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BERNOULLI INEQUALITY

AND HYPERGEOMETRIC FUNCTIONS

RIKU KLÉN, VESNA MANOJLOVIĆ, SLAVKO SIMIĆ, AND MATTI VUORINEN

(Communicated by Walter Van Assche)

Abstract. Bernoulli type inequalities for functions of logarithmic type are
given. These functions include, in particular, Gaussian hypergeometric func-
tions in the zero-balanced case F (a, b; a+ b;x).

1. Introduction

The Bernoulli inequality [Mit, p. 34] is often used in the following form: For
c > 1, t > 0,

(1.1) log(1 + ct) ≤ c log(1 + t) .

Recently, in the study of geometric function theory, the following variant of this
classical result was proved in [KMV], where it was applied to estimate distortion
under quasiconformal mappings.

Theorem 1.2 ([KMV, Lemma 3.1 (7)]). For 0 < a ≤ 1 ≤ b let ϕ(t) = max{ta, tb} .
Then for c ≥ 1 and all t > 0,

log(1 + cϕ(t)) ≤ cmax{loga(1 + t), b log(1 + t)} .

Note that for a = b = 1, Theorem 1.2 yields the classical Bernoulli inequality
(1.1) as a particular case.

The goal of this paper is to study various generalizations of Theorem 1.2. The
key problem is to find classes of functions which are of logarithmic type so that a
counterpart of Theorem 1.2 holds. We formulate the following question. We write
R+ = {x ∈ R : x > 0} .

Question 1.3. For φ(x) := max{xa, x}, 0 < a < 1, x ∈ R+, do there exist positive
constants c1, c2, c3, c4 such that

(1.4) c1 ≤ logp(1 + φ(x))

φ(logp(1 + x))
≤ c2, p > 0,

(1.5) c3 ≤ log(1 + φ(x)) log(1 + log(1 + φ(x)))

φ(log(1 + x) log(1 + log(1 + x)))
≤ c4 ?
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Our first main result is Theorem 1.6, which settles this question in the affirmative.

Theorem 1.6. The inequalities (1.4) and (1.5) hold with the constants c1 =
(log 2)p(1−a), c2 = 1, c3 = (log 2 log(1 + log 2))1−a, c4 = 1 .

The following proposition gives precise monotonicity intervals, and the proof of
Theorem 1.6 is based on it.

Theorem 1.7. Let f : R+ → R+ be a differentiable function and for c �= 0 define

g(x) :=
f(xc)

(f(x))c
.

We have the following:

(1) if h(x) := log(f(ex)) is a convex function, then g(x) is monotone increasing
for c, x ∈ (0, 1) or c, x ∈ (1,∞) or c < 0, x > 1 and monotone decreasing
for c ∈ (0, 1), x > 1 or c > 1, x ∈ (0, 1) or c < 0, x ∈ (0, 1);

(2) if h(x) is a concave function, then g(x) is monotone increasing for c ∈
(0, 1), x > 1 or c > 1, x ∈ (0, 1) or c < 0, x ∈ (0, 1) and monotone
decreasing for c, x ∈ (0, 1) or c > 1, x > 1 or c < 0, x > 1;

(3) if h(x) is neither convex nor concave on R+, then g(x) is not monotone on
R+.

Next we turn our attention to the Gaussian hypergeometric functions 2F1(a, b;
c;x) . Below we also use the simpler notation F (a, b; c;x), omitting the subscripts.
As is well-known, these functions have a logarithmic singularity at x = 1 for real
positive triples (a, b, c) with a+b = c; see (2.7). Because of this logarithmic behavior
in the zero-balanced case c = a + b, it is natural to expect that we might have a
counterpart of Theorem 1.2 in this case, under suitable restrictions on (a, b, c) . Our
second main result reads as follows.

Theorem 1.8. For c, d > 0 with 1/c+ 1/d ≥ 1, the function defined for r ∈ (0, 1)
and p > 0 by

ω(c, d, p, r) =

(
rp

1 + rp
F

(
c, d; c+ d;

rp

1 + rp

))1/p

is increasing in p . In particular,
√
r

1 +
√
r
F

(
c, d; c+ d;

√
r

1 +
√
r

)
≤

(
r

1 + r
F

(
c, d; c+ d;

r

1 + r

))1/2

.

As we will explain in Section 3, (3.4), this result may be regarded as a Bernoulli
type inequality for the zero-balanced hypergeometric function.

2. Properties of F (a, b; c;x)

In this section, we study some monotonicity properties of the function F (a, b; c;x)
and certain of its combinations with other functions. We first recall some well-
known properties of this function which will be used in the sequel.

It is well-known that hypergeometric functions are closely related to the classical
gamma function Γ(x), the psi function ψ(x), and the beta function B(x, y). For
Rex > 0, Re y > 0, these functions are defined by

(2.1) Γ(x) ≡
∞∫
0

e−ttx−1dt, ψ(x) ≡ Γ′(x)

Γ(x)
, B(x, y) ≡ Γ(x)Γ(y)

Γ(x+ y)
,
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BERNOULLI INEQUALITY AND HYPERGEOMETRIC FUNCTIONS 561

respectively (cf. [AS]). We recall the difference equation [AS, Chap. 6]

(2.2) Γ(x+ 1) = xΓ(x),

and the reflection property [AS, 6.1.15]

(2.3) Γ(x)Γ(1− x) =
π

sin πx
= B(x, 1− x).

We shall also need the function

(2.4) R(a, b)≡−2γ−ψ(a)−ψ(b), R(a)≡R(a, 1−a), R

(
1

2

)
=log 16,

where γ is the Euler-Mascheroni constant given by

(2.5) γ = lim
n→∞

( n∑
k=1

1

k
− log n

)
= 0.577215 . . . .

For |x| < 1 the hypergeometric function is defined by the series expansion

F (a, b; c;x) =

∞∑
n=0

(a, n)(b, n)

(c, n)

xn

n!
,

where (a, 0) = 1, (a, n) = Γ(a + n)/Γ(a) = a(a + 1) · · · (a + n − 1), n = 1, 2, . . . , is
the Appell symbol and a, b, c ∈ R \ {0} . The differentiation formula ([AS, 15.2.1])
reads

(2.6)
d

dx
F (a, b; c;x) =

ab

c
F (a+ 1, b+ 1; c+ 1;x).

An important tool for our work is the following classification of the behavior of
the hypergeometric function near x = 1 in the three cases a+ b < c, a+ b = c, and
a+ b > c :
(2.7)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, a+ b < c,

B(a, b)F (a, b; a+b;x)+log(1−x)=R(a, b)+O((1−x) log(1−x)), a+ b = c,

F (a, b; c;x) = (1−x)c−a−bF (c−a, c−b; c;x), c < a+b.

Some basic properties of this series may be found in standard handbooks; see
for example [AS]. For some rational triples (a, b, c), the function F (a, b; c;x) can
be expressed in terms of well-known elementary functions. For what follows, an
important particular case is [AS, 15.1.3]

(2.8) g(x) ≡ xF (1, 1; 2;x) = log
1

1− x
.

It is clear that for a, b, c > 0 the function F (a, b; c;x) is a strictly increasing map
from [0, 1) into [1,∞) . For a, b > 0 we see by (2.7) that F (a, b; a+ b;x) defines an
increasing homeomorphism from [0, 1) onto [1,∞) .

Theorem 2.9 ([ABRVV], [AVV1, Theorem 1.52]). For a, b > 0, let B = B(a, b)
be as in (2.1), and let R = R(a, b) be as in (2.4). Then the following are true:

(1) The function f1(x) ≡ F (a,b;a+b;x)−1
log(1/(1−x)) is strictly increasing from (0, 1) onto

(ab/(a+ b), 1/B).
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(2) The function f2(x) ≡ BF (a, b; a + b;x) + log(1 − x) is strictly decreasing
from (0, 1) onto (R,B).

(3) The function f3(x) ≡ BF (a, b; a+ b;x)+(1/x) log(1−x) is increasing from
(0, 1) onto (B − 1, R) if a, b ∈ (0, 1).

(4) The function f3 is decreasing from (0, 1) onto (R,B − 1) if a, b ∈ (1,∞).
(5) The function

f4(x) ≡
xF (a, b; a+ b;x)

log(1/(1− x))

is decreasing from (0, 1) onto (1/B, 1) if a, b ∈ (0, 1).
(6) If a, b > 1, then f4 is increasing from (0, 1) onto (1, 1/B).
(7) If a = b = 1, then f4(x) = 1 for all x ∈ (0, 1).

We also need the following refinement for some parts of Theorem 2.9.

Lemma 2.10 ([PV, Cor. 2.14]). For c, d > 0, denote

f(x) ≡ xF (c, d; c+ d;x)

log(1/(1− x))
.

(1) If c ∈ (0,∞) and d ∈ (0, 1/c], then the function f is decreasing with range
(1/B(c, d), 1).

(2) If c ∈ (1/2,∞) and d ≥ c/(2c − 1), then f is increasing from (0, 1) to the
range (1, 1/B(c, d)).

Lemma 2.11 ([K, Thm. 1.5]). If max{a, b} ≤ c, then the coefficients of the
Maclaurin power series expansion of the ratio F (a + 1, b + 1, c + 1;x)/F (a, b, c;x)
form a monotone decreasing and convex sequence.

3. Heuristic considerations

We now apply Theorem 2.9 to demonstrate that the behavior of the hypergeo-
metric function F (a, b; c;x) in the zero-balanced case c = a+b is nearly logarithmic
in the sense that some basic identities of the logarithm yield functional inequalities
for the zero-balanced function.

Fix x ∈ (0, 1) and, for a given p > 0 , a number z ∈ (0, 1) such that

log
1

1− x
= xF (1, 1; 2;x) = log

(
1

1− z

)p

= p log
1

1− z
.

Therefore z = 1− p
√
1− x .

Lemma 3.1. For c, d ∈ (0, 1] define h(x) = xF (c, d; c + d;x)/ log(1/(1 − x)), x ∈
[0, 1) and let p ≥ 1 , B = B(c, d). Then for all x ∈ (0, 1), z = 1− p

√
1− x,

B ≥ B h(z) ≥ B h(x) ≥ 1 and F (c, d; c+ d; z) ≥ (1/p)F (c, d; c+ d;x) ,

with equality for c = d = 1 .

Proof. Observe that for p ≥ 1,

0 < z = 1− p
√
1− x ≤ x,

and hence the result follows from Theorem 2.9 (5). The equality statement follows
from Theorem 2.9 (7). �
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BERNOULLI INEQUALITY AND HYPERGEOMETRIC FUNCTIONS 563

Next, writing the basic addition formula for the logarithm

log z + logw = log(zw), z, w > 0 ,

in terms of the function g in (2.8), we have

g(x) + g(y) = g(x+ y − xy), x, y ∈ (0, 1).

Based on this observation and some computer experiments we pose the following
question:

Question 3.2. (1) Fix c, d > 0 and let g(x) = xF (c, d; c+ d;x) for x ∈ (0, 1) and
set

h(x, y) =
g(x) + g(y)

g(x+ y − xy)

for x, y ∈ (0, 1). For which values of c and d is this function bounded from below
and above?

(2) Is it true that

a) h(x, y) ≥ 1, if cd ≤ 1?
b) h(x, y) ≤ 1, if c, d > 1?

(3) Can the difference

d(x, y) = g(x) + g(y)− g(x+ y − xy)

be bounded by some constants depending on c, d only?

Recall that by the Bernoulli type inequality of Theorem 1.2 we have

(3.3) log(1 +
√
r) ≤ log1/2(1 + r)

for all r ∈ (0, 1) . In terms of (2.8) this reads as

(3.4)

√
r

1 +
√
r
F

(
1, 1; 2;

√
r

1 +
√
r

)
≤

(
r

1 + r
F

(
1, 1; 2;

r

1 + r

))1/2

for all r ∈ (0, 1) .

Question 3.5. Fix c, d ∈ (0, 1] and let

(3.6) ω(c, d, p, r) =

(
rp

1 + rp
F

(
c, d; c+ d;

rp

1 + rp

))1/p

for r ∈ (0, 1), p > 0 . Is it true that for each r , ω(c, d, p, x) is increasing in p? If this
holds, then (3.4) would be a special case of it.

The answer to this question is given in Theorem 4.4.
According to formula (2.7) the function F (c, d; c+d;x) has logarithmic behavior

when x is close to 1. This suggests that we may expect a Bernoulli type inequality
to hold for this function.

For what follows we fix a, b ∈ (0,∞) with 0 < a ≤ 1 ≤ b and write for t > 0

(3.7) ϕ(t) = max{ta, tb}.
Next we will rewrite the inequality in Theorem 1.2 for the function g in (2.8) when
c = 1 and denote

g(x) = log(1 + ϕ(r)) ≡ A,
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implying r = ϕ−1(x/(1 − x)). We now also require, in concert with Theorem 1.2,
that

A ≤ bmax{loga(1 + r), log(1 + r)}
or, equivalently,

g(x) ≤ bmax

{
loga

(
1 + ϕ−1

(
x

1− x

))
, log

(
1 + ϕ−1

(
x

1− x

))}

= bmax

{
ga

(
u

1 + u

)
, g

(
u

1 + u

)}
,

where u = ϕ−1(x/(1 − x)) and g is given in (2.8). Now set ϕ(s) = x/(1 − x), i.e.
x = ϕ(s)/(1 + ϕ(s)), and we have for the function g in (2.8)

(3.8) g

(
ϕ(s)

1 + ϕ(s)

)
≤ bmax

{
ga

(
s

1 + s

)
, g

(
s

1 + s

)}
for s > 0. On the basis of this discussion we ask the following question:

Question 3.9. Let c, d > 0 and g(x) = xF (c, d; c+ d;x). Under which conditions
on c and d do we have that for all s > 0,

(3.10) g

(
ϕ(s)

1 + ϕ(s)

)
≤ b2

a
max

{
ga

(
s

1 + s

)
, g

(
s

1 + s

)}
,

where ϕ(s) is as in (3.7)?

On the basis of (3.8) we expect that there are numbers c1, c2 ∈ (0,∞) such that
0 < c1 ≤ 1 ≤ c2 and (3.10) holds for all c, d ∈ (c1, c2).

Question 3.11. Let g be as in Question 3.9. Is the generalized version of the
Bernoulli inequality,

g(x) ≤ b(1 + b− a)ϕ

(
g

(
ϕ−1(x/(1− x))

1 + ϕ−1(x/(1− x))

))
,

where ϕ(x) = max{xa, xb}, ϕ−1(x) = min{x1/a, x1/b}, c, d ∈ (0, 1) and 0 < a <
1 < b, true?

Mathematica tests show that the function

t(x) =
g(x)

bϕ
(
g
(

ϕ−1(x/(1−x))
1+ϕ−1(x/(1−x))

))
consists of three parts: (0,min{α, β}), (min{α, β},max{α, β}) and (max{α, β}, 1).
We easily obtain that α = 1/2, because then ϕ−1(x/(1 − x)) = 1. Note that β is
the solution of

g

(
ϕ−1(x/(1− x))

1 + ϕ−1(x/(1− x))

)
= 1.

(1) When is β > 1/2?

Is it true that

(2) t(x) is monotone on each interval (0,min{α, β}), (min{α, β},max{α, β})
and (max{α, β}, 1)?

(3) t(x) ≥ min{t(1/2), t(1−)}?
(4) t(x) ≤ t(β)?
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BERNOULLI INEQUALITY AND HYPERGEOMETRIC FUNCTIONS 565

4. Answers to the questions of Section 3

Putting x
1−x = s, we have to show that t(s) ≤ b with

t(s) :=
g( s

1+s )

ϕ
(
g
(

ϕ−1(s)
1+ϕ−1(s)

)) , s ∈ (0,∞).

The main tool for determining the best possible bounds of t(s) is given by The-
orem 1.7. Therefore we have to investigate convexity/concavity property of the

function G(u) := log g
(

eu

1+eu

)
.

We are in a position to formulate the following result.

Theorem 4.1. Let c, d > 0 and g(x) = xF (c, d; c+ d;x) , x ∈ (0, 1) . The function

G(u) := log g
(

eu

1+eu

)
is concave on (−∞,+∞) if and only if 1/c+ 1/d ≥ 1.

Proof. Let us consider the function G′ with eu

1+eu = y, y ∈ (0, 1), and write it as

G′(y) = 1− y + y(1− y)
F ′(y)

F (y)
.

Since F ′(x) = cd
c+dF (c+ 1, d+ 1; c+ d+ 1;x), applying Lemma 2.11 we get

(4.2)
F ′(x)

F (x)
=

∞∑
0

anx
n,

where the sequence {an} is monotone decreasing and convex, with a0 = cd
c+d .

Hence

G′(y) = 1 + (a0 − 1)y +
∞∑
1

(an − an−1)y
n+1

and

G′′(y) =
cd

c+ d
− 1 +

∞∑
1

(n+ 1)(an − an−1)y
n < 0,

since cd
c+d ≤ 1.

Therefore log g(y) is concave on (0, 1) and, consequently, G(u) is concave on
(−∞,+∞). The proof is complete. �

Remark 4.3. Note that if in the proof of Theorem 4.1, cd
c+d = 1+ε, ε > 0, then G′′(y)

is positive for sufficiently small y and G has an inflection point since limy→1− G′′(y)
< 0. Therefore the condition c + d ≥ cd is necessary and sufficient for G to be
concave over the whole interval.

The necessary tool for answering Questions 3.5-3.11 is established.
We shall give in the sequel a positive answer to Question 3.5 under the condition

that 1/c+ 1/d ≥ 1, which includes the proposed case c, d ∈ (0, 1].

Theorem 4.4. Under the condition 1/c + 1/d ≥ 1, the function ω, defined above
in Question 3.5, is monotone increasing in p.
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Proof. Denote equivalently

ω(p) =

(
g

(
ept

1 + ept

))1/p

, t < 0, p > 0,

where g(x) := xF (c, d, c+ d;x) = xF (x).
We get

ω′

ω
= (logω)′ =

(
log(g( ept

1+ept ))

p

)′

=
Ω(p)

p2
,

with

Ω(p) := pt
ept

(1 + ept)2

g′
(

ept

1+ept

)
g
(

ept

1+ept

) − log g

(
ept

1 + ept

)
.

Changing the variable ept

1+ept := x, x ∈ (0, 1/2) and recalling the definition of g,
we obtain

Ω(x) = x(1− x)

(
F (x) + xF ′(x)

xF (x)

)
log

x

1− x
− log(xF (x))

=

(
1− x+ x(1− x)

F ′(x)

F (x)

)
log

x

1− x
− log x− logF (x).

From the proof of Lemma 2.11, we derive the following inequalities:

(1− x)
F ′(x)

F (x)
< a0; logF (x) < −a0 log(1− x).

Noting that log x
1−x < 0 for x ∈ (0, 1/2), we get

Ω(x) > (1− x+ a0x) log
x

1− x
− log x+ a0 log(1− x)

= (a0 − 1)

(
x log

x

1− x
+ log(1− x)

)

= (1− a0)

(
x log

1

x
+ (1− x) log

1

1− x

)
≥ 0,

since

1− a0 = 1− cd

c+ d
=

cd

c+ d

(
1

c
+

1

d
− 1

)
≥ 0.

Therefore ω′ > 0 and ω(p) is monotone increasing, as required. �
Remark 4.5. It is evident from the proof of Theorem 4.4 that the function ω(p) :=
(g(xp/(1 + xp)))1/p, 0 < x < 1, p > 0, is monotone increasing in p for any g(x) =
x2F1(a, b, c;x), a, b, c > 0 and ab ≤ c,max{a, b} ≤ c.

The same is valid for the conclusion of Theorem 4.1.
Note also that the function ω(p) is not monotone in p for x > 1. For example,

in the case (c, d, x) = (1, 1, 4), when g is as in (2.8), we obtain ω(1) = log 5 ≈ 1.61,
ω(2) = (log 17)1/2 ≈ 1.68 and ω(4) = (log 257)1/4 ≈ 1.53.

Remark 4.6. From Theorem 4.1 it follows that the function g(ex/(1 + ex)) is log-
concave on R. In particular, the function g(xp/(1 + xp)) is log-concave in p, that
is,

g

(
xp

1 + xp

)
g

(
xq

1 + xq

)
≤ g2

(
x(p+q)/2

1 + x(p+q)/2

)
, x > 0, p, q ∈ R.
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BERNOULLI INEQUALITY AND HYPERGEOMETRIC FUNCTIONS 567

Also, from Theorem 4.4 we get that the function
log g( xp

1+xp )
p is monotone increas-

ing in p; that is, log g( xp

1+xp ) is sub-additive on R+. Hence,

g

(
xp

1 + xp

)
g

(
xq

1 + xq

)
≤ g

(
xp+q

1 + xp+q

)
, p, q > 0, 0 < x < 1.

Both corollaries are valid for the class of functions g defined in Remark 4.5.

An answer to part (1) of Question 3.11 is given by the following assertion.

Theorem 4.7. Let β be as in Question 3.11. We have that

(1) β > 1/2 if (a0 − 1)/h ≤ c0;
(2) β < 1/2 if (a0 − 1)/h ≥ c1,

where

c0 = 1− 1

2 log 2
≈ 0.27865; c1 =

1

log 2
−1 ≈ 0.4427 and a0 =

cd

c+ d
, h =

a20
c+ d+ 1

.

Proof. (1) First note that the functions g, ϕ and ϕ−1 are strictly increasing. There-
fore β > 1/2 if g(1/2) < 1 and vice versa.

From the relation (4.2) we obtain

(1− t)
F ′(t)

F (t)
= a0 +

∞∑
1

(an − an−1)t
n ≤ a0 − (a0 − a1)t,

since {an} is a monotone decreasing sequence.
Therefore,

F ′(t)

F (t)
≤ a0

1

1− t
− (a0 − a1)

t

1− t
,

and, integrating over [0, x], we get

logF (x)− logF (0) ≤ −a0 log(1− x) + (a0 − a1)(x+ log(1− x)).

Putting x = 1/2, one can see that the condition g(1/2) ≤ 1 is satisfied if

a0 log 2 + (a0 − a1)(1/2− log 2) ≤ log 2,

i.e.,
a0 − 1

a0 − a1
≤ 1− 1

2 log 2
= c0.

By the above remark we have that in this case β > 1/2.
(2) Since {an} is a convex sequence we conclude that {an−1−an} is a monotone

decreasing sequence.
Hence

(1− t)
F ′(t)

F (t)
= a0 −

∞∑
1

(an−1 − an)t
n(4.8)

≥ a0 − (a0 − a1)t(1 + t+ t2 + · · · ) = a0 − (a0 − a1)
t

1− t
.

Therefore,
F ′

F
≥ (2a0 − a1)

1

1− t
− (a0 − a1)

1

(1− t)2
,

and, integrating over t ∈ [0, x], we get

logF (x) ≥ −(2a0 − a1) log(1− x)− (a0 − a1)
x

1− x
.
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Putting that x = 1/2 we see that the condition g(1/2) ≥ 1 is satisfied if

(2a0 − a1) log 2− (a0 − a1) ≥ log 2,

which is equivalent to

a0 − 1

a0 − a1
≥ 1

log 2
− 1 = c1.

From (4.8) we get

(1− t)F ′(t) = F (t)

(
a0 −

∞∑
1

(an−1 − an)t
n

)
,

i.e.,

cd

c+ d
F (c+ 1, d+ 1, c+ d+ 1; t) = F (c, d, c+ d; t)

(
a0 −

∞∑
1

(an−1 − an)t
n

)
,

and comparing power series coefficients, we easily obtain

a0 =
cd

c+ d
; a0 − a1 = h =

c2d2

(c+ d)2(c+ d+ 1)
.

�

Corollary 4.9. We have that g(1/2) < 1 if a0 ≤ 1.

Remark 4.10. Note that the condition cd ≤ 1 implies 1/c+1/d ≥ 1, that is, a0 ≤ 1.
Therefore Theorems 4.4 and 1.7 could be applied to the expression T (s). Moreover,
by Corollary 4.9 we have

g(1/2) < 1 = g

(
γ

1 + γ

)
,

where γ is the unique solution of the equation g( s
1+s ) = 1, and, since g is a monotone

increasing function, we conclude that γ > 1.

The following assertion is a counterpart to Theorem 4.4.

Lemma 4.11. For fixed s > 0 and c, d > 0 with cd ≤ 1, the function
g( sp

1+sp )

p is

monotone decreasing in p, p ∈ (0,∞).

Proof. Denote equivalently

w(p) =
g( ept

1+ept )

p
, p > 0, t ∈ R.

We have

p2w′(p) = pt
ept

(1 + ept)2
g′(

ept

1 + ept
)− g(

ept

1 + ept
) := A(p).

Changing the variable ept

1+ept = x, we get

A(x) = x(1− x) log
x

1− x
g′(x)− g(x), 0 < x < 1.
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Now, Lemma 2.10 tells us that the function g(x)
− log(1−x) is monotone decreasing if

cd ≤ 1, and this is equivalent to g(x) ≥ −(1− x) log(1− x)g′(x). Therefore,

A(x) ≤ (1− x)g′(x)(x log
x

1− x
+ log(1− x))

= −(1− x)g′(x)(x log
1

x
+ (1− x) log

1

1− x
)

≤ 0,

since g is an increasing function. �

An immediate consequence is the next corollary.

Corollary 4.12. For b ≥ a > 0 and cd ≤ 1, the inequality

1 ≤
g( sb

1+sb
)

g( sa

1+sa )
≤ b

a

holds for arbitrary s ≥ 1.

Another interesting result follows from Lemma 4.11.

Corollary 4.13. For c, d > 0 with cd ≤ 1, the inequality

g(
sp

1 + sp
) + g(

sq

1 + sq
) ≥ g(

sp+q

1 + sp+q
)

holds true for arbitrary s, p, q > 0.

An answer to Question 3.9 with improved constant is given in the next theorem.

Theorem 4.14. Let 0 < a ≤ 1 ≤ b < ∞ and let ϕ(s) be defined as in (3.7) and
c, d > 0 with cd ≤ 1. Then the inequality

(4.15) g

(
ϕ(s)

1 + ϕ(s)

)
≤ b

a
max

{
ga

(
s

1 + s

)
, g

(
s

1 + s

)}
holds for each s > 0.

Proof. Analyzing the structure of the above inequality, we decide that our task is
to find an upper bound for the expression T (s) given by

T (s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
g
(

sa

1+sa

)/
ga

(
s

1+s

)
, 0 < s ≤ 1;

g
(

sb

1+sb

)/
ga

(
s

1+s

)
, 1 < s ≤ γ;

g
(

sb

1+sb

)/
g
(

s
1+s

)
, γ < s,

where γ is the unique solution of the equation g( s
1+s ) = 1. By Remark 4.10, γ > 1.

Applying the second part of Theorem 1.7 we see that T (s) is monotone decreasing
for s ∈ (0, 1). Therefore, in this case we have

T (s) < lim
s→0+

T (s) = lim
s→0+

sa/(1 + sa)

(s/(1 + s))a
F (c, d, c+ d; sa/(1 + sa))

(F (c, d, c+ d; s/(1 + s)))a
= 1.

Now, for 1 < s ≤ γ, write

T (s) =
g( sa

1+sa )

ga( s
1+s )

g( sb

1+sb
)

g( sa

1+sa )
= T1(s)T2(s).

Licensed to University of Turku. Prepared on Mon Dec  1 02:56:18 EST 2014 for download from IP 130.232.105.249.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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By Theorem 1.7, T1(s) =
g( sa

1+sa )

ga( s
1+s )

is monotone increasing in s. Therefore, for

1 < s ≤ γ, we get

T1(s) ≤ T1(γ) = g(
γa

1 + γa
) ≤ g(

γ

1 + γ
) = 1

and

(4.16) T2(s) =
g( sb

1+sb
)

g( sa

1+sa )
≤ b

a

by Corollary 4.12.
Analogously, in the case s > γ we have

(4.17) T (s) =
g( sb

1+sb
)

g( s
1+s )

≤ b.

The assertion follows from (4.16) and (4.17). �

Finally, an answer to Question 3.11 is given in the next theorem.

Theorem 4.18. The inequality

g(x) ≤ b ϕ

(
g

(
ϕ−1(x/(1− x))

1 + ϕ−1(x/(1− x))

))

holds for x ∈ (0, 1), where ϕ(y) = max{ya, yb}, ϕ−1(y) = min{y1/a, y1/b}, 0 < a <
1 < b and c, d > 0, cd ≤ 1.

Proof. Changing variable x
1−x = ϕ(s), s ∈ R+, we get

t(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
g
(

sa

1+sa

)/
ga

(
s

1+s

)
, 0 < s ≤ 1;

g
(

sb

1+sb

)/
ga

(
s

1+s

)
, 1 < s ≤ γ;

g
(

sb

1+sb

)/
gb

(
s

1+s

)
, γ < s,

where γ is the unique solution of the equation g( s
1+s ) = 1.

Proceeding similarly as above, we obtain

t(s) < lim
s→0+

t(s) = 1,

in the case 0 < s ≤ 1. For 1 < s ≤ γ, we have

t(s) =
g
(

sb

1+sb

)
g
(

s
1+s

) g1−a

(
s

1 + s

)
≤ b g1−a

(
γ

1 + γ

)
= b,

by Corollary 4.12. For s > γ, by Theorem 1.7 we get

t(s) < t(γ) =
g
(

γb

1+γb

)
g
(

γ
1+γ

) ≤ b,

by Corollary 4.12 again.
Therefore t(s) ≤ b, which proves Theorem 4.18. �
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5. Proofs of the main theorems

In this section we give the proofs of the main theorems.

Proof of Theorem 1.7. We shall prove part (1) only. The proof of part (2) is similar,
and the assertion of (3) follows from the former considerations.

Since h is convex, h′ = exf ′(ex)
f(ex) is an increasing function, that is, if u > v, then

(5.1)
euf ′(eu)

f(eu)
>

evf ′(ev)

f(ev)
.

Now,

g′

g
= c

(
xc−1f ′(xc)

f(xc)
− f ′(x)

f(x)

)

= ce− log x

(
ec log xf ′(ec log x)

f(ec log x)
− elog xf ′(elog x)

f(elog x)

)
,

and by (5.1), the conclusion of part (1) follows by comparing c log x with log x. �

Applying Theorem 1.7 we are able to give an answer to Question 1.3 and prove
Theorem 1.6. Before that, we introduce the following lemma.

Lemma 5.2.

(1) The expression w(x) := ex + r(r(x))(ex − 1 − r(x)), r(x) = log(1 + ex), is
positive for x ∈ R.

(2) The function v(x) := r(r(x)) = log(1 + log(1 + ex)) is log-concave.

Proof. (1) Putting 1 + ex = et, t > 0, we obtain

w(t) = et − 1 + log(1 + t)(et − 2− t) = (et − 1)(1 + log(1 + t))− (1 + t)] log(1 + t)

> t(1 + log(1 + t))− (1 + t) log(1 + t) = t− log(1 + t) > 0.

(2) By differentiation, we get

d2 log(v(x))

dx2
=

vv′′ − (v′)2

v2
= − exw(x)

((1 + ex)(1 + log(1 + ex)))2
,

which is negative by (1). �

Proof of Theorem 1.6. Since φ(u) = ua for 0 < u ≤ 1 and φ(u) = u if u ≥ 1, we
easily get

(5.3) f1(x) =
logp(1 + φ(x))

φ(logp(1 + x))
=

⎧⎪⎨
⎪⎩

logp(1+xa)
(logp(1+x))a , 0 < x ≤ 1;

(log(1 + x))p(1−a), 1 < x ≤ e− 1;

1, x > e− 1.

For the proof of (1.4), we will apply Theorem 1.7 and show first that the function
r(x) := log(1 + ex) is log-concave on R.

Indeed, since

r′(x) =
ex

1 + ex
, r′′(x) =

ex

(1 + ex)2
,

we get

rr′′ − (r′)2 =
ex

(1 + ex)2
(log(1 + ex)− ex) < 0,

because log(1 + t) < t, t > 0.
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Since r(x) is log-concave, Theorem 1.7 gives

f1(1) = (log 2)p(1−a) ≤ f1(x) < 1 = lim
x→0

f1(x), x ∈ (0, 1].

Also,

f1(1) = (log 2)p(1−a) < f1(x) ≤ 1 = f1(e− 1), x ∈ (1, e− 1].

Hence, c1 = (log 2)p(1−a), c2 = 1 and those bounds are best possible.
Answering (1.5), we proceed analogously. Denote

s(x) := log(1 + x) log(1 + log(1 + x))

and let x0, x0 ≈ 2.4555, be the unique positive solution of the equation s(x) = 1.
By the definition of φ, we get

(5.4) f2(x) =

⎧⎪⎨
⎪⎩

s(xa)
(s(x))a , 0 < x ≤ 1;

(s(x))1−a, 1 < x ≤ x0;

1, x > x0.

By Lemma 5.2 (2) it is evident that s(ex) = r(x)r(r(x)) = r(x)v(x) is a log-
concave function since it is represented by the product of two log-concave functions.

Applying the second part of Theorem 1.7, we get

s(xa)

(s(x))a
< lim

x→0

s(xa)

(s(x))a
= 1;

s(xa)

(s(x))a
≥ s(1)

(s(1))a
= (log 2 log(1 + log 2))1−a,

for 0 < x ≤ 1. Since s(x) is an increasing function, it follows that

(s(1))1−a < f2(x) ≤ (s(x0))
1−a = 1,

for 1 < x ≤ x0.
Hence for x > 0,

(log 2 log(1 + log 2))1−a ≤ f2(x) ≤ 1,

and those bounds are best possible. �

Remark 5.5. Although Question 1.3 can be solved by the method of [KMV, Lem-
ma 3.1], an application of Theorem 1.7 gives the result more efficiently.

Remark 5.6. An affirmative answer to Question 3.2 is given in [SV].
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