBO to
produce isoclonal liquid batch cultures. We named these clonal populations
Ancestors 2, 3, 4, and 5 (“Anc2” etc. hereafter). Nine days later, on February 28,
2015, we inoculated the four clonal ancestors and the original population, CC1690,
into seven chemostats each. The seven chemostats into which each ancestral
population was inoculated were randomly assigned to a resource-depletion (or salt-
stress) treatment (Table 1). In total, we inoculated 35 chemostats: 5 ancestral
populations × 7 experimental evolution treatments. The experimental setup is
described in Supplementary Figure 1.

All 35 chemostats originally contained 23 mL of sterile COMBO and were
inoculated with 5 mLs of liquid batch culture. Chemostats were composed of
autoclave-sterilized screw-top vials (Supelco™ 40 mL vials with hole cap and
barrier/septa), each containing a magnetic stir bar, and three syringes which
pierced through the Teflon-lined rubber lid. One syringe was under suction to
produce negative pressure within the chemostat. The negative pressure allowed
liquid sampling and air intake through another syringe. The second syringe,
attached to an air filter, acted as an air inlet. The third syringe, attached to a media
bottle, acted as a media inlet. All materials and media were autoclaved for sterility.
All chemostats were maintained under ~90 μM photons·m2·s-1 of light on an 18 h
light, 6 h dark light cycle at 20 ˚C (“standard conditions” hereafter). Chemostats
were constantly stirred using magnetic stir bars and stir plates. Two peristaltic
pumps were used: one to generate suction and continuously pull sterile air through
0.45 µm filters and into the medium, and the second to pump sterile medium into
the chemostats.

After two weeks of growth in chemostat without media replacement, the
chemostats began receiving daily exchanges of replete sterile COMBO via 20-min
media exchanges conducted via peristaltic pump at 400 rpm. Daily dilution rates
were 15.74 mL+ /- 0.25 mLs, or 56% per day. On April 8, 2015, after 1 month of
growth in replete COMBO, we initiated the resource limitation and salt stress
regimes (Table 1). Dissolved inorganic nutrients were manipulated by reducing the
availability of nitrate in the form of NaNO3 or phosphate in the form of K2HPO4 in
the medium being exchanged every day. We followed the standard protocol for low
phosphate potassium ion replacement41. The light limitation regime was imposed
by completely covering the surface of the chemostats with neutral-density light
filter paper (Solar Graphics™, Clearwater, Florida) so as to filter out a fixed
percentage of light across all wavelengths of the light spectrum. The salt stress was
imposed by increasing the sodium chloride concentration in the COMBO. For
reference, pilot studies showed that the ancestors had a salt tolerance at ~4 g L-1.
Each resource limitation or salt stress level was maintained for one month before
the next level was imposed (Table 1).

The biotically-depleted medium (hereafter “Biotic”) was produced by
individually growing seven other species (Supplementary Table 1) of freshwater
algae in batch culture in replete COMBO, and removing the phytoplankton
biomass from each culture, sterilizing the medium, and mixing resultant spent
media from each of the seven cultures. To do this, we first scaled batch cultures of
each species up from 100 mLs to 4 L over the course of 6 weeks under standard
conditions. The phytoplankton were then removed from the depleted medium by
first centrifuging each culture at 5000 rpm for 15 m, keeping the supernatant and
then filtering the supernatant through 0.45-μm cartridge filters (Sartorius Stedim™

Sartobran® P 0.45 μm) using vacuum filtration. Depleted and filtered supernatants
from all cultures were combined into a single 50-L carboy and autoclave-sterilized.
After autoclaving, this spent medium was cooled and stored at 4 ˚C in the dark
until further use.

At the termination of the evolution experiment, the chemostats were sampled
and 5 mLs from every chemostat were inoculated into 10 mLs of replete COMBO

Table 1 The temporal sequence of resource-limitation and salt stress experimental treatments

Month Control (C) Nitogen (N)
(NaNO3, µmol/L)

Phosphorus (P)
(K2HPO4 µmol/L)

Biotic (B) (proportion
biotically-depleted)

Light (L) (μM
photons·m2·s-1)

Salt (S)
(NaCl g/L)

Biotic &
salt
(BS)

1 . 1000 50 0 100 0 0 0
2 . 100 5 0.01 70 1 0.01 1
3 . 100 5 0.1 50 2 0.1 2
4 . 10 0.5 0.4 20 4 0.4 4
5 . 10 0.5 0.75 15 6 0.75 6
6 . 10 0.5 0.95 5 8 0.95 8
7 . 10 0.5 1 5 8 1 8
8 . 10 0.5 1 5 8 1 8
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in batch culture. The cultures were then grown under standard conditions until
visibly green (up to 3 weeks) before plating onto agar in triplicate. This culture step
was performed in order to ensure that each descendant population had a large
enough population density for successful plating, and that even very low-density
selection lines had enough cells to ensure successful live sample storage. The agar-
plated algae were again grown under standard conditions until green (for up to
3 weeks) before being transferred to a climate chamber maintained at 12 ˚C and ~
40 μM photons·m2·s-1 for cold storage.

Common garden growth and MudPIT. Each algal population was removed from
cold storage using sterile technique and was again inoculated into 50 mLs of replete
COMBO under standard conditions in order to produce enough biomass for
protein extraction and quantitation using LC-MS/MS (see below). In culturing the
algae under standard conditions both before and after storage, we ensured that all
differences in protein expression between ancestors and descendants were due
solely to heritable genetic or epigenetic change, rather than due to maternal effects
or plasticity induced by the historical selection environment. Each culture grew for
7 days before we centrifuged them at 4000 rpm, decanted the supernatant, and
froze the pellets at −80˚C.

Sample preparation for protein analysis was done following established
procedures42,43. Briefly, frozen algae were thawed at room temperature before lysis,
homogenized using a grinder, sonicated on ice (3 × 10 s with 30 s pause in-
between) and finally centrifuged (13,000 rpm, 60 min, 4 °C). The supernatant was
removed and centrifuged again using the same conditions (two repetitions). The
proteins were then precipitated using methanol/chloroform and the formed pellet
air-dried (20 min) and then re-dissolved in buffer, after improving solubility by
wetting with 0.2 M NaOH. The protein amount in the solution was determined
using the Bradford assay.

Prior to the tryptic digestion, 100 μg of protein were reduced using TCEP, and
carboxy-amidomethylated using IAA. The treated sample was then put on a shaker
and digested with trypsin overnight (ratio of 100:1, 37 °C, 14–16 h). The digestion
was stopped by the addition of formic acid. After filtration (0.45 μm, Durapore
PVDF, Merck Millipore), the samples were transferred to glass vials for storage or
directly loaded onto a commercially available trap column (5 mm, 300 μm ID,
5 μm, 100 Å, C18 Acclaim PepMap 100, Dionex), using a nanoHPLC (Ultimate
3000, Dionex). Peptides were then eluted onto a SCX column (3.5 cm, 100 μm ID,
363 μm OD, BGB Analytik AG, in-house pressure filled with 5 μm, Nucleosil 100-5
SA from Macherey Nagel AG, and closed with a frit) and subsequently analyzed on
a C18 column (4.5 cm, 100 μm ID, in-house pressure filled with 3 μm, 100 Å,
Nucleodur C18 Pyramid, Macherey Nagel AG) pulled to a needle for
electrospraying (Sutter Instrument, P-2000, Science Products AG Basel). The SCX
and C18 columns were linked in series by a 25 μm ID fused silica capillary. Both
the SCX and C18 columns were used for three analytical runs only and then
replaced.

Peptides eluting off the C18 column were directly sprayed into the high-
resolution mass spectrometer (LTQ-Orbitrap XL, Thermo Scientific, Bremen,
Germany). The instrument was tuned and calibrated using angiotensin (Sigma-
Aldrich) and a calibration mixture from Thermo Scientific (ProteoMass LTQ/FT-
Hybrid ESI Pos. Mode Cal Mix, Supelco), respectively. The instrument was
operated in positive ion mode (needle voltage:+ 1.2 kV, tube lens: 135 V, ion
transfer capillary: 200 °C). Using a standard 11-step MudPIT protocol, peptides
were sequentially eluted onto the C18 column by eleven salt pulses (4.9 min, from 0
to 100% eluent C, in 10% increments, eluent C: 0.5 M aqueous NH4Ac, 5% ACN,
0.1% formic acid), and then separated by gradient elution42,43.

The LTQ-Orbitrap XL acquired scan-dependent MS/MS of the peptides eluting
off the column. For this the instrument selected the 7 most intense ions found in a
mass spectrum acquired in a pre-scan (300–1600 m/z, resolution of 7500), then
analyzed them in the linear ion trap using MS/MS with a normalized collision
energy of 35%, while in parallel acquiring a high-resolution full scan in the orbitrap
(300–1600 m/z, resolution of 60,000). When selected ions had been analyzed twice,
with a minimal signal intensity of 1000 counts they were excluded from reanalysis
for 60 s, a procedure called dynamic exclusion. The HPLC and mass spectrometer
were controlled by Xcalibur (Thermo Scientific). Each ancestral sample was run in
three technical replicates, while descendant samples were only run once.

Peptide count estimation. Peptide count estimates were extracted from the
raw data using the MaxQuant (version 1.5.7.4) software package44, with match
between runs enabled and otherwise using the standard developer recommended
parameters for label-free proteome quantification (config files mqpar_v16.xml
and parameters.txt available at https://github.com/manutamminen/
chlamy_proteome_evolution).

The peptide searches were performed using Andromeda45 using
Chlamydomonas reinhardtii reference genome assembly version 5.0 and annotation
version 5.5 from Phytozome46 and NCBI Genbank entries U03843.1 and
BK000554.2 for mitochondrial and chloroplast references, respectively. The
maximum permitted number of missed trypsin cleavages was set to 2. The analysis
was set to consider carbamidomethyl of cysteine as a fixed modification and
oxidation of methionine and acetylation of the protein N terminus as variable
modifications. Mass tolerance for precursor and fragment ions were set to 20 ppm
for the first search and 4.5 ppm for the main search. The following criteria were

applied for peptide identification: Andromeda p-value threshold < 0.05, minimal
peptide length 7, minimal score of unmodified peptides 0, minimal score of
modified peptides 40, peptide FDR (false discovery rate) cutoff 0.01, and protein
FDR cutoff 0.01. The Andromeda p-value threshold was defined as the probability
P of matching at least k out of n theoretical masses in the peptide search database is
calculated. Thus, -10*log(P) gives the Andromeda “p-value”. Peptide FDR was
calculated as follows: first, forward, and reverse(^= decoy) protein databases are
constructed. The spectra are matched against both databases. The resulting
Andromeda match score histograms were used to estimate the continuous score
distributions via kernel smoothing. The score distribution estimates were then used
to calculate the posterior error probability (PEP) for each peptide. Protein FDR was
calculated as follows: first, for each peptide in a protein group, the spectrum with
the lowest FDR was selected. Then, all selected peptide FDRs were multiplied to get
the Protein FDR. For the abundance estimates, the sum of the unique and razor
peptides were used, where the latter is calculated by assigning a group of peptides
to the protein with the highest number of matching identified peptides.

Biomass and stoichiometry. All ancestral and descendant populations were sub-
cultured into 50 mL of liquid COMBO from agar plates that had been maintained
in cold storage, and underwent a growth period of 7 days before the start of the
experiment. Due to significant fungal or bacterial contamination, three populations
were lost from the 40 ancestral and descendant populations analyzed in the pro-
teomics experiment: namely the controls of Anc2 and Anc3, as well as the biotic
and high-salt treatment (BS) of Anc5. We then diluted all cultures to achieve the
same, low starting density across all populations before inoculating them into the
stoichiometry experiment. Our target was a diluted concentration of 1000 raw
fluorescence units (RFU, or raw fluorescence of cells in the range of chlorophyll-a),
measured on a plate reader, which we used as a proxy for cell density. We carried
out dilutions using autoclaved COMBO in a laminar flow hood to ensure sterility.
On the next day, we inoculated 1 mL of each diluted culture into 170 mL of
COMBO medium, and grew them under standard conditions for 7 days. During
this time, we sampled 1 mL from all cultures daily and measured the RFU on a
plate reader in order to monitor the growth trajectories. On the 8th day, when all
growth curves were approaching saturation, we harvested the algal biomass by
filtering each culture onto a set of two ashed (400 ˚C) and pre-massed Whatman ®
glass microfiber filters (grade GF/F 47 mm). The filters were then dried in an oven
overnight at 60 ˚C, and post-massed to obtain an estimate of total dry biomass per
mL of culture filtered. One filter from each population was used to estimate the
elemental carbon and nitrogen content of the biomass on an Elementar vario
PYRO cube EA-IRMS, and the other filter was used to estimate phosphorus
content using Skalar San++Continuous Flow P/N analyser. The phosphorus
samples were first digested and completely oxidized using a peroxydisulfate solu-
tion. Digested samples were diluted 1:20 before being run on the P/N analyser.

Chlorophyll, photosynthesis, and respiration measurements. As for the bio-
mass, stoichiometry and nutrient experiments, populations were sub-cultured into
liquid COMBO from agar plates that had been maintained in cold storage. The
cultures then underwent a growth period of 7 days before the start of the stoi-
chiometry experiment. Three populations were lost from experiment, as for the
biomass, stoichiometry and nutrients experiment: the controls of Anc2 and Anc3,
as well as the biotic and high-salt treatment (BS) of Anc5. After the acclimation
period, we performed dilutions in order to achieve the same low starting density
across all populations, with a target diluted concentration of 1000 raw fluorescence
units, measured on a plate reader. All dilutions were carried out using autoclaved
COMBO in a laminar flow hood to ensure sterility. On the day after dilutions, we
inoculated 1 mL of each diluted culture into 170 mL of COMBO, and grew them
under standard conditions for 9 days. On the 10th day we collected a 40 mL and
a 50 mL sub-sample of each culture for chlorophyll and respiration measurements,
respectively. We also took 50 mL samples for the estimation of photosynthetic
carbon assimilation, which we diluted one in two before analysis to ensure that the
method would be within the upper detection limit of the method.

We filtered 40 mL of each culture onto 47 mm GF/F filters (Whatman) for
chlorophyll analysis. We then folded the filters into 15-mL conical tubes and froze
them at −20 °C. Four days later they were extracted in 8 mL of 90% ethanol. We
then vortexed and sonicated the samples in a water bath at 20 °C for 15 min. We
incubated the extracted samples overnight in the dark at 4 °C. We then filtered the
samples through 0.2-μm cellulose acetate filters (Sebio) to remove any glass filter
particles. The concentrations of chlorophyll-a, -b, and lutein were measured by
gradient separation of the pigments in an eluent of 49.5% methanol, 45% ethyl
acetate, and 5.5% water on a LichroSpher 100 RP-18 HPLC column (Merck & Co.
Inc., White House Station, NJ, USA) at a flux rate of 1.0 ml min–1. The column was
connected to a Jasco AS2055 Plus auto-sampler and PU 2089 plus liquid
chromatography pump. Peaks were identified using retention times and spectrum
analysis. Standards for chlorophyll-a, -b, and lutein (among others) were purchased
from DHI, Denmark.

We measured respiration by estimating the rate of oxygen depletion in each
sample over a dark incubation period of one hour. We performed oxygen
measurements in four blocks of up to 10 samples, randomized over time. Samples
were incubated in custom-made “respirometers”, each one consisting of a Schmizo
glass vial fitted with a motorized mixing attachment, a PreSens Oxygen-sensitive
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spot, and a fiber-optic cable to transfer data to a PreSens Fi box. We carefully
lowered the mixing attachment and sensing cable into each sample (50 mL) to
ensure the absence of air bubbles while sealing the sample via an O-ring. Samples
were maintained at 20 °C via a cooling block. Before the measurements began, all
oxygen-sensitive spots were calibrated to 0% oxygen at 20 °C. This measurement
took place in sodium bisulfite-treated water. Subsequently, all sensors were
calibrated in oxygen-saturated water, also at 20 °C. We estimated respiration as the
slope of the measured oxygen over 1 h, removing the first 20 min of measurements
in which the oxygen measurements settled on a stable slope.

To estimate photosynthetic carbon assimilation, we first measured alkalinity
using titration with HCl47. We then determined the total inorganic carbon (TIC)
from the alkalinity and pH measurements48. We then measured primary
production by determining the rate of in situ 14C assimilation, using the acid
bubbling method according to ref. 48. For each phytoplankton population, we
spiked a 40 mL sample with 5µCi NaH14CO3 in a 50 mL conical tube. From these
40 mL, 7 mL were subsampled and placed into transparent glass Scintivials and
incubated in the light at 90 µmol·m-2·s-1 and 20 °C for 3.5 h. A second, 7 mL sub-
sample was transferred into Scintivials and incubated in the dark at 20 °C for 3.5 h.
Finally, the last 7 mL sub-samples were transferred into Scintivials with 10mL of
Instagel PlusTM (Packard, USA). After incubation, the light- and dark-incubated
vials were acidified with 100 µL of 6 N HNO3 for ca. 50 min, and then 10 mL of
Instagel PlusTM (Packard, USA) was added. We then determined the radioactivity
of the sub-samples in a liquid scintillation counter (Model Tricarb, Packard, USA).
We calculated carbon assimilation per chlorophyll (mg C· mg chlorophyll-1·h-1).
The fraction of 14C that was assimilated multiplied by the TIC in the sample
corresponds to the instantaneous carbon assimilation (PB). Furthermore, all PB
values were corrected for non-photosynthetic fixation of carbon by subtracting PB
determined in the dark sub-sample. Details of the method are further described in
refs. 49,50.

Peptide count processing, statistics, and visualization. The abundance effects
within the peptide counts were accounted for by dividing each peptide intensity
with a marginal sum across each treatment and population, resulting in normalized
peptide intensities, using pandas version 0.19 in Python 3.5. The effect of treatment
and population on the peptide intensities were visualized and tested using RDA
(with 51 independent observations and 2 and 3347 dimensions for the explanatory
and response matrices, respectively), implemented in vegan version 2.451. The
group significances were tested using permutational anova using populations as
replicates and conditioning by Treatments. The actual analysis was performed
using capscale and anova.cca functions implemented in R-package vegan. Nor-
mality of the fitted values was tested by Shapiro tests, implemented in R-package
stats as a function shapiro.test. Significance of the treatment differences across the
two first RDA axes were tested using ANOVA and Tukey’s honestly significant
difference tests implemented in R-package stats as functions anova and TukeyHSD.

Significantly upregulated or downregulated proteins relative to the ancestors
were identified by subtracting the ancestral means of the normalized peptide
intensities from the corresponding population values, and testing these differences
from zero using one-sample t tests. Normality of the expression levels was tested by
Shapiro tests, implemented in R-package stats as a function shapiro.test.
Treatments that are significantly different from the control were identified using
Dunnett’s tests, implemented in R package multcomp version 1.4 as function glht.
Convergent and divergent proteomic responses were identified using Friedman’s
tests, implemented in R package stats as a function friedman.test. These tests were
performed on R version 3.3.2. The population-aggregated means of the proteins
were visualized using Circos version 0.6952. Heatmaps were drawn using heatmap.2
function implemented in R package gplots version 3.0.1 in R. The associated
hierarchical clustering was drawn using default distance and clustering options of
heatmap.2. All other image preparation was performed using ggplot2 version
2.2.153 in R, and superficially edited on Adobe Illustrator version 21.1.0. The
detected proteins were annotated using data from Gene Ontology Biological
Processes, provided by PANTHER database54. Enrichment analyses were
performed using the default options of the Functional Annotation Clustering Tool
provided by DAVID Bioinformatic Resources version 6.855,56. The metabolic
pathways were overlaid on KEGG metabolic pathways using Pathview version 3.5
provided by R/Bioconductor57. Significance of each phenotypic measurement was
determined by comparing each treatment to the corresponding Ancestor using
two-sided Wilcoxon tests, implemented in R-package stats as a function wilcox.test.
P-values were adjusted for false discovery rate (method “fdr”) using function p.
adjust implemented in R-package

Code availability. The source code of the analyses is available at https://github.
com/manutamminen/chlamy_proteome_evolution.

Data availability
Proteomic data that support the findings of this study have been deposited in
PRIDE PRoteomics IDEntifications database58 under the identifier PXD010847.
The MaxQuant-processed data, the phenotypic measurements and other relevant
data is provided together with the source code at https://github.com/
manutamminen/chlamy_proteome_evolution.
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