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TEICHMÜLLER’S THEOREM IN HIGHER DIMENSIONS

AND ITS APPLICATIONS

ANATOLY GOLBERG, TOSHIYUKI SUGAWA, AND MATTI VUORINEN

Abstract. For a given ring (domain) in R
n

we discuss whether its boundary com-
ponents can be separated by an annular ring with modulus nearly equal to that of the
given ring. In particular, we show that, for all n ≥ 3 , the standard definition of uniformly
perfect sets in terms of Euclidean metric is equivalent to the boundedness of moduli of
separating rings. We also establish separation theorems for a “half” of a ring. As ap-
plications of those results, we will prove boundary Hölder continuity of quasiconformal
mappings of the ball or the half space in Rn

.

Dedicated to the memory of Professor Stephan Ruscheweyh

1. Introduction

A doubly connected domain R in the complex plane C is called a ring domain or,
simply, a ring. By the Uniformization Theorem, the ring R is conformally equivalent to
the annulus {z ∈ C : r0 < |z| < r1} for some 0 ≤ r0 < r1 ≤ ∞. We will exclude
here the doubly degenerate case when r0 = 0 and r1 = ∞. The quantity log(r1/r0) is
called the modulus of R and denoted by modR. (Note that in the literature the modulus
is sometimes defined as 1

2π
log(r1/r0) .) O. Teichmüller [18] showed that a ring R with

modR > π separating 0 and ∞ contains a circle centered at 0 and that the constant
π is sharp (see also [1]). Indeed, the Teichmüller ring RT (t) = C \

(

[−1, 0] ∪ [t,+∞)
)

with t = 1 serves as an extremal case. Teichmüller introduced the Grötzsch ring and the
Teichmüller ring and found their extremal properties in [18] (see Lemmas 2.4 and 2.5
below for details). Using the extremal property of the Teichmüller ring, D. A. Herron,
X. Liu and D. Minda [12] showed the following sharp result.

1.1 Theorem (Herron-Liu-Minda). Let R be a ring separating 0 and ∞ in C with m =
modR > π. Then R contains an annular subring A of the form {z : r0 < |z| < r1} with

modA = log µ−1
T (m),

where µT (t) = modRT (t) for 0 < t < +∞. The result is sharp.
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From the inequality µT (t) < log t+ π for t > 1 (see Lemma 2.9 below), which is equiv-
alent to m < log µ−1

T (m) + π for m = µT (t) > π, F. G. Avkhadiev and K.-J. Wirths
deduced a sharp explicit form of the above theorem (see Theorem 3.2 below). For con-
venience, in this paper, we use the term Teichmüller’s theorem for this sort of separa-
tion results. A subset S of C is called a semiring if it is homeomorphic to the upper
half {z ∈ C : r0 ≤ |z| ≤ r1, Im z > 0} of the closed annulus r0 ≤ |z| ≤ r1 for some
0 < r0 < r1 < ∞. V. Gutlyanskĭı, K. Sakan and T. Sugawa established a result simi-
lar to Teichmüller’s theorem for semirings in C and applied it to the study of boundary
regularity of homeomorphisms of the unit disk or the upper half-plane.

Our main goal in the present paper is to extend those results to higher dimensions.
Indeed, the higher dimensional analogs of the Grötzsch ring and the Teichmüller ring were
intensively studied (see, for instance, [3] and [9]) and found many important applications
in the theory of quasiconformal and quasiregular mappings in higher dimensions. However,
it seems that higher dimensional analogs of Teichmüller’s theorem are less known. One of
such extremal problems is to find annular rings of the largest modulus which separate two
pairs of points in R

n
and this problem has been studied in [6] and [13] independently. We

will extend Teichmüller’s theorem and its semiring counterpart to higher dimensions and,
as examples of applications, we give a conformally invariant characterization of uniformly
perfect sets in R

n
and we will give (at least conceptually) simple proofs for the known

fact that quasiconformal self-homeomorphisms of open balls or half-spaces extend to the
boundary in a Hölder continuous way. We emphasize that our approach may allow us to
weaken regularity or quasiconformality assumptions of the mappings. Such applications
to mappings of finite directional dilatations will be presented in our forthcoming paper.

2. Grötzsch and Teichmüller rings and related estimates

2.1 Modulus of curve family. We denote by R
n
the extended Euclidean n-space Rn ∪

{∞}, which is homeomorphic to the n-sphere Sn. Throughout the paper, we will assume
that n is an integer greater than 1. Let Γ be a family of curves in R

n
. A Borel measurable

function ρ on Rn is called admissible for Γ if 0 ≤ ρ ≤ +∞ almost everywhere on Rn and
if
∫

γ
ρ(x)|dx| ≥ 1 for every locally rectifiable γ ∈ Γ. The (conformal) modulus of Γ is

defined to be

M(Γ) = inf
ρ

∫

Rn

ρ(x)ndm(x),

where the infimum is taken over all admissible functions ρ on Rn for Γ and dm is the
Lebesgue measure on Rn.

2.2 Rings. In the paper, a continuum will mean a connected, compact and non-empty
set. We call it non-degenerate if it contains more than one point. A continuum C ( R

n

is called filled if R
n \ C is connected. For a pair of disjoint filled continua C0 and C1 in

R
n
, the set R = R

n \ (C0 ∪ C1) is open and connected and will be called a ring and
sometimes denoted by R(C0, C1). The ring R is said to have nondegenerate boundary if
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each component Cj contains at least two points. We will say that R(C0, C1) separates a
set E if R ∩ E = ∅ and if Cj ∩ E 6= ∅ for j = 0, 1. In the sequel, when R ⊂ Rn, we will
assume conventionally that ∞ ∈ C1 unless otherwise stated.

Let ΓR be the family of all curves joining C0 and C1 in R. Then the modulus (called
also the module) of R is defined by

modR =

[

ωn−1

M(ΓR)

]1/(n−1)

,

where ωn−1 denotes the area of the unit (n− 1)-dimensional sphere. More precisely,

ωn−1 =
nπn/2

Γ((n/2) + 1)
=



















2kπk

k!
if n = 2k,

(2k − 1)k!22kπk−1

(2k)!
if n = 2k − 1.

For the annular ringA(a; r0, r1) = {x ∈ Rn : r0 < |x−a| < r1}, we have modA(a; r0, r1) =
log(r1/r0) (see, for instance, [19, pp. 22-23]).

A ring R′ is said to be a subring of a ring R if R′ ⊂ R and if each component of R
n \R′

intersects R
n \ R. By the monotonicity of the moduli of curves, we have the inequality

modR′ ≤ modR.

2.3 Grötzsch and Teichmüller rings. Two canonical rings are of special interest be-
cause of the extremal properties of their moduli. The first one is the Grötzsch ring RG,n(s),
s > 1, and defined by

RG,n(s) = R(B
n
, [se1,∞]).

Here Bn is the unit ball centered at the origin, B
n
is its closure, and e1 is the unit vector

(1, 0, . . . , 0) in Rn. The second one is the Teichmüller ring RT,n(t), t > 0, and defined by

RT,n(t) = R([−e1, 0], [te1,∞]).

The functions γn(s) = M(ΓRG,n(s)) and τn(t) = M(ΓRT,n(t)) are intensively studied in
[3]. For example, these functions are strictly decreasing and continuous functions. The
Grötzsch and Teichmüller rings have the following extremal properties. See [9, 5.4.1, pp.
181-182] for their proofs.

2.4 Lemma. Let R be the ring R(B
n
, C1) for a filled continuum C1 with y,∞ ∈ C1 in the

domain |x| > 1. Then the inequality

modR ≤ modRG,n(|y|)
holds; equivalently,

M(ΓR) ≥ γn(|y|).
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2.5 Lemma. For filled continua C0, C1 with 0,−e1 ∈ C0 and x1,∞ ∈ C1, the following

inequality holds:

modR(C0, C1) ≤ modRT,n(|x1|).

The relation between the moduli of these special rings can be written

modRT,n(t) = 2modRG,n(s), s =
√
t+ 1 .

See [3], [20]. The real-valued functions Φn and Ψn defined by

log Φn(s) = modRG,n(s) =

[

ωn−1

γn(s)

]1/(n−1)

,

logΨn(t) = modRT,n(t) =

[

ωn−1

τn(t)

]1/(n−1)

,

are of a special interest and have frequent applications in Complex and Real Analysis.
When n = 2, explicit forms of µG(t) = log Φ2(s) and µT (t) = logΨ2(t) are known. Indeed,

(2.6) µG(s) = µ

(

1

s

)

and µT (t) = 2µ

(

1√
t + 1

)

= π ·
K( t

t+1
)

K( 1
t+1

)
,

where µ(r) = (π/2)K(1 − r2)/K(r2) and K(w) denotes the complete elliptic integral of
the first kind (see [3, Chap. 5] for details):

K(w) =

∫ 1

0

dx
√

(1− x2)(1− wx2)
.

2.7 Basic properties of Φn(s) and Ψn(t). Following [3] and [9], we recall several prop-
erties of the above quantities:
(a) the function s 7→ Φn(s)/s is nondecreasing on (1,∞);
(b) lims→∞Φn(s) = ∞;
(c) lims→1+ Φn(s) = 1;
(d) the Grötzsch (ring) constant λn := lims→∞Φn(s)/s exists in (1,∞];
(e) 4 ≤ λn ≤ 2n/(n−1)en(n−2)/(n−1);
(f) λ2 = 4 and the exact value of λn is unknown for n ≥ 3;
(g) the function Φn is strictly increasing and continuous on the interval (1,∞), and

s ≤ Φn(s) ≤ λns;

(h) the function Ψn is strictly increasing and continuous on the interval (0,∞), and

(2.8) t + 1 ≤ Ψn(t) ≤ λ2
n(
√
1 + t+

√
t)2/4;
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(i) if RE(n, a) = R(C0, C1), where C1 =
{

x ∈ Rn :
x2
1

a2+1
+

x2
2

a2
+ . . .+ x2

n

a2
≥ 1
}

with a > 1

and C0 = {te1 : t ∈ [−1, 1]}, the modulus of this ring admits the following upper bound
in terms of elliptic integrals

modRE(n, a) ≤
b
∫

1

(

r2 + 1

r2 − 1

)(n−2)/(n−1)
dr

r
, b = a+

√
a2 + 1 ,

for the planar case we have the equality

modRE(2, a) = log b,

and the Grötzsch constant can be found by

log λn = lim
a→∞

(

modRE(n, a)− log
a

2

)

.

We take this opportunity to give another proof of the inequality used by Avkhadiev and
Wirths to show Theorem 3.2 below. Note that they used an infinite product expansion of
the inverse function µ−1

T (m).

2.9 Lemma. The function Ψ2(t)/t is strictly decreasing in 0 < t < +∞. Also the inequality
µT (t) < log t+ π holds for t > 1.

Proof. We consider the function

g(t) = log
Ψ2(t)

t
= µT (t)− log t = 2µ

(

1√
t + 1

)

− log t.

Put r = 1/
√
t + 1 ≤ 1/

√
2 for brevity. Then dr/dt = −r3/2 and t = (1− r2)/r2. We now

use the formula µ′(r) = −π2/{4r(1− r2)K(r2)2} [3, (5.9)] to get

g′(t) = −r3

2
µ′(r)− 1

t
=

r2

1− r2

(

π2

4K(r2)2
− 1

)

.

Since K(r2) > K(0) = π/2 for all r ∈ (0, 1) , we have g′(t) < 0 for t > 0 . We thus
conclude that g(t) and Ψ2(t)/t are strictly decreasing in 0 < t < +∞. In particular,
we have µT (t) − log t = g(t) < g(1) = π for t > 1. This is equivalent to the second
assertion. �

3. Extension of Teichmüller’s theorem

3.1 Teichmüller’s theorem. Roughly speaking, Teichmüller’s theorem states that a ring
in R2 = C with modulus at least a certain number should contain an annular ring of equal
modulus up to a bounded term. There are various versions of results of similar nature.
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One of the most convenient results is the following theorem due to Avkhadiev and Wirths
[4, Theorem 3.17] (see also [17]).

3.2 Theorem (Avkhadiev-Wirths). Let R be a ring in C with mod R > π which sepa-

rates a given point z0 ∈ C from ∞. Then there is a subring A of R which has the form

{z : r0 < |z− z0| < r1} and satisfies the condition mod A ≥ mod R− π. The constant

π cannot be replaced by any smaller number.

3.3 Extension to higher dimension. One of our main tools in the present paper is an
analogue of Teichmüller’s lemma in higher dimensions. A ring A of the form A(a; r0, r1) =
{x ∈ Rn : r0 < |x − a| < r1} for some 0 < r0 < r1 < +∞ and a ∈ Rn will be called an
annular ring or an annulus (centered at a). We recall that modA(a; r0, r1) = log(r1/r0).
Let

An = sup
1<t<+∞

[

modRT,n(t)− log t
]

= sup
1<t<+∞

log
Ψn(t)

t
.

Then we obtain the following theorem.

3.4 Theorem. Let R be a ring in R
n
separating a given point x0 ∈ Rn and ∞ and

satisfying the condition modR > An. Then there exists an annular subring A of R
centered at x0 with modA ≥ modR − An. The constant An is sharp. Moreover, the

number An admits the estimate

(3.5) An ≤ 2 log
(1 +

√
2)λn

2
= log

(3 + 2
√
2)λ2

n

4
.

When n = 2, by Lemma 2.9 Ψ2(t)/t is decreasing in t > 1 so that A2 = logΨ2(1) = π,
cf. (2.6). Thus the theorem reduces to Theorem 3.2 if n = 2. On the other hand, (3.5)
gives A2 ≤ 2 log 2(1 +

√
2) ≈ 3.14904. This bound already appeared in Corollary 3.5 of

the paper [12] by Herron, Liu and Minda. If we could show that Ψn(t)/t is non-increasing
in 1 ≤ t < +∞, we will have An = logΨn(1).

Proof. Let R = R(C0, C1) with ∞ ∈ C1. Put r0 = max
x∈C0

|x− x0|. By performing a suitable

affine transformation, one may assume without loss of generality that x0 = 0, r0 = 1,
−e1 ∈ C0. Let r1 = exp(modR − An) > 1. Now we show that the annular ring A =
{1 < |x| < r1} separates C0 from C1. Clearly, A∩C0 = ∅. Suppose, on the contrary, that
A∩C1 6= ∅. That is, there is a point x1 ∈ C1 with |x1| < r1. By Lemma 2.5 and the strict
monotonicity of Ψ(t) we have

log r1 + An = modR ≤ modRT,n(|x1|) < log Ψ(r1).

This implies An < logΨ(r1)−log r1 which does not agree with the definition of An. Hence,
we have shown that A is a subring of R as required.

We next show that the constant An cannot be replaced by a smaller one. Let 0 < A <
An. Then there is a t0 ∈ (1,∞) such that A < log Ψ(t0)−log t0 < An.We now take RT,n(t0)
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as R. The maximal annular subring of R centered at 0 is obviously A = {x : 1 < |x| < t0}
and the inequality modA = log t0 < logΨ(t0) − A = modR − A holds. Therefore, we
cannot replace An by A in the assertion of the theorem.

Finally we show (3.5). By (2.8), we observe that

Ψn(t)

t
≤
(

(
√
1 + t +

√
t)λn

2
√
t

)2

<

(

(
√
2 + 1)λn

2

)2

for t > 1. Hence,

An ≤ 2 log
(1 +

√
2)λn

2
.

�

3.6 Uniform perfectness. A closed subset E of R
n
containing at least two points is said

to be uniformly perfect if there exists a constant 0 < c < 1 such that

(3.7) {x ∈ E : cr < |x− a| < r} 6= ∅ for a ∈ E \ {∞}, 0 < r < diamE.

Here, we denote by diamE the Euclidean diameter of E and set diamE = ∞ when
∞ ∈ E. We can characterize uniformly perfect sets in a conformally invariant manner.
The planar case is classical, see [15] or [4]. For more information about uniformly perfect
sets in R

n
the reader may look at [14] (also [16] for a survey and [8, pp. 343-345] for many

alternative characterizations).

3.8 Theorem. A closed set E in R
n
with ♯E ≥ 2 is uniformly perfect if and only if there

exists a constant M > 0 such that an arbitrary ring R in R
n
which separates E satisfies

the inequality modR ≤ M.

As we will see in the proof later, condition (3.7) implies M ≤ An + log(3/c), where An

is given in §3.3. As a preparation of the proof, we first show the following lemma.

3.9 Lemma. Let A = {x : r0 < |x − a| < r1} be an annular ring in Rn separating the

origin from ∞ with modA > log 3. Then A′ = I(A) contains an annular subring A0

with modA0 ≥ modA− log 3, where I is the reflection in the unit sphere: I(x) = x/|x|2.
Moreover, a′ = I(a) (the origin 0) can be chosen to be the center of A0 as the unbounded

component of R
n \A (the bounded component of R

n \A, respectively) contains the origin.

Proof. We first consider the case when 0 ∈ C1; equivalently, |a| ≥ r1. Suppose that x ∈ Rn

is on the sphere |x − a| = r with |a| > r. Let u = x − a, x′ = I(x) and a′ = I(a). Then
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|u| = r and

|x′ − a′|2 = |x′|2 − 2 x′ · a′ + |a′|2

=
1

|x|2 − 2
x · a

|x|2|a|2 +
1

|a|2

= − 1

|x|2 − 2
u · a

|x|2|a|2 +
1

|a|2 .

Letting u · a = t|a|2 with |t| ≤ r/|a|, we obtain

|x′ − a′|2 = 1

|a|2 − 1

|x|2 − 2t

|x|2 =
1

|a|2 − 1 + 2t

|a|2(1 + 2t) + r2
=: h(t).

Since h(t) is decreasing in t, we have the double inequality

r2

|a|2(|a|+ r)2
= h(r/|a|) ≤ |x′ − a′|2 ≤ h(−r/|a|) = r2

|a|2(|a| − r)2
,

which is equivalent to

r

|a|(|a|+ r)
≤ |x′ − a′| ≤ r

|a|(|a| − r)
.

In view of the above estimates, we get the inclusion relation A(a′;R0, R1) ⊂ A′, where

R0 =
r0

|a|(|a| − r0)
and R1 =

r1
|a|(|a|+ r1)

.

Put m = modA so that r1 = emr0. Since r1 ≤ |a|, the range of r0 is 0 < r0 ≤ e−m|a|.
Hence

R1

R0
=

r1(|a| − r0)

r0(|a|+ emr0)
=

em(|a| − r0)

|a|+ emr0
≥ em(|a| − e−m|a|)

|a|+ |a| =
em − 1

2
.

By the condition m > log 3, we see that the right-most term is greater than 1. Hence,
A0 = A(a′;R0, R1) is an annular subring of A′ with

modA0 = log
R1

R0

≥ log
em − 1

2
= m+ log

1− e−m

2
≥ m− log 3.

Next we consider the case when 0 ∈ C0; namely, |a| ≤ r0. For a point x on the sphere
|x − a| = r with r > |a|, we denote by x′ the inversion I(x). Since |x′| = 1/|x|, by the
triangle inequality, we have

1

r + |a| ≤ |x′| ≤ 1

r − |a| .

Thus the ring A′ = I(A) contains the annular ring A(0;R0, R1) as a subring, where

R0 =
1

r1 − |a| and R1 =
1

r0 + |a| .
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With the relation r1 = emr0, we estimate

R1

R0

=
emr0 − |a|
r0 + |a| ≥ em|a| − |a|

|a|+ |a| =
em − 1

2
.

Thus, as in the previous case, we see that A0 = A(0;R0, R1) is a subring of A′ with
modA0 ≥ modA− log 3. �

3.10 Proof of Theorem 3.8. Suppose that E satisfies (3.7) for a constant c ∈ (0, 1). We
first assume that ∞ ∈ E so that diamE = ∞. Let R = R(C0, C1) be a ring separating
E with modR ≥ An − log c. Choose a point a from the bounded component C0. Then
R separates a from ∞ thus Theorem 3.4 implies that there exists an annular subring
A = A(a; r0, r1) of R with modA = log(r1/r0) ≥ modR − An. Since r0 ≤ cr1 by
assumption, we have

{x ∈ E : cr1 < |x− a| < r1} ⊂ E ∩A ⊂ E ∩R = ∅,

which contradicts (3.7). Hence we conclude that modR ≤ An− log c for a ring R separat-
ing E when∞ ∈ E.We next assume that E ⊂ Rn. LetR = R(C0, C1) be a ring separating
E with modR ≥ An + log(3/c) and choose a point a from the bounded component C0.
Set R′ = Ia(R) ⊂ Rn, where Ia(x) = (x − a)/|x − a|2 + a. Then, by Theorem 3.4, R′

contains an annular subring A centered at a with modA ≥ modR′−An = modR−An.
By Lemma 3.9, we find an annular subring A0 = A(a; r0, r1) of Ia(A′) centered at a such
that modA0 ≥ A′ − log 3 ≥ − log c. We now see that {x ∈ E : cr1 < |x − a| < r1} ⊂
E ∩ A0 ⊂ E ∩ R = ∅ as in the first case. Since a ∈ E and A0 separates E, we have
diamE ≥ r1. This contradicts (3.7).

Conversely, we suppose that there exists a constant M > 0 such that modR ≤ M
whenever a ring R separates E. We show that (3.7) is valid for c = min{e−M , 1/2}.
Indeed, to the contrary, we assume that {x ∈ E : cr < |x − a| < r} is empty for some
a ∈ E, a 6= ∞, and 0 < r < diamE. If the annular ring A = A(a; cr, r) separates E, we
would have modA = log(1/c) ≤ M by assumption. However, this is impossible by the
choice of c. Thus A cannot separate E. This implies that E is contained in the bounded
component |x−a| ≤ cr and, in particular, diamE ≤ 2cr ≤ r, which contradicts the choice
of r. Now the proof is complete. ✷

3.11 Another consequence of Theorem 3.4. Fix a number B so that B > An, where
An is given in §3.3. Let R = R(C0, C1) be a ring in Rn with m = modR ≥ B (> An). By
Theorem 3.4, there is an annular subring A = A(a; r0, r1) of R with modA ≥ modR−
An. Then we easily get diamC0 ≤ 2r0 and dist (C0, C1) ≥ r1 − r0. Here and hereafter,
dist (C0, C1) = inf{|x0 − x1| : x0 ∈ C0, x1 ∈ C1} denotes the Euclidean distance between
C0 and C1. Since r1/r0 = emodA ≥ em−An , we get

r1 − r0 = r0
(

em−An − 1
)

≥ r0e
m
(

e−An − e−B
)

.
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These observations yield the following corollary.

3.12 Corollary. Let B > An and R = R(C0, C1) be a ring in Rn with ∞ ∈ C1 and

modR ≥ B. Then
diamC0 ≤ Me−modRdist (C0, C1),

where M is the constant 2/(e−An − e−B).

We remark that a similar result was obtained in [10] for the planar case.

4. Boundary correspondence

In this section, we consider the problem when a given homeomorphism f of the unit
ball Bn onto itself extends to the boundary homeomorphically. Gutlyanskĭı, Sakan and
the second author formulated in [11] a necessary and sufficient condition for such an f
to extend homeomorphically to the boundary in terms of the moduli of semiannuli in
the case when n = 2. We extend it to higher dimensional cases. Note that some results
below are straightforward extensions of the two-dimensional case in [11] but the proofs
need some more efforts because conformal mappings in higher dimensions are only Möbius
transformations.

4.1 Semirings. Our standard model for “semiring” is the upper half of the closed ring

TR = {x ∈ Hn : 1 ≤ |x| ≤ R}
for 1 < R < +∞. Here Hn denotes the upper half space {x = (x1, . . . , xn) : xn > 0}.
The semiring TR has the distinguished boundary components ∂0TR = {x ∈ Hn : |x| = 1}
and ∂1TR = {x ∈ Hn : |x| = R} relative to Hn , which are homeomorphic to the (n− 1)-
dimensional open ball Bn−1. Let Γ(R) denote the family of arcs γ : [0, 1] → TR joining
∂0TR and ∂1TR in TR. Thanks to [19, 7.7], we obtain the formula

(4.2) M(Γ(R)) =
ωn−1

2
(logR)1−n .

A subset S of R
n
is called a semiring if it is homeomorphic to TR for some R > 1. We

denote by ΓS the family of the image curves of Γ(R) under a homeomorphism f : TR → S.
Note that ΓS does not depend on the particular choice of f and R. We define the modulus
of the semiring S by

modS =

[

ωn−1

2M(ΓS)

]1/(n−1)

.

We have the formula modTR = logR by virtue of (4.2). Let G be a proper subdomain of
R

n
. A semiring S in G is said to be properly embedded in G if S ∩C is compact whenever

C is a compact subset of G. That is to say, S is a properly embedded semiring in G
if and only if for some (and thus for every) homeomorphism f : TR → S is proper as
considered to be a map f : TR → G. Note that ∂0S = f(∂0TR) and ∂1S = f(∂1TR) are
properly embedded (n − 1)-balls in G and constitute connected components of ∂S ∩ G.
(Though there is no canonical way to label ∂0S and ∂1S to the connected components of
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∂S in G, we take the labels given by a proper embedding f : TR → G and fix them for
convenience.)

From now on, we consider a semiring properly embedded in Bn by a mapping f : TR →
S ⊂ Bn. Then Bn \ S is an open subset of Bn consisting of two components V0 and V1 for
which V0 ∩ ∂1S = ∅ and V1 ∩ ∂0S = ∅.

Our main tool is the following separation lemma. The planar case was given in [11].

4.3 Lemma. Let S be a properly embedded semiring in Bn. Then modS > 0 if and only

if the Euclidean distance δ = dist (V0, V1) between V0 and V1 is positive. Moreover, in this

case, the double Ŝ := IntS ∪ U ∪ IntS∗ of S is a ring with mod Ŝ = modS, where S∗ is

the reflection of S in ∂Bn and U = ∂Bn \ (V 0 ∪ V 1).

Proof. We recall that modS > 0 if and only if M(ΓS) < +∞. Assume first that δ > 0.
In this case, the function ρ0 = χBn/δ is admissible for the curve family ΓS . Therefore, we
have

M(ΓS) ≤
∫

ρn0 dm =
Vol(Bn)

δn
< +∞.

Assume next that δ = 0. Then there is a point x0 in the set V 0 ∩ V 1 (⊂ ∂Bn). Since V0

and V1 are both continua, the sphere |x − x0| = t intersects both of V0 and V1 for small
enough t > 0. Therefore, Theorem 10.12 in Väisälä [19] implies that M(ΓS) = +∞.

Suppose mod S > 0. Then δ > 0 and V̂j = V j ∪ V ∗
j (j = 1, 2) are disjoint continua.

Obviously, Ŝ = R
n \ (V̂0 ∪ V̂1) and thus Ŝ is a ring. The equality mod Ŝ = modS follows

from the symmetry principle for the moduli of curve families (see Theorem 4.3.3 or its
corollary in [9]). �

4.4 Canonical semirings in Bn. For a point ξ ∈ ∂Bn and real numbers 0 < r0 < r1 <
+∞, we consider the properly embedded semiring

T (ξ; r0, r1) =

{

x ∈ Bn : r0 ≤
|x− ξ|
|x+ ξ| ≤ r1

}

in Bn.

4.5 Lemma. mod T (ξ; r0, r1) = log
r1
r0
.

Proof. Let Q : R
n → R

n
be the reflection in the sphere x2

1 + · · ·+ x2
n−1 + (xn − 1)2 = 2,

in other words,

Q(x) = 2
x− en
|x− en|2

+ en,

where en = (0, . . . , 0, 1) ∈ Rn, and let P be the reflection in the hyperplane xn = 0,
namely, P (x) = x − 2(x · en)en. Then the Möbius transformation P ◦ Q is known as
the stereographic projection which maps Bn onto Hn and ∂Bn \ {en} onto ∂Hn \ {∞} =
Rn−1 × {0}, respectively. Choose a rotation R : Rn → Rn about the origin so that
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R(ξ) = en and R(−ξ) = −en and set M = Mξ = P ◦ Q ◦ R : Bn → Hn. Put y = R(x)
and z = Q(y) for x ∈ Bn. Then |x− ξ| = |y − en| and |x+ ξ| = |y + en|. Moreover, since
|y − en|2z = 2(y − en) + |y − en|2en, we compute

|y − en|4|z|2 = 4|y − en|2 + 4|y − en|2(y − en) · en + |y − en|4

= |y − en|2
[

4 + 4y · en − 4 + |y|2 − 2y · en + 1
]

= |y − en|2|y + en|2

and thus

|M(x)| = |z| = |y + en|
|y − en|

=
|x+ ξ|
|x− ξ| .

In this way, we see that the Möbius transformation M maps the set T (ξ; r0, r1) onto the
semiannulus {x ∈ Hn : 1/r1 ≤ |x| ≤ 1/r0}, whose modulus is equal to log(r1/r0). Since
the modulus is conformally invariant, the required formula follows. �

The unit ball Bn carries the hyperbolic distance h(x1, x2) induced by the hyperbolic
metric 2|dx|/(1 − |x|2) so that we may develop hyperbolic geometry on Bn. See [5] for
details.

The following lemma was shown in [11] for the 2-dimensional case.

4.6 Lemma. Let T be a properly embedded semiannulus in Bn whose boundary in Bn

consists of two hyperbolic hyperplanes and let W0 and W1 be the connected components of

Bn \ T . Then the Euclidean diameters of W0 and W1 satisfy the inequality

min{diamW0, diamW1} ≤ 2

cosh(1
2
mod T )

.

Equality holds if and only if T is of the form T (ξ; r, 1/r) for some ξ ∈ ∂Bn and 0 < r < 1.

Proof. Fixing the value of modT , we shall find the configuration of W0 and W1 for which
min{diamW0, diamW1} is maximized. Let Hj = ∂Wj ∩Bn for j = 0, 1. There is a unique
hyperbolic line l in Bn which is perpendicular to both ofH0 andH1. The hyperbolic length
δ of l∩S is nothing but the hyperbolic distance between W0 and W1. Since l is a part of a
circle (possibly a line) intersecting ∂Bn perpendicularly, there is a (two-dimensional) plane
Π containing l and the origin. Note that diamWj∩Π = diamWj for j = 0, 1. Since Bn∩Π
is (hyperbolically) isometric B2, the problem now reduces to the two-dimensional case.
Hence the inequality in the assertion follows from [11, Lemma 2.6]1. Equality holds only
if l ∩ S is the line segment with the origin as its midpoint. In this case, T = T (ξ; r, 1/r),
where ξ is one of the end points of l and r = tanh(δ/4). �

1Note that the definition of the hyperbolic metric is different in [11] from here by the factor 2.
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4.7 Separation theorem. The following result is a generalization of Theorem 2.3 in [11].
We note that we lose half of the modulus in the exponent though the previous lemma is
sharp.

4.8 Theorem. Let S be a properly embedded semiannulus in Bn. Then the connected

components V0 and V1 of Bn \ S satisfy the inequality

(4.9) min{diamV0, diamV1} ≤ Qn exp

(

−1

2
modS

)

,

where Qn = 4 exp(An/2).

Proof. When modS ≤ 2 log(Qn/2), the right-hand side of (4.9) is at least 2. Therefore,
(4.9) trivially holds. We now assume that modS > 2 log(Qn/2) = An+2 log 2. By Lemma

4.3, the extended set Ŝ is a ring with mod Ŝ = modS > An. Choose a point ξj from

V j ∩ ∂Bn for each j = 0, 1 and consider the Möbius mapping L : R
n → R

n
defined

by L(x) = Mξ0(x) − Mξ0(ξ1), where Mξ is constructed in the proof of Lemma 4.5. By

definition, L(Bn) = Hn, L(ξ0) = ∞ and L(ξ1) = 0. In particular, L(Ŝ) separates 0 from

∞. Theorem 3.4 now yields an annular subring A = {x : r0 < |x| < r1} of L(Ŝ) for some
0 < r0 < r1 < +∞ with modA = log(r1/r0) ≥ modS − An. We set T = L−1(A ∩ Hn)
and let Wj be the connected component of Bn \ T containing Vj for j = 0, 1. Then
mod T = modA and Lemma 4.6 now implies the inequalities

min{diamV0, diamV1} ≤ min{diamW0, diamW1}

≤ 2

cosh(1
2
modT )

≤ 4 exp

(

−1

2
mod T

)

≤ 4 exp

(

−1

2
modS +

1

2
An

)

.

Thus the assertion follows. �

5. Applications to quasiconformal maps

5.1 Quasiconformal maps. Modulus estimates are powerful tools to deal with general
homeomorphisms of domains such as solutions to degenerate Beltrami equations (see, for
instance, [10] or [11]). In this section, for simplicity, we give several applications of the
results presented above to quasiconformal mappings. More applications will be presented
in our forthcoming paper.

For a definition and basic properties of quasiconformal maps, we refer to Väisälä’s
book [19] and a recent monograph [9]. The most important property of quasiconformal
mappings in our context is quasi-invariance for the moduli of curve families. That is to



14 A. GOLBERG, T. SUGAWA, AND M. VUORINEN

say, for a K-quasiconformal homeomorphism f : G → G′ between domains in R
n
, we have

the double inequality K−1
M(Γ) ≤ M(f(Γ)) ≤ KM(Γ) for all curve families Γ in G. Note

also the following fact: a homeomorphism f : G → G′ is K-quasiconformal if and only if
the double inequality K−1

M(ΓR) ≤ M(Γf(R)) ≤ KM(ΓR), equivalently

K−1/(n−1) modR ≤ mod f(R) ≤ K1/(n−1) modR,

holds for every ring R whose closure is contained in G (see [19, Cor. 36.2]).

5.2 Conditions for continuity at boundary. The next proposition is an extension of
[11, Prop. 3.1] and it is easily verified by Theorem 4.8.

5.3 Proposition. Let f : Bn → Bn be a homeomorphism and ξ ∈ ∂Bn. The mapping f
extends continuously to the point ξ if

lim
r→0+

mod f(T (ξ; r, R)) = +∞

for some R > 0.

Proof. Let Sr = f(T (ξ; r, R)) and denote by V0(r) and V1 the images of the sets {x ∈ Bn :
|x− ξ|/|x+ ξ| < r} and {x ∈ Bn : |x− ξ|/|x+ ξ| > r} under the mapping f, respectively.
Since mod Sr → +∞, Theorem 4.8 implies that diamV0(r) → 0 as r → 0. Therefore,

the cluster set
⋂

0<r<R V0(r) consists of one point, to which f(x) converges as x → ξ in
Bn. �

If we had more precise information on the rate of convergence of mod f(T (ξ; r, R)), we
could get an estimate of modulus of continuity of f(x) at the boundary point ξ. We also
have the following theorem.

5.4 Theorem. Let E be a subset of ∂Bn and f : Bn → Bn be a homeomorphism. Suppose

further that for every ξ ∈ E,

lim
r→0+

mod f(T (ξ; r, R)) = +∞

holds for some number R = Rξ > 0. Then f extends to a continuous injection of Bn ∪ E

into B
n
.

Proof. By the above proposition, we see that f extends continuously to the set E so
that f(E) ⊂ ∂Bn. We show that the extended map f is injective on E. Suppose, to
the contrary, that f(ξ1) = f(ξ2) =: ω0 for some ξ1, ξ2 ∈ E with ξ1 6= ξ2. We take
R > 0 so small that T (ξ1; r, R) ∩ T (ξ2; r, R) = ∅ for 0 < r < R. Let V0, V1 be the
connected components of Bn \T with ξ1 ∈ V 0, where T = T (ξ1; r, R). Take two sequences
zk, z

′
k ∈ Bn (k = 1, 2, 3, . . . ) so that zk → ξ1 and z′k → ξ2. Then zk ∈ V0 and z′k ∈ V1

for sufficiently large k. In particular, dist (f(V0), f(V1)) ≤ |f(zk) − f(z′k)| for such a k.
Since f(zk) → ω0 and f(z′k) → ω0 as k → ∞, we have dist (f(V0), f(V1)) = 0. By
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Lemma 4.3, we conclude that mod f(T ) = 0, which contradicts the assumption that
mod f(T (ξ1; r, R)) → +∞ as r → 0+. �

Letting E = ∂Bn, we obtain the following result. (For the case when n = 2, see [7], [11,
Cor. 3.3].)

5.5 Theorem. A homeomorphism f : Bn → Bn extends to a homeomorphism f : B
n → B

n

if and only if for each ξ ∈ ∂Bn, there is an R = Rξ > 0 such that

lim
r→0+

mod f(T (ξ; r, R)) = +∞.

5.6 Boundary extension of quasiconformal maps of the unit ball. It is well known
that a quasiconformal automorphism of Bn extends to the boundary homeomorphically.
See Section 17 of [19] for more information on this topic. Here is a version of such a
theorem.

5.7 Theorem. Let f : Bn → Bn be a K-quasiconformal mapping fixing the origin. Then

f extends to a homeomorphism f̃ : B
n → B

n
so that

|f(x)− f̃(ξ)| ≤ C(n)|x− ξ|α/2, x ∈ Bn, ξ ∈ ∂Bn.

Here α = 1/K1/(n−1) and C(n) is a constant depending only on n.

Indeed, the much better estimate |f(x) − f(y)| ≤ 4λ2
n|x − y|α for x, y ∈ Bn is known

(see [9, Theorem 6.6.1]) where λn is the Grötzsch ring constant. Moreover, λn can also be
replaced by a constant independent of the dimension n, see [2]. Here, we give a proof of
the above result as a simple application of our Theorem 4.8.

Proof. Let T = T (ξ; r, 1) for ξ ∈ Bn, 0 < r < 1 and S = f(T ). Note that M(ΓS) ≤
KM(ΓT ) and thus modS ≥ K−1/(n−1) mod T = K−1/(n−1) log(1/r) by Lemma 4.5. In
particular, we see that mod f(T (ξ; r, 1)) → +∞ as r → 0 for each ξ ∈ ∂Bn. Hence

Theorem 5.5 guarantees that f extends to a homeomorphism f̃ of B
n
. Fix ξ ∈ ∂Bn and

consider the ring S = f(T (ξ; ε, 1)) properly embedded in Bn, Theorem 4.8 now yields the
following inequalities

min
j=0,1

diamVj ≤ Qn exp

(

−1

2
modS

)

≤ Qn exp

(

log ε

2K1/(n−1)

)

= Qn exp
(α

2
log ε

)

,

where V1 is the component of Bn \S satisfying 0 ∈ ∂V1 and V0 is the other one. Note that

f̃(ξ) ∈ ∂V0 and that diamV1 ≥ 1. If (α/2) log ε < − logQn, the right-most term in the
above inequalities is less than 1, which implies

diamV0 ≤ Qn exp
(

α
2
log ε)

)

= Qnε
α/2.
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We now put ε0 = exp(−(2/α) logQn) = Q
−2/α
n . If |x− ξ| < ε0, we have |x− ξ|/|x+ ξ| ≤

|x− ξ|/(2− |x− ξ|) < |x− ξ| < ε0. Letting ε = |x− ξ|, we obtain

|f(x)− f̃(ξ)| ≤ diamV0 ≤ Qn|x− ξ|α/2.
If |x− ξ| ≥ ε0, we make the trivial estimates

|f(x)− f̃(ξ)| ≤ 2 ≤ 2

( |x− ξ|
ε0

)α/2

= 2Qn|x− ξ|α/2.

Thus we see that C(n) = 2Qn works. �

5.8 Boundary extension of quasiconformal maps of the half space. In the case of
the unit ball, the optimal Hölder exponent is known to be 1/K1/(n−1). In the assertion of
Theorem 5.7, however, we have the extra factor 2. If we do not care about uniformity of
the estimate, we can get rid of it. For instance, in the case of half space Hn, we have a
similar result with an optimal exponent.

5.9 Theorem. Let f : Hn → Hn be a K-quasiconformal homeomorphism fixing en =
(0, . . . , 0, 1). Suppose that f(x) → ∞ as x → ∞ in Hn. Then f extends to a homeomor-

phism f̃ : H
n → H

n
and, for every R > 0, there exists a constant C = C(R,K, n) > 0

such that

|f(x)− f̃(ξ)| ≤ C|x− ξ|α

whenever ξ ∈ ∂Hn, |ξ| ≤ R and x ∈ Hn, |x− ξ| ≤ 1. Here α = 1/K1/(n−1).

For the proof, we first prepare an estimate for K-quasiconformal automorphisms of
Hn fixing the basepoint en. For 0 < r < 1, we set B(r) = {x ∈ Hn : |x − en| ≤
r|x + en|}. Note that B(r) is the closed ball centered at 1+r2

1−r2
en with radius 2r

1−r2
(the

so-called Apollonian ball). Also note that
⋃

0<r<1B(r) = Hn. The next result is a variant
of the well-known quasiconformal Schwarz Lemma and the function ϕK,n(r) is known as
the distortion function (see [3, Ch. 8]).

5.10 Lemma. Let f : Hn → Hn be a K-quasiconformal map fixing en. Then f maps B(r)
into B(r′), where r′ = ϕK,n(r) := 1/γ−1

n (Kγn(1/r)).

Proof. Let M = M−en and g = M−1 ◦ f ◦ M : R
n \ B

n → R
n \ B

n
, where Mξ is given

in the proof of Lemma 4.5. Note here that M−1(en) = ∞. For a fixed x ∈ Hn, we put

y = M−1(x). Consider the ring R = R(B
n
, [y,∞]), which is a rotation of the Grötzsch

ring RG,n(|y|) about the origin. Then the image R′ = g(R) is a ring separating y′ = g(y)

and ∞ from B
n
. Lemma 2.4 now implies the inequality M(ΓR′) ≥ γn(|y′|). On the other

hand, K-quasiconformality of g implies M(ΓR′) ≤ KM(ΓR) = Kγn(|y|). Hence, γn(|y′|) ≤
Kγn(|y|), equivalently, |y′| ≥ γ−1

n (Kγn(|y|)). Note that x ∈ B(r) precisely if |y| ≥ 1/r.
Thus the assertion follows. �
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5.11 Proof of Theorem 5.9. Note that f can be extended to a homeomorphism f̃ of
H

n
by Theorem 5.7, because Hn and Bn are Möbius equivalent.

We first show the claim that there is a constant ρ = ρ(R,K, n) > 0 such that |f(x)| ≤ ρ
for all x ∈ Hn with |x| ≤ 1+R. Let S = {x ∈ Hn : 1 +R ≤ |x| ≤ R′}, where R′ is chosen
so that log[R′/(1+R)] = (An + log 2)/α, where An appears in §3.3. Then, as in the proof
of Theorem 5.7, we have

modS ′ ≥ K−1/(n−1) modS = α log
R′

1 +R
= An + log 2 > 0.

We may reflect S ′ = f(S) in the hyperplane xn = 0 as before to obtain a ring Ŝ ′ =

R(C0, C1) with mod Ŝ ′ = modS ′. Since mod Ŝ ′ > An, Theorem 3.4 yields an annular

subring A of Ŝ ′ of the form r0 < |y−a| < r1, where log(r1/r0) ≥ modS ′−An ≥ log 2 and

a = f̃(0) ∈ C0. In view of the fact that en = f(en) ∈ C0, we have |en − a| ≤ r0 and thus
|a| ≤ 1 + r0. Noting w = f(R′en) ∈ C1, we have |w − a| ≥ r1. On the other hand, since
R′en ∈ B(r) with r = (R′ − 1)/(R′ + 1), Lemma 5.10 implies w ∈ B(r′) for r′ = ϕK,n(r).
In particular, we obtain |w| ≤ (1 + r′)/(1− r′) and thus

r1 ≤ |w − a| ≤ |w|+ |a| ≤ 1 + r′

1− r′
+ 1 + r0.

Noting the inequality 2r0 ≤ r1, we finally have r0 ≤ 2/(1− r′). Since the set C0 = f({x ∈
Hn : |x| ≤ R}) is contained in the ball |y−a| ≤ r0, the claim follows with ρ = 1+4/(1−r′).

By the last claim, we have |f(x)|, |f̃(ξ)| ≤ ρ for ξ ∈ ∂Hn with |ξ| ≤ R and x ∈ Hn with
|x − ξ| ≤ 1. For such a point ξ we consider the semiring S = S(ξ; r, 1) = {x ∈ Hn : r ≤
|x− ξ| ≤ 1} for 0 < r < δ and its image S ′ = f(S), where δ is determined by the relation
−α log δ = An + log 2. Then, as above, we have

modS ′ ≥ K−1/(n−1) modS = α log
1

r
> An + log 2.

Let Ŝ be the double of S. An application of Corollary 3.12 with B = An + log 2 to
Ŝ ′ = R(C0, C1) gives us the estimate

diamC0 ≤ Me−modS′

dist (C0, C1) ≤ Mrαdist (C0, C1), M = 4eAn .

Since f̃(ξ) ∈ C0 and f(en) = en ∈ C1, we have dist (C0, C1) ≤ |f̃(ξ) − en| ≤ ρ + 1.
Therefore, if |x− ξ| = r < δ, we obtain

|f(x)− f̃(ξ)| ≤ diamC0 ≤ (ρ+ 1)M |x− ξ|α.
If |x− ξ| ≥ δ, we have

|f(x)− f̃(ξ)| ≤ 2ρ ≤ 2ρ

( |x− ξ|
δ

)α

= ρM |x− ξ|α.

Hence we obtain the required inequality with C = (ρ+ 1)M. ✷
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[10] V. Gutlyanskĭı, O. Martio, T. Sugawa and M. Vuorinen, On the degenerate Beltrami equa-

tion, Trans. Amer. Math. Soc. 357 (2005), no. 3, 875–900.
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