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ABSTRACT
This article describes ModelConductor-eXtended

(MCX), which is an open-source software architecture
for digital twins. The MCX framework facilitates co-
execution of, and asynchronous data communication be-
tween, physical systems and their digital simulation mod-
els. MCX supports running FMUs (simulation models
packaged according to the FMI specification) as well
as machine learning models and customized models. We
propose extensions to the previously published Model-
Conductor framework for higher performance and better
scalability. The extensions include decoupling of the
queue and the model computation module, utilization of
a standard data transmission protocol and implementation
of the facility to run time-consuming simulation models
in a time synchronous manner. Additionally, three new
validation case studies are presented. A performance
evaluation shows that the extensions improve the average
response time almost 4 times in three specific experi-
ments.

I INTRODUCTION

I-A Background
The cyber-physical systems of the celebrated fourth

industrial revolution — so-called digital twins (DT), i.e.
accurate numerical simulation models operated alongside
their physical counterparts — are projected to consti-
tute the backbone of modern industrial automation (see
Colombo, Karnouskos, Kaynak, Shi, and Yin (2017); He,
Chen, Dong, Sun, and Shen (2019)). While the promise
of numerical simulation and system modeling has tradi-
tionally been in saving time and money during product
development, today, digital twins can extend far into
product operations through proliferation of ubiquitous
wireless communication. There are, however, a number
of practical challenges in co-execution of physical and
digital assets, which is the concern of the present article.

Many examples of digital twin simulation models
interacting in real-time with a physical device have been
reported in the literature. For example, in predictive
maintenance, real-time measurement data from a physical
system is processed in a simulation model for predicting
potential damage in the physical system, should the
prevailing situation or the trend continue (see e.g. de
Azevedo, Araújo, and Bouchonneau (2016) for discus-
sion on wind turbine applications). On the other hand,

with the advent of 5G technology and cloud, edge, fog
and mist computing, digital twins also facilitate remote
control, whereby only minimal data acquisition and safety
circuitry reside onboard the physical device, and model-
based control is calculated on the digital twin (see e.g.
Lee, Suh, Kwak, and Han (2020) for discussion on remote
drone control). In spite of this progress, it seems that
practical applications of digital twins are still designed,
implemented and operated on a case-by-case basis.

The big promise of digital twins for the future is,
ultimately, in them providing full system autonomy: That
any design and/or adaptation of control mechanism for
the physical system would be first optimized and im-
plemented on the digital simulation model and then be
transferred verbatim to the physical device. To realize
this, a flexible software framework for running a physical
system and its digital twin simulation model (or a collec-
tion thereof) seamlessly alongside each other is required.
Perhaps somewhat surprisingly, this is not trivial, and,
to the authors’ knowledge, there are no off-the-shelf
solutions for this purpose. In fact, while there is an
abundance of simulation software that facilitate creation
of digital twins, and there are many Internet-of-Things
(IoT) solutions for data transfer between devices, such
solutions that address both aspects at once appear to be
few and far between. This is reflected in the case-by-case
nature of practical applications mentioned above.

Recently, Aho and Immonen (2020) introduced an
open-source software framework, called ModelConductor
that defines a digital twin design pattern to facilitate on-
line asynchronous data interexchange between a physical
device and a digital twin simulation model. ModelCon-
ductor, basically a connector of the physical devices to
their digital twins as described in Subsection II-B, is
capable of handling multiple asynchronous data streams
via a variable-length queue containing objects measured
from the physical environment, waiting to be processed
by the simulation model. It also supports running different
simulation model types through the Functional Mock-up
Interface (FMI) (Blochwitz et al., 2011), which standard-
izes model exchange and co-simulation between different
computation environments and is now supported by more
than 150 simulation platforms.

While ModelConductor provides a proof-of-concept
solution addressing the above basic concerns for co-
execution of physical systems and digital twin simu-
lation models, it is not fully compatible with many-
to-many relationship between data sources and running
simulation instances because of direct function calls be-
tween the queue structure and the simulation model.
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Additionally, two way communication facility with the
purpose of controlling the physical device by its digital
twin is not implemented there. Moreover, the structure
of the ModelConductor framework restricts distribution
of computation on several machines and balancing the
requests load between multiple instances running the
computational models. This could prevent the framework
to scale properly with execution of several computational
simulation models being fed by big data streams. In this
paper, we propose an extension to the ModelConductor
framework, namely ModelConductor-eXtend, or MCX for
short, that addresses the above concerns. Several use cases
are included for validation and illustration.

I-B Contributions and key limitations

In this article, we describe these extensions to the
ModelConductor framework:

• Increase scalability and performance of the
framework under the condition of high load by
decoupling the queue which stores the measure-
ments from the actual execution of computational
model.

• Follow a more general message passing and data
transmission protocol.

• Introduce a solution for executing time-
consuming simulation models (with relatively
high data income rate).

• Provide new use cases for system validation by
real-world applications.

We emphasize that the MCX framework is, at present,
only tested for transferring data from physical devices to
their simulation model replications. Model-based actua-
tion and feedback control are important implementation
steps left for future work.

I-C Relation to previous work

The contributions described in Subsection I-B, all are
implemented on the ModelConductor framework intro-
duced by Aho and Immonen (2020). The present work is
its continuation to improve its functionality and perfor-
mance, and introduce new use cases for validation.

Toward realizing the digital twin, there exist software
platforms that are capable of creating virtual representa-
tion of a physical object or system to act as their digital
replica. Using these simulation modeling tools, such as
Matlab/Simulink, ANSYS twin builder, Dymola, STAR
CCM+, Unity3D engine, etc., several studies have been
carried out to propose implementation of digital twins for
a variety of applications. List of different studies can be
found in (Lim, Zheng, & Chen, 2019) and (Cimino, Negri,
& Fumagalli, 2019). Previously conducted studies, mostly
for pre-specific device, process or system, are limited to
simulation and modeling, are not connected to physical
devices and do not incorporate real time data. On the
other hand, open-source and commercial frameworks are
developed to provide the necessary interfaces for handling
and authorizing real time data streams in order to securely
collect and monitor the data from multiple physical de-
vices (such as Eclipse Ditto (Eclipse, 2020) and Microsoft

Azure Digital Twins (Microsoft, 2020)), but they do not
address co-execution of simulation models.

This work attempts to bridge the gaps between these
distinct domains. More specifically, the MCX framework,
as an open-source software infrastructure enabling seam-
less data communication and execution of the twin’s
simulation model, regardless of application and modeling
tool is developed to address the above two capabilities
both together.

I-D Organization of the article

Next sections of this paper is structured as follow:
In section II, we will introduce the MCX framework
briefly, explain its capabilities and discuss particularly the
new development and alterations proposed in this work.
Afterward, three implemented digital twin case examples
are discussed in section III as validation applications.
Finally, we conclude the paper in section IV and discuss
the way to continue the work in the future.

II MCX FRAMEWORK

II-A Framework overview

MCX is an open-source software program designed
as a ready-to-use structure for the basic connections for
implementing and running a digital twin packaged in a
standardized general form. The framework itself does not
include any simulation, measurement or sensory data, but,
on the other hand, it includes the placeholder for running
the simulation model and asynchronous message handling
structure.

The simplest conceptual use case of the framework is
illustrated in Figure 1, with one physical device and its
corresponding simulation/prediction model (digital twin).
The measured data from a physical sensor, typically (but
not necessarily) in a constant frequency, is transmitted in
a standard format to the queue by the client. Then, the
queue stores the measurements until they are fetched by
the subscribed simulation/prediction model. Whenever the
model is ready to process new data, it will receive the first
element in the queue, then the step method of the model
will be executed to produce the output. The output (model
response) is logged and could be used for monitoring
purpose and also sent back to the physical device’s
actuator. Although the actuator is not implemented in the
framework yet, it is used to demonstrate the concept.

Fig. 1: Basic components of MCX



II-B The starting point for MCX development
The basis for MCX is the ModelConductor framework

introduced by Aho and Immonen (2020). There, the
Experiment class was used to hold the model, queue
and results all together. The sequence diagram of its
main data processing loop is reproduced for reference in
Figure 2. It shows that, on each iteration of the loop, the
code checks whether there is at least one element in the
buffer. If so, and also the model is in a Ready state (i.e.
not preoccupied processing a previous data element), a
measurement data point is removed from the buffer and
used to make an inference from the associated model by
calling step method of the ModelHandler object. The
result — a ModelResponse object — is then appended
to another list, an attribute of the Experiment object.

Fig. 2: Sequence diagram in ModelConductor (based on
Aho and Immonen (2020)).

Fig. 3: Sequence diagram in MCX

II-C New developments in MCX
The sequence diagram of the proposed MCX frame-

work is shown in Figure 3. In the remainder of this sec-
tion, we will compare the two frameworks to each other
and point to the shortcomings of the initial version one
by one. We will also discuss the proposed modifications
and new functionalities in detail.

1) Decoupling the queue from the model

The queue data structure in Figure 1 is a FIFO (First
In, First Out) data buffer storing measurements which
have arrived from the physical device and are waiting
to get processed by simulation model. Utilizing this
structure is a necessity to accommodate asynchronous
data streams. As explained in the (Aho & Immonen,

2020), the queue operations (push & pop) for handling
measurement data observations are both executed in one
process but in separated threads. As illustrated in Figure
2, the Experiment object explicitly waits until a new
message is appended to the queue buffer. It means that an
instance of the ModelHandler class (that is exactly the
place where one step of the simulation model is executed)
must wait until the arrival of a new measurement data
once it has processed current data. The condition for the
availability of new data is checking the queue being non-
empty (length of stream be greater than zero). Hence, it
can be observed that the class which holds the simulation
model is tightly coupled with the queue structure. In such
coupling situation, a change in one module may enforce
changes in other modules, affecting code reusability and
scalability. Tightly coupled systems are often seen as
disadvantage (Beck & Diehl, 2011).

In MCX, see Figure 3, the queue structure is decoupled
from the ModelHandler and each of them are executed
in different processes. Then the connectivity between the
two modules (Queue and Model) is established via an
MQTT (Message Queuing Telemetry Transport) connec-
tion (see Section II-C2). This allows for distribution of
computational load, as the queue can be processed on a
remote computer. This not only increases the scalability
and loosens the coupling of the system, but also facili-
tates many-to-many relationships between multiple data
producers and multiple data consumers.

2) Replacing raw TCP with MQTT

In ModelConductor, measurement data was transmit-
ted using a TCP socket with a pre-defined message format
(stringified JSON with fixed header size describing the
length of the message). In the MCX, we use MQTT in-
stead of TCP. MQTT is a Client Server publish/subscribe
messaging transport protocol which has been widely used
in data-intensive IoT applications. The motivation for
using MQTT include:

• MQTT offers a standard messaging protocol
which is supported by IoT community. It also
provides integration to the open-source and com-
mercial cloud services (such as Google Cloud,
Microsoft Azure and Amazon web services).

• MQTT enables two-way communication between
physical device and its digital twin in an effective
and scalable way. The structure of MQTT also
facilitates many-to-many relationships in data
streams.

• MQTT messaging transport is agnostic to the
content of the payload. This make the messag-
ing protocol indifferent to the application of the
digital twin.

• There are three different qualities of service
(QoS) for message delivery status in MQTT pro-
tocol. These qualities (including “at most once”,
“at least once” and “exactly once”) are practical
in digital twin.

• MQTT is considered as an application layer
protocol in the well-known Open Systems Inter-



connection model (OSI model)1 utilizing TCP as
the infrastructure for message transportation.

A schematic of the general connectivity facilitated by
the proposed MQTT-based communication is shown in
Figure 4. The built-in queue in the MQTT broker enables
asynchronous data connection and the structure follows
the publisher-subscriber paradigm. Each publisher can be
seen as an individual sensor, sending the measured data
into the system with specific topic which one or more
subscribers are listening to its messages. In the context
of this paper, subscribers could be seen as computational
simulation models. With this generic structure, the frame-
work can fit to the variety of applications while maintain-
ing scalablilty and performance. Additionally, reverse data
stream i.e. from model to the physical device, is feasible
which facilitates model-based control (not experimented
in this work though).

Fig. 4: General overview of the MCX framework with
multiple publisher assets streaming the sensory data each
with specific topic and multiple computational models

3) Memory

ModelConductor was first designed to process one
measurement data at a time and produce its response by
executing one step of simulation/prediction model. This
can be referred to as sample-synchronized memoryless
model execution: Each iteration of the model execution
is only dependent on the current input data, and each input
measurement data has precisely one model response.
However, in some practical applications, the model can be
computationally expensive, with execution time exceed-
ing the arrival time of new measurements. Thus, following
a sample-synchronized memoryless procedure may cause
an accumulative delay in responses and also lengthening
of the queue over time.

MCX addresses this issue by proposing a time-
synchronized memoryful historical modeling procedure
by adding a local buffer which stores incoming data while
the model is being executed on previous data points.
Historical modeling can be further categorized into two
types based on the length variability of their local buffer
memory: fixed-length and variable-length buffer (see the
example in Subsection III-B).

II-D MCX interfaces to simulation models

To use the MCX framework, the simulation model of
the specific application is embedded into the framework

1https://osi-model.com/

acting as the running digital twin. There are three different
ways in MCX for this purpose:

1) Functional Mock-up Unit (FMU) models: If the
simulation model is developed in one of the
150+ tools that support FMU export2 (such as
ANSYS, CATIA, GT-SUITE, MapleSim, MAT-
LAB® Simulink®, SimulationX and etc.), then
the exported model could be easily embedded
in the framework. The facilities for importing
the model, setting input/output variables and
running one step of the model are implemented
in the FMUModelHandler class (using FMPy
library3).

2) Scikit-learn model: If the digital twin is based
on the predictive machine learning model de-
veloped in Scikit-learn library (Pedregosa et al.,
2011), it could be integrated into MCX using
SklearnModelHandler class.

3) Custom class: If neither of the above options
apply, then the user can implement customized
behavior in a Python class and embed it as a
running simulation model. The class is inherited
from ModelHandler with specific methods to
load, step and shutdown the model.

III CASE STUDIES

III-A Drone simulation and control

In this validation example, an open-source MAT-
LAB/Simulink based dynamic modeling and simulation
of a drone (quadcopter) (see Hartman, Landis, Mehrer,
Moreno, and Kim (2014)) has been exported into FMU
container and then the FMU package has been embedded
into the MCX to act as the flying drone’s digital replica.
The simulation is an attitude-command-only model which
means the controller only tries to track attitude commands
(orientation in terms of angles: φ for roll, θ for pitch
and ψ for yaw) and altitude command (z) using a PID
controller. The idea of drone’s digital twin, here, is that a
copy of the control command (φ, θ, ψ, z), initiated from
the drone remote controller, is sent to the drone’s digital
simulation running on MCX. The idea is illustrated in
Figure 5, however, dashed arrows were not considered in
this example and a client has been placed in the × sign to
mimic the behaviour of the remote controller. With this
set up, we can follow the internal dynamic variables of
the drone using its simulation while the actual physical
device is running.

In this 50 second simulation, the drone is initially
stationary at z = 3.048m. Then at t = 25s, a simple roll
command is performed (with φ changing as a step signal
while keeping the other command variables θ, ψ and z
constant). The input command and observed positional
values y and z of the drone are illustrated in Figure 6 (x
position remains close to zero and is omitted). As shown,
the controller tries to keep the altitude (z) constant and
due to the roll command drone starts to move forward
along the y direction.

2https://fmi-standard.org/tools/
3https://github.com/CATIA-Systems/FMPy



Fig. 5: Overview of the components in the drone experi-
ment.

Fig. 6: Input command and positional values of the drone
simulation over 50 seconds of the experiment

III-B Historical time series prediction
As a proof-of-concept example of the memoryful

historical procedure (explained in II-C3), we built an
artificially slow (computationally expensive) model by
explicitly “sleeping” during the model response computa-
tion. In this demonstrative experiment, we tried to predict
the next value of a time series by fitting a linear regression
model to the trailing window of the series (last N data
points).

We send a numerical value as a synthesized mea-
surement data (with noisy 3rd degree polynomial pattern)
every 10 milliseconds while the model computation takes
R milliseconds long where R is sampled from a uniform
distribution in [0, 1000) interval for every measurement.
This setup leads us to the variable-length window time-
synchronous historical modeling. Hence, the window
(buffer) holds N ∈ [0, 100) data points each time and
those are used to fit a regression model and predict the
next value (Figure 7).

III-C NOx emission prediction
In this example, Scikit-learn machine learning models

were used as digital twin simulation models for predicting
NOx exhaust emission from a real 4-stroke offroad diesel
engine during run time. The experiment is the same as
described Aho and Immonen (2020) (Section III) except
that 1) input feature vectors are normalized to have zero
mean and unit variance, and 2) NOx emission output

Fig. 7: Demonstrative example of memoryful historical
modeling: fit a linear regression model (orange curve) at
times to predict next value of time series (blue curve).

value is normalized as relative to initial NOx output.
Three regression models were fitted to the data: Random
forest with 100 trees and maximum depth 25, Linear and
2nd order polynomial regression models. The obtained
results are shown in Table I as Mean Absolute Error and
coefficient of determination (also known as r-squared or
R2) for both training and test data. The normalized data is
now publicly available in the project repository on Github.

TABLE I: Training and test results for NOx emission
prediction on different regression models

Model Type train R2 test R2 train MAE test MAE

Linear regression 0.75 0.73 0.64 0.65
Polynomial regression 0.96 0.96 0.24 0.24

Random forest 0.99 0.99 0.03 0.08

III-D Performance evaluation

A key motivation for the proposed MCX development
is performance optimization. Table II describes the re-
sults of a performance evaluation comparison between
ModelConductor and MCX in different computational
experiments. Here, performance is measured in terms of
response time, defined as time difference from timestamp
client sends the data until the timestamp model response
is ready, averaged across a number of samples. The
experiments were carried out with the client and model
on the same computer to mitigate the effect of random
network packet transmission delays. The results show that
MCX is almost 4 times faster than ModelConductor.

TABLE II: Average response time for different experi-
ments: A comparison between ModelConductor and MCX
(in milliseconds)

Experiment # of samples ModelConductor MCX

FMU couple-clutches 4000 52.7 9.9
FMU drone simulation 2500 67.31 18.98

Historical time-series prediction 3000 - 11.54
Sklearn NOx emission 1422 92.5 22.6

First experiment in the Table II, is a simple open-
source simulation for drive train with 3 dynamically



coupled clutches implemented in MapleSim. The other
three experiments are explained in Subsections III-A,
III-B and III-C respectively. Since ModelConductor does
not support historical modeling, the average response time
regarding historical time-series prediction example in the
Table II could not be calculated.

IV CONCLUSIONS

In this work, MCX framework was presented as an
open-source software platform enabling digital twin im-
plementation by providing asynchronous scalable data
transmission facilities as well as online co-execution
of different simulation models. Three extensions to the
previous version of the framework (namely ModelCon-
ductor) were described which are: 1) decoupling the
queue from the model computation module, 2) usage
of MQTT instead of raw TCP, and 3) implementing
a solution for time-synchronization in computationally
expensive models (memoryful historical models). With
these extensions applied, MCX performed faster and more
scalable compared to ModelConductor. In addition, the
experimental setup and results of three validation exam-
ples of the framework were described.

In spite of the functionality implemented in the MCX
framework, it has some limitations. First, an explicit
waiting routine for the data to be ready is used in mea-
surement handling procedure which consumes processing
resources inefficiently. This can be refined with event
driven implementation and callback functions to improve
the performance. Another limitation is that the framework
does not include a standard implementation for a two-
way communication, although it is supported by the
architecture.

Future research work on the topic should focus on im-
plementing model-based control over MCX with the two
way communication infrastructure between physical and
digital devices. Another interesting direction for future
research is identification and adaptation of the simulation
model during run time. Here, one begins with a rough
model and attempts to refine it as new measurement data
becomes available (this feature may not be supported by
the current FMU specification). Finally, more real-world
validation applications for MCX should be considered in
the future, also including digital twins for manufacturing
processes besides the physical devices considered thus far.

SOURCE CODE AND EXAMPLES

The source code of the framework is available on:
https://github.com/COMEA-TUAS/mcx-public
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