Int. J. Nonlinear Anal. Appl. 12 (2021) No. 1, 567-573 ISSN: 2008-6822 (electronic) http://www.ijnaa.semnan.ac.ir

On starlike functions related with the convex conic domain

Rahim Kargar^{a,*}, Janusz Sokół^b

^aDepartment of Mathematics and Statistics, University of Turku, Turku, Finland ^bUniversity of Rzeszów, College of Natural Sciences, ul. Prof. Pigonia 1, 35-310 Rzeszów, Poland

(Communicated by Madjid Eshaghi)

Abstract

In the present paper, we study a new subclass $\mathcal{M}_p(\alpha,\beta)$ of *p*-valent functions and obtain some inequalities concerning the coefficients for the desired class. Also, by using the Hadamard product, we define a new general operator and find a condition such that it belongs to the class $\mathcal{M}_p(\alpha,\beta)$.

Keywords: Analytic functions; *p*-valent functions; Generalized Bessel function; Gaussian hypergeometric function; Hadamard product. 2010 MSC: 30C45

1. Introduction

Let \mathcal{A}_p denote the class of functions f of the form:

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k \quad p \in \mathbb{N} := \{1, 2, 3, \ldots\},\$$

which are analytic and *p*-valent in the unit disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$. Further, we write $\mathcal{A}_1 = \mathcal{A}$. A function $f(z) \in \mathcal{A}_p$ is said to be in the class $\mathcal{M}_p(\alpha, \beta)$, if it satisfies

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) < \beta \left|\frac{zf'(z)}{f(z)} - p\right| + p\alpha \quad (z \in \Delta),$$
(1.1)

*Corresponding author

Email addresses: rakarg@utu.fi, rkargar1983@gmail.com (Rahim Kargar), jsokol@ur.edu.pl (Janusz Sokół)

for some $\beta \leq 0$ and $\alpha > 1$. Notice that (1.1) follows that

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) < p\alpha \quad (z \in \Delta), \tag{1.2}$$

because β is negative or 0. Moreover, if we write (1.1) in the following equivalent form

$$\frac{|F(z) - p|}{\operatorname{Re} \{p\alpha - F(z)\}} < \frac{1}{-\beta} \quad (z \in \Delta),$$

where

$$F(z) := \frac{zf'(z)}{f(z)} \quad (z \in \Delta),$$

then we see that the relation between the distance F(z) from the focus p and the distance F(z)from the directrix Re $\{w\} = p\alpha$ depends on the eccentricity $-1/\beta$. Therefore, if $f(z) \in \mathcal{M}_p(\alpha, \beta)$, then $F(z), z \in \Delta$ lies in a convex conic domain: elliptic when $\beta < -1$, parabolic when $\beta = -1$ and hyperbolic when $-1 < \beta < 0$, or $F(\Delta)$ is the half-plane (1.2), for $\beta = 0$.

The class $\mathcal{M}_p(\alpha, \beta)$ cover many subclasses considered earlier by various authors, see [2, 3, 5, 7]. We remark that the class $\mathcal{M}_1(\alpha, \beta) = \mathcal{MD}(\alpha, \beta)$ was investigated earlier by J. Nishiwaki and S. Owa [4].

In this work we shall be mainly concerned with functions $f \in \mathcal{A}_p$ of the form

$$\left(\frac{z^p}{f(z)}\right)^{\mu} = 1 - \sum_{k=p}^{\infty} b_k z^k \quad (\mu > 0, z \in \Delta \cup \{1\}),$$
(1.3)

where $(z^p/f(z))^{\mu}$ represents principal powers (i.e. the principal branch of $(z^p/f(z))^{\mu}$ is chosen).

This paper is organized as follows. In Section 2, we present some inequalities for the class $\mathcal{M}_p(\alpha,\beta)$. In Section 3, by using the Hadamard product and applying the generalized Bessel function and the Gaussian hypergeometric function we introduce a new operator which we denote by $\mathcal{I}_{c,d}^{a,b}(p,e,\delta)(z)$. As an application, we prove that the operator $\mathcal{I}_{c,d}^{a,b}(p,e,\delta)(z)$ belongs to the class $\mathcal{M}_p(\alpha,\beta)$.

2. Main Results

Our first result is contained in the following:

Theorem 2.1. Let the function f be in the class $\mathcal{M}_p(\alpha, \beta)$ and let f be of the form (1.3) for some b_k such that

$$b_k \ge 0$$
 for $k \in \{p, p+1, p+2, \ldots\}$ and $\sum_{k=p}^{\infty} b_k < 1.$

Then

$$\sum_{k=p}^{\infty} [p\mu(\alpha - 1) + k(1 - \beta)] b_k \le p\mu(\alpha - 1),$$
(2.1)

where $\beta \leq 0, \mu > 0$ and $\alpha > 1$.

Proof. Let $f \in \mathcal{M}_p(\alpha, \beta)$. A simple calculation gives us

$$z\frac{\mathrm{d}}{\mathrm{d}z}\left(\frac{z^p}{f(z)}\right)^{\mu} = \mu \left[p\left(\frac{z^p}{f(z)}\right)^{\mu} - \left(\frac{z^p}{f(z)}\right)^{\mu+1}\frac{f'(z)}{z^{p-1}}\right].$$
(2.2)

Thus, by use of the above relation (2.2), we have

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) < \beta \left|\frac{zf'(z)}{f(z)} - p\right| + p\alpha$$

if and only if

$$\operatorname{Re}\left(p + \frac{-\frac{z}{\mu}\frac{\mathrm{d}}{\mathrm{d}z}\left(z^p/f(z)\right)^{\mu}}{\left(z^p/f(z)\right)^{\mu}}\right) < \beta \left|\frac{-\frac{z}{\mu}\frac{\mathrm{d}}{\mathrm{d}z}\left(z^p/f(z)\right)^{\mu}}{\left(z^p/f(z)\right)^{\mu}}\right| + p\alpha.$$

Since f is of the form (1.3), the last inequality may be equivalently written as

$$\operatorname{Re}\left(p + \frac{1}{\mu} \frac{\sum_{k=p}^{\infty} k b_k z^k}{1 - \sum_{k=p}^{\infty} b_k z^k}\right) < \frac{\beta}{\mu} \left| \frac{\sum_{k=p}^{\infty} k b_k z^k}{1 - \sum_{k=p}^{\infty} b_k z^k} \right| + p\alpha.$$
(2.3)

Now suppose that $z \in \Delta$ is real and tends to 1⁻ through reals, then from the last inequality (2.3), we get

$$\mu p + \frac{\sum_{k=p}^{\infty} k b_k}{1 - \sum_{k=p}^{\infty} b_k} \le \beta \left| \frac{\sum_{k=p}^{\infty} k b_k}{1 - \sum_{k=p}^{\infty} b_k} \right| + p \mu \alpha$$

or equivalently

$$\mu p + \frac{\sum_{k=p}^{\infty} k b_k}{1 - \sum_{k=p}^{\infty} b_k} \le \beta \frac{\sum_{k=p}^{\infty} k b_k}{1 - \sum_{k=p}^{\infty} b_k} + p \mu \alpha,$$

which gives (2.1). This competes the proof. \Box

Remark 2.2. Taking $p = \mu = 1$ in the above Theorem 2.1, we get the result that was recently obtained by Aghalary et al. [1, Theorem 2.1 with n = 1].

Next we derive the following:

Theorem 2.3. Let $f \in \mathcal{A}_p$ be of the form (1.3) with $\mu > 0$. If

$$\sum_{k=p}^{\infty} [p\mu(\alpha - 1) + k(1 - \beta)] |b_k| < p\mu(\alpha - 1),$$
(2.4)

then f is in the class $\mathcal{M}_p(\alpha, \beta)$, where $\beta \leq 0$ and $\alpha > 1$.

Proof. In the proof of Theorem 2.1, we saw the following inequality

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) - p\alpha < \beta \left|\frac{zf'(z)}{f(z)} - p\right|,$$

which is equivalent to

$$\operatorname{Re}\left(\frac{\sum_{k=p}^{\infty} k b_k z^k}{1 - \sum_{k=p}^{\infty} b_k z^k}\right) - p\mu(\alpha - 1) < \beta \left|\frac{\sum_{k=p}^{\infty} k b_k z^k}{1 - \sum_{k=p}^{\infty} b_k z^k}\right|.$$

Thus, to show that f is in the class $\mathcal{M}_p(\alpha, \beta)$, it suffices to prove that

$$\operatorname{Re}\left(\frac{\sum_{k=p}^{\infty} k b_k z^k}{1 - \sum_{k=p}^{\infty} b_k z^k}\right) - \beta \left|\frac{\sum_{k=p}^{\infty} k b_k z^k}{1 - \sum_{k=p}^{\infty} b_k z^k}\right| < p\mu(\alpha - 1).$$
(2.5)

Note that from (2.4), we obtain that

$$1 - \sum_{k=p}^{\infty} |b_k| > 0.$$

Therefore one can rewrite (2.4) in the following equivalent form

$$\frac{\sum_{k=p}^{\infty} k|b_k|}{1 - \sum_{k=p}^{\infty} |b_k|} - \beta \frac{\sum_{k=p}^{\infty} k|b_k|}{1 - \sum_{k=p}^{\infty} |b_k|} < p\mu(\alpha - 1).$$
(2.6)

Because $\beta \leq 0$, we have

$$\operatorname{Re}\left(\frac{\sum_{k=p}^{\infty} kb_k z^k}{1 - \sum_{k=p}^{\infty} b_k z^k}\right) - \beta \left|\frac{\sum_{k=p}^{\infty} kb_k z^k}{1 - \sum_{k=p}^{\infty} b_k z^k}\right| \le \frac{\sum_{k=p}^{\infty} k|b_k|}{1 - \sum_{k=p}^{\infty} |b_k|} - \beta \frac{\sum_{k=p}^{\infty} k|b_k|}{1 - \sum_{k=p}^{\infty} |b_k|}.$$
 (2.7)

Then (2.6) and (2.7) immediately follow (2.5) and therefore, $f \in \mathcal{M}_p(\alpha, \beta)$. \Box

Corollary 2.4. Assume that $f \in \mathcal{A}$ and $(z/f(z))^{\mu} = 1 - \sum_{k=1}^{\infty} b_k z^k$ with $\mu > 0$. If the function f satisfies the condition

$$\sum_{k=1}^{\infty} [\mu(\alpha - 1) + k(1 - \beta)] |b_k| < \mu(\alpha - 1),$$

for some $\beta \leq 0$ and $\alpha > 1$, then f is in the class $\mathcal{MD}(\alpha, \beta)$.

Remark 2.5. The case $p = \mu = 1$ in Theorem 2.3 was obtained by Aghalary et al. [1, Theorem 2.2]. **Theorem 2.6.** A function f of the form $f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k$ is in the class $\mathcal{M}_p(\alpha, \beta)$, if

$$\sum_{k=p+1}^{\infty} [p\alpha + \beta + k(1-\beta)] |a_k| < p(\alpha - 1),$$
(2.8)

for some $\beta \leq 0$ and $\alpha > 1$.

Proof. If the function f belong to \mathcal{A}_p , then by definition of the class $\mathcal{M}_p(\alpha, \beta)$, we have

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) - p\alpha < \beta \left|\frac{zf'(z)}{f(z)} - p\right|$$

if and only if

$$\operatorname{Re}\left(\frac{p + \sum_{k=p+1}^{\infty} k a_k z^{k-p}}{1 + \sum_{k=p+1}^{\infty} a_k z^{k-p}}\right) - p\alpha < \beta \left|\frac{\sum_{k=p+1}^{\infty} (k-1) a_k z^{k-p}}{1 + \sum_{k=p+1}^{\infty} a_k z^{k-p}}\right|$$

Thus, it suffices to show that

$$\operatorname{Re}\left(\frac{p + \sum_{k=p+1}^{\infty} ka_k z^{k-p}}{1 + \sum_{k=p+1}^{\infty} a_k z^{k-p}}\right) - \beta \left|\frac{\sum_{k=p+1}^{\infty} (k-1)a_k z^{k-p}}{1 + \sum_{k=p+1}^{\infty} a_k z^{k-p}}\right| < p\alpha.$$
(2.9)

Note that from (2.8), we have

$$1 - \sum_{k=p+1}^{\infty} |a_k| > 0,$$

thus from (2.8) we obtain that

$$\frac{p + \sum_{k=p+1}^{\infty} k|a_k|}{1 - \sum_{k=p+1}^{\infty} |a_k|} - \beta \frac{\sum_{k=p+1}^{\infty} (k-1)|a_k|}{1 - \sum_{k=p+1}^{\infty} |a_k|} < p\alpha.$$
(2.10)

Moreover, we have

$$\operatorname{Re}\left(\frac{p + \sum_{k=p}^{\infty} ka_k z^{k-p}}{1 + \sum_{k=p}^{\infty} a_k z^{k-p}}\right) - \beta \left|\frac{\sum_{k=p}^{\infty} (k-1)a_k z^{k-p}}{1 + \sum_{k=p}^{\infty} a_k z^{k-p}}\right|$$

$$\leq \frac{p + \sum_{k=p+1}^{\infty} k|a_k|}{1 - \sum_{k=p+1}^{\infty} |a_k|} - \beta \frac{\sum_{k=p+1}^{\infty} (k-1)|a_k|}{1 - \sum_{k=p+1}^{\infty} |a_k|}.$$
(2.11)

Therefore, (2.10) and (2.11) follow (2.9). This completes the proof. \Box Putting p = 1 in Theorem 2.6 we have:

Corollary 2.7. If $f \in \mathcal{A}$ satisfies

$$\sum_{k=2}^{\infty} [\alpha + \beta + k(1-\beta)] |a_k| < \alpha - 1,$$

for some $\alpha > 1$ and $\beta \leq 0$, then $f \in \mathcal{MD}(\alpha, \beta)$.

At the end of this section, by Theorem 2.6 we consider an example for the class $\mathcal{M}_p(\alpha, \beta)$. Example 2.8. Define the function $f \in \mathcal{A}_p$ as follows

$$f(z) = z^{p} + \sum_{k=p+1}^{\infty} \frac{p^{2}(\alpha - 1)e^{i\theta}}{[p\alpha + \beta + k(1 - \beta)]k(k - 1)} z^{k},$$

where $\alpha > 1$, $\beta \leq 0$ and $\theta \in \mathbb{R}$. Then the coefficients inequality (2.8) yields

$$\sum_{k=p+1}^{\infty} [p\alpha + \beta + k(1-\beta)] |a_k| = p^2(\alpha - 1) \sum_{k=p+1}^{\infty} \frac{1}{k(k-1)} = p(\alpha - 1),$$

which shows $f \in \mathcal{M}_p(\alpha, \beta)$.

3. Applications

In [6] Porwal and Dixit considered the function $\mathcal{U}_{d,e,\delta}$ as follows

$$\mathcal{U}_{d,e,\delta}(z) = 2^d \Gamma\left(d + \frac{e+1}{2}\right) z^{-d/2} w_{d,e,\delta}(z^{1/2}),$$

where $w_{d,e,\delta}$ is called the generalized Bessel function of the first kind of order d and has the familiar representation

$$w_{d,e,\delta}(z) := \sum_{k=0}^{\infty} \frac{(-1)^k \delta^k}{k! \Gamma(d+k+\frac{e+1}{2})} \left(\frac{z}{2}\right)^{2k+d} \quad (z,d,e,\delta \in \mathbb{C}).$$

It is easy to see the function $\mathcal{U}_{d,e,\delta}$ has the following representation

$$\mathcal{U}_{d,e,\delta}(z) = \sum_{k=0}^{\infty} \frac{(-1)^k (\delta/4)^k}{\left(d + \frac{e+1}{2}\right)_k} \frac{z^k}{k!},\tag{3.1}$$

where $d + \frac{e+1}{2} \neq 0, -1, -2, \dots$ and and $(x)_n$ is the Pochhammer symbol defined by

$$(x)_n := \begin{cases} 1, & (n=0); \\ x(x+1)(x+2)\dots(x+n-1), & (n\in\mathbb{N}). \end{cases}$$

We remark that the function $\mathcal{U}_{d,e,\delta}(z)$ is analytic on \mathbb{C} .

The Gaussian hypergeometric function F(a, b; c; z) is given by

$$F(a,b;c;z) = \sum_{k=0}^{\infty} \frac{(a)_k(b)_k}{(c)_k(1)_k} z^k \quad (z \in \Delta),$$
(3.2)

where $a, b, c \in \mathbb{C}$ and $c \neq 0, -1, -2, \ldots$ We note that F(a, b; c; 1) converges for $\operatorname{Re}(a - b - c) > 0$ and is related to the Gamma function by

$$F(a,b;c;1) = \frac{\Gamma(c-a-b)\Gamma(c)}{\Gamma(c-a)\Gamma(c-b)} \quad (\operatorname{Re}(c-a-b) > 0).$$

Now by using (3.1) and (3.2) we introduce a new function $\mathcal{I}_{c,d}^{a,b}(p,e,\delta)(z): \mathcal{A}_p \to \mathcal{A}_p$ defined by

$$\mathcal{I}_{c,d}^{a,b}(p,e,\delta)(z) = z^p(F(a,b;c;z) * \mathcal{U}_{d,e,\delta}(z)),$$

where " * " is the well–known Hadamard product. The function $\mathcal{I}^{a,b}_{c,d}(p,e,\delta)(z)$ has the following representation

$$\mathcal{I}_{c,d}^{a,b}(p,e,\delta)(z) = z^p + \sum_{k=p+1}^{\infty} (-1)^{k-p} \frac{(a)_{k-p}(b)_{k-p}(\delta/4)^{k-p}}{(c)_{k-p} \left(d + \frac{e+1}{2}\right)_{k-p} \left[(1)_{k-p}\right]^2} z^k.$$

We set $\mathcal{I}_{c,d}^{a,b}(1,e,\delta)(z) \equiv \mathcal{I}_{c,d}^{a,b}(e,\delta)(z)$. Applying Theorem 2.6 we have the following.

Theorem 3.1. Let $a, b \in \mathbb{C} \setminus \{0\}$ and $e, d \in \mathbb{C}$. Also, assume that $\delta, d + \frac{e+1}{2} > 0$ and c is a real number such that c > |a| + |b| + 1. Then $\mathcal{I}_{c,d}^{a,b}(p,e,\delta)(z) \in \mathcal{M}_p(\alpha,\beta)$ if

$$\sum_{k=p+1}^{\infty} [p\alpha + \beta + k(1-\beta)] \frac{|(a)_{k-p}(b)_{k-p}|(\delta/4)^{k-p}}{(c)_{k-p} \left(d + \frac{e+1}{2}\right)_{k-p} [(k-p)!]^2} < p(\alpha - 1).$$
(3.3)

Proof. Let $f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k \in \mathcal{A}_p$. By virtue of Theorem 2.6, it suffices to show that

$$\sum_{k=p+1}^{\infty} \left[p\alpha + \beta + k(1-\beta) \right] \left| \frac{(-1)^{k-p}(a)_{k-p}(b)_{k-p}(\delta/4)^{k-p}}{(c)_{k-p} \left(d + \frac{e+1}{2}\right)_{k-p} \left[(1)_{k-p}\right]^2} \right| < p(\alpha - 1).$$

Some reductions give (3.3)

Setting p = 1 in Theorem 3.1, we have:

Corollary 3.2. If $a, b \in \mathbb{C} \setminus \{0\}$, $e, d \in \mathbb{C}$, $\delta, d + \frac{e+1}{2} > 0$ and c is a real number such that c > |a| + |b| + 1, then a sufficient condition for $\mathcal{I}_{c,d}^{a,b}(e,\delta)(z) \in \mathcal{MD}(\alpha,\beta)$ is that

$$\sum_{k=2}^{\infty} [\alpha + \beta + k(1-\beta)] \frac{|(a)_{k-1}(b)_{k-1}|(\delta/4)^{k-1}}{(c)_{k-1} \left(d + \frac{e+1}{2}\right)_{k-1} \left[(k-1)!\right]^2} < \alpha - 1.$$

If we take $\beta = 0$ in Corollary 3.2, we have the following result:

Corollary 3.3. If $a, b \in \mathbb{C} \setminus \{0\}$, $e, d \in \mathbb{C}$, $\delta, d + \frac{e+1}{2} > 0$ and c is a real number such that c > |a| + |b| + 1, then a sufficient condition for $\mathcal{I}^{a,b}_{c,d}(e,\delta)(z) \in \mathcal{M}(\alpha)$ is that

$$\sum_{k=2}^{\infty} [\alpha+k] \frac{|(a)_{k-1}(b)_{k-1}| (\delta/4)^{k-1}}{(c)_{k-1} \left(d + \frac{e+1}{2}\right)_{k-1} [(k-1)!]^2} < \alpha - 1.$$

The class $\mathcal{M}(\alpha)$ was considered by Uralegaddi et al. [7], Nishiwaki and Owa [3], and Owa and Nishiwaki [5].

Acknowledgments

We would like to thank the referee for his/her careful reading of our manuscript.

References

- R. Aghalary, A. Ebadian and Z. Orouji, Certain properties of rational functions involving Bessel functions, Tamkang J. Math. 43 (2012), 391–398.
- [2] R. M. Ali, M. Hussain, V. Ranichandran and K. G. Subramanian, A class of multivalent functions with positive coefficients defined by convolution, J. Ineq. Pure. Appl. Math. 6 (2005), 1–9.
- [3] J. Nishiwaki and S. Owa, Coefficient inequalities for analytic functions, Int. J. Math. Math. Sci. 29 (2002), 285–290.
- [4] J. Nishiwaki and S. Owa, Certain classes of analytic functions concerned with uniformly starlike and convex functions, Appl. Math. Comp. 187 (2007), 350–357.
- [5] S. Owa and J. Nishiwaki, Coefficient estimates for certain classes of analytic functions, J. Ineq. Pure. Appl. Math. 3 (2002), 1–5.
- S. Porwal and K. K. Dixit, An application of generalized Bessel functions on certain analytic functions, Acta Univ. M. Belii Ser. Math., Issue 2013, 51–57.
- B. A. Uralegaddi, M. D. Ganigi and S. A. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math. 25 (1994), 225–290.