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Abstract

Motivation: The emergence of datasets with tens of thousands of features, such as high-throughput omics biomed-
ical data, highlights the importance of reducing the feature space into a distilled subset that can truly capture the sig-
nal for research and industry by aiding in finding more effective biomarkers for the question in hand. A good feature
set also facilitates building robust predictive models with improved interpretability and convergence of the applied
method due to the smaller feature space.

Results: Here, we present a robust feature selection method named Stable Iterative Variable Selection (SIVS) and as-
sess its performance over both omics and clinical data types. As a performance assessment metric, we compared
the number and goodness of the selected feature using SIVS to those selected by Least Absolute Shrinkage and
Selection Operator regression. The results suggested that the feature space selected by SIVS was, on average, 41%
smaller, without having a negative effect on the model performance. A similar result was observed for comparison
with Boruta and caret RFE.

Availability and implementation: The method is implemented as an R package under GNU General Public License

v3.0 and is accessible via Comprehensive R Archive Network (CRAN) via https://cran.r-project.org/package=sivs.

Contact: laura.elo@utu.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Due to more and more cost-efficient data generation and collection
methods, we have seen a substantial rise in the data volume of data-
base submissions during the past decade. To put it in perspective,
only in the Gene Expression Omnibus (GEO) database alone, there
has been about a 9-fold increase in the number of omics datasets
submitted from 2009 to 2019 compared to its preceding decade
(1999-2009). The complexity of biological data and the high-
dimensionality of the datasets impose a challenge in the analysis and
interpretation of these datasets (Braun, 2014). Furthermore, with
the current pace of technological advancements, we are getting more
and more measurable features to be added to enrich our datasets,
which leads to a constant increase in the dimensionality of the fea-
ture space. All these make it crucial to find the most effective and in-
fluential features from the feature spaces in order to reduce the
number of measured features, which ultimately will reduce the data
collection costs. On top of reducing the feature space, it is of utter
importance to have a robust set of markers and models that are gen-
eralizable to other datasets beyond those that were used to train the
models.

©The Author(s) 2021. Published by Oxford University Press.

Feature selection is a crucial part of machine learning in which
the features that are most informative in relation to the response
value are selected, while irrelevant and redundant features are dis-
carded (Koller and Sahami, 1996; Lin et al., 2014). One of the com-
monly used methods for high-dimensional data is generalized linear
modeling in combination with a shrinkage method, namely Least
Absolute Shrinkage and Selection Operator (LASSO) or Elastic Net
(Tibshirani, 1996; Zou and Hastie, 2005), which efficiently reduces
the feature space and also provides easily interpretable models.
However, the major drawback of these methods is inconsistencies in
the selected features and their number (Roberts and Nowak, 2014).
This is mainly due to hyperparameter tuning that happens via cross-
validation. Because of the nature of cross-validation, the resulting
models are sensitive to the fold assignment causing inconsistencies
between features obtained from multiple runs. Furthermore, in high-
dimensional data, the massive difference between the feature space
size versus the sample size can further increase this inconsistency.
This, in turn, can drastically reduce the reproducibility of the study
and cause vast disagreement between studies that have used the
same or similar data and yet derived different conclusions and set of
selected biomarkers, for example.
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Fig. 1. Internal steps of SIVS method. (A) The general schema of the SIVS method. (B) Frequency of each feature having nonzero coefficient in the ‘iterative model building’
step. (C) Distribution of nonzero coefficients each feature has got in the ‘iterative model building’ step. Features are illustrated in a sorted order based on the median of their
nonzero coefficients from high to low. (D) The main plot of the SIVS method, presenting an overview of the ‘RFE’ step. This plot is composed of three main elements: the bar
chart that shows the VIMP, the box plots to show the distribution of AUROC after removal of each feature, and ultimately the two vertical dashed lines marking the two sug-

gested strictness

LASSO and Elastic Net both fall into the category of embedded
feature selection approaches in which the feature selection is made
as a part of the classification algorithm (He and Yu, 2010;
Mahendran et al., 2020; Wang et al., 2016). Recently, novel hybrid
approaches have also been proposed that take advantage of multiple
feature selection strategies, such as the conventional filter and wrap-
per approaches (Apolloni et al., 2016). Despite their good applic-
ability and improved performance in high-dimensional data
compared to conventional feature selection algorithms (Lu ez al.,
2017; Wei et al., 2020), there is a need for novel, robust approaches
that have a publicly available implementation that any researcher
can easily apply to their own datasets.

In this paper, we present a feature selection method, Stable
Iterative Variable Selection (SIVS), and its implementation in R to
effectively reduce the feature space to a small subset without
decreasing the accuracy. This is achieved by considering multiple
configurations of cross-validation sample binning, aggregation of
the results for feature ranking, and ultimately shrinking the feature
space.

2 Materials and methods

The general idea of SIVS is to encapsulate methods with embedded
feature selection that are not robust in converging to the same fea-
ture space, thus resulting in inconsistent model performance. This is
done via performing model construction multiple times and aggre-
gating the resulting selected features. By repeatedly constructing
models using different cross-validation sample binnings, we ensure
that we have covered most, if not all, sample-binning compositions.
The overall workflow of SIVS is summarized in Figure 1A and repre-
sented in detail in the following sections. From hereafter, the

encapsulated method is referred to as the ‘internal method’. In this
article, we focus on using a multivariable Generalized Linear
Modeling method implemented in R with LASSO and Elastic-Net
regularization (glmnet) (Friedman et al., 2010; Simon et al., 2011)
as the internal method, but the general concept can be extended to
basically any method with cross-validation-dependent embedded
feature selection.

3.1 Step 1: general preprocessing

The SIVS algorithm starts with preprocessing of the data, which
includes removing redundant features and standardizing numeric
values for the following steps. First, the numeric features with zero
variance or categorical features containing a single class are removed
from the data. Finally, all numeric features are standardized to have
a mean of zero and a standard deviation of one. This is to make the
models’ coefficients comparable.

At this point, we perform method-specific preprocessing if
required by the internal method. For instance, glmnet prefers to
have the input matrix as a ‘data.matrix’ object. Furthermore, glmnet
is sensitive to missing values and, therefore, any sample with missing
values is removed. Alternatively, imputation could be applied before
applying SIVS by the user to retain more samples in the analysis.

3.2 Step 2: iterative model building

At the second step, a predefined number & of models (by default
k = 100) are built using different cross-validation binnings and all
the resulting models are collected, in addition to their prediction
performance against the training data. In the implementation of the
SIVS R package, the number of iterations can be configured by the
user with regard to the sample size. A relatively high number of iter-
ations would result in having the same binning configuration
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multiple times and consequently does not provide new information.
On the other hand, a relatively low number of iterations would lead
to not covering all binning arrangements. In practice, we have
observed that 100 iterations is sufficient for obtaining a stable set of
features in a range of datasets (Klén et al., 2019, 2020; Venildinen
etal., 2020, 2021).

3.3 Step 3: variable importance (VIMP) scoring

Based on the set of models built during the iterative step, VIMP
score is calculated for each feature. The main idea is to assign a
higher score to features that are selected by the majority of the mod-
els and are contributing the most in the model to predict the re-
sponse value. Let us denote the features by fi,f2,...,fs, where
n > 0 is the total number of features. For each feature f;, the coeffi-
cients of the models built in SIVS are denoted by ¢ =
(€isCipy-- -, cix) and the vector of elements of ¢; with nonzero val-
ues is denoted by c;. The VIMP score is calculated by the following
equation for features where ¢} has a length greater than zero:

() xmaps(cf) x ¢f
VIMP(E) === 0R )

1, ¢; < Oforallj,
I(¢f) =3¢ 1, ¢;>0forallj, (1)

0, otherwise,

where I(c}) is a binary value indicating if all elements of ¢} are either
positive or negative, 1, is the median of absolute values, is the
number of elements, and IQR is the interquartile range.

3.4 Step 4: recursive feature elimination (RFE)

For the last step, all features with nonzero VIMP scores based on
Equation (1) are kept in the analysis and fed into the last step, and
the rest of the features get eliminated. During the RFE step, the fea-
tures are removed one by one from the model building in the
increasing order of their VIMP score calculated in the previous step.
Upon eliminating each feature, a set of models (default=100) are
built using the remaining features and different cross-validation
seeds to provide an unbiased view of the effect of the eliminated fea-
ture on the overall performance of the model.

In the implementation of the SIVS R package, the output of all
the aforementioned steps is returned as an S3 R object. There are
also helper functions to assist in the interpretation and plotting of
the results.

To assist in choosing an appropriate cutoff for the features on the
basis of their decreasing VIMP scores, we have implemented a
method using the RFE output in the R package (Fig. 1D). This
method has a parameter y to adjust the strictness of the cutoff sugges-
tion (0 < y < 1). The cutoff is calculated according to Equation (2):

suggested.cutoff = [(1 —7) X (Fmax — Xmin)] + Xmin (2)

where % min and X .y are, respectively, the minimum and maximum
of the Area Under the Receiver Operating Characteristic curves
(AUROC) across the features in the feature elimination step. This
cutoff practically defines the minimum acceptable AUROC over the
training set. The higher the strictness parameter y is, the lower the
suggested cutoff gets. By default, y = 0.01 which is considered as
loose and retains more features.

3.5 Data and test design

To evaluate the performance of SIVS for feature selection, we
applied it on three different types of biomedical data in a binary
classification setup using glmnet with 10-fold cross-validation and
binomial family as the internal method. The goodness of the result-
ing features was assessed by comparing the models built using fea-
tures suggested by SIVS, with corresponding models built without
SIVS. For each of the training data, 100 different logistic regression
models were built using the binomial family of glmnet with different

cross-validation random seeds to assess the consistency of the result-
ing performance in the independent validation data. All used data-
sets are summarized in Table 1 and described in more detail below.

As a performance metric, we used AUROC. To test whether the
observed difference in AUROC was significant, we performed a
pair-wise AUROC comparison between each of the ROC curves of
(1) the standard glmnet model and (2) the glmnet model that was
built using SIVS suggested features when the same cross-validation
seed was used. The pair-wise statistical comparison was performed
using the DeLong method (DeLong et al., 1988) implemented in the
roc.test function in the pROC (Robin et al., 2011) package. A list of
all used R packages is presented in Table S1 in Appendix.

3.5.1 Breast cancer

For breast cancer classification, we used two gene expression micro-
array datasets from the GEO database, namely GSE2034 (Wang
et al., 2005) and GSE7390 (Desmedt et al., 2007). Both datasets
have been generated using the Affymetrix Human Genome U133A
Array platform and contained lymph-node negative breast cancer
samples and their relapse-free survival information. The GSE2034
data consisted of a total of 286 patients, where 179 were relapse-
free, and the other 107 were relapsed patients, whereas the
GSE7390 consisted of 107 relapse-free and 91 relapsed patients.
The relapse-free status of the patients was used as a binary response
value in the analysis. The dataset with the larger sample size,
GSE2034, was used as the training set, whereas the GSE7390 data
was used for independent validation.

To make both datasets comparable, the microarray datasets
were independently preprocessed using the Oligo R package (
Carvalho and Irizarry, 2010) and then independently normalized by
variance stabilization (Huber e al., 2002) using vsn R package
(Huber et al., 2021).

3.5.2 Lung cancer

For lung cancer classification, we used two RNA-seq datasets from
The Cancer Genome Atlas (TCGA) database, namely Lung
Adenocarcinoma (TCGA-LUAD) and Lung Squamous Cell
Carcinoma (TCGA-LUSC). Both datasets were downloaded in the
Fragments Per Kilobase of transcript per Million mapped reads
upper quartile (FPKM-UQ) normalized (Bioinformatics Pipeline:
mRNA  Analysis—GDC Docs; HTSeq-FPKM-UQ—GDC Docs;
Shahriyari, 2019) format using the following two queries:

* cases.primary_site in [‘bronchus and lung’] and cases.project.-
project_id in [‘'TCGA-LUAD’] and files.access in [‘open’] and fil-
es.analysis.workflow_type in [‘HTSeq—FPKM-UQ’] and
files.data_type in [‘Gene Expression Quantification’]

* cases.primary_site in [‘bronchus and lung’] and cases.project.-
project_id in [“TCGA-LUSC’] and files.access in [‘open’] and file-
s.analysis.workflow_type in  [‘HTSeq—FPKM-UQ’] and
files.data_type in [‘Gene Expression Quantification’]

The TCGA-LUAD and TCGA-LUSC contained 594 and 551
samples, respectively. Considering that these two datasets contained
samples from different subtypes of Lung cancer, we used their com-
bination and built a model to differentiate the two subtypes. To
form the training and validation sets, we randomly selected 100
samples from each subtype to create the validation set and used the
rest of the samples (N = 945) as the training set.

3.5.3 Cardiovascular disease

For prediction of cardiovascular disease events, we used data from
two clinical trials, namely the Systolic Blood Pressure Intervention
Trial (SPRINT) and the Action to Control Cardiovascular Risk in
Diabetes Blood Pressure (ACCORD-BP) trial, both of which com-
pared two antihypertensive treatment strategies and their effects on
cardiovascular outcomes (Buse, 2007; Wright et al., 2015). The
SPRINT and ACCORD-BP datasets involved 9361 and 4733 partic-
ipants, respectively. Here, we applied SIVS on SPRINT data to
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Table 1. Data that has been used in this study

Disease Response value

Data type (platform) Accession ID

Breast cancer Relapse-free survival
Subtype classification

Occurrence of cardiovascular outcome

Lung cancer
Cardiovascular
Arcene Cancer versus healthy

Microarray (GPL96) GSE2034, GSE7390
RNA-seq TCGA_LUAD, TCGA_LUSC
Clinical SPRINT, ACCORD-BP
Mass-spectrometry ARCENE

Note: To compare the method introduced in this article, four types of data have been used. This table presents the various data types that have been used in this

article, in addition to the information on what has been used as response values.

predict the occurrence of primary composite cardiovascular disease
outcome (the first occurrence of myocardial infarction, acute coron-
ary syndrome, stroke, heart failure or death from cardiovascular
causes) and validated the performance of the models against
ACCORD-BP data. Both datasets were available on request from
the National Heart, Lung and Blood Institute’s (NHLBI) Biologic
Specimen and Data Repository Information Coordinating Center
(BioLINCC, https://biolincc.nhlbi.nih.gov/). Here, we used similar
variable preprocessing as described before (Venildinen et al., 2020).

3.5.4 Arcene data

In addition to the datasets above, we used a publicly available
benchmarking dataset. This dataset is a benchmarking dataset made
by aggregating three different mass-spectrometry datasets, and has
been designed for testing the performance of feature selection meth-
ods and has been used in the NIPS 2003 feature selection challenge
(Guyon et al., 2005). This dataset has 1000 anonymized features
and separate training set and validation set, each with 100 anony-
mized samples. Both the training and validation set have 44 samples
with a positive response and 56 samples with a negative response.

3.5.5 Comparison to available feature selection methods

We compared the performance of SIVS against two publicly avail-
able, widely used feature selection methods: Boruta and RFE.
Boruta is an iterative feature selection algorithm based on the ran-
dom forest classification algorithm (Kursa and Rudnicki, 2010). In
each iteration, it uses shuffled shadow variables and calculates Z
scores to determine feature importance. RFE is a feature ranking
method, which starts from a model with all features and in each iter-
ation drops out a certain number of least important features (Guyon
et al., 2002). For these methods, we used implementations available
in R packages Boruta and caret, respectively. RFE could only be
applied to cardiovascular disease and Arcene datasets due to mem-
ory issues occurring with the handling of RNA-seq and microarray
data with over 20 000 variables.

3 Results

For the breast cancer data, the standard glmnet models with me-
dian AUROC of 0.63 using the median of 76 features (range: 59—
107) in the 100 different runs on the full feature space, whereas
SIVS built models with median AUROC of 0.61 by constantly
using 41 features (Table 2 and Fig. 2A—C). On lung cancer data, a
median AUROC of 0.99 was achieved with the standard glmnet
using the median of 114 features (range: 76-158), while with
SIVS, the median AUROC of 0.99 was achieved using the median
of 43 features (range: 41-45). On the cardiovascular disease data,
the standard glmnet obtained a median AUROC of 0.70 using the
median feature of 15 (range: 14-15), whereas with SIVS, the me-
dian AUROC of 0.69 was obtained using 13 features throughout
all the 100 models. Thus, SIVS on average selected 49.6% fewer
features compared to standard glmnet in all datasets, and on aver-
age 61.7% fewer features in high-dimensional datasets, while the
models built using these features produced similar AUROC values
(Table 2 and Fig. 2B). The number of features with SIVS was sig-
nificantly lower than with standard glmnet (paired Wilcoxon test

P-values 3.50e—18, 3.88¢—18, and 4.71e—20, for breast cancer,
lung cancer, and cardiovascular, respectively) without significant-
ly affecting the AUROC values of the final models (DeLong me-
dian of P-values 0.42, 0.76, and 0.09, for breast cancer, lung
cancer, and cardiovascular, respectively) (Fig. 3). By looking
closer at the performances of each type of run, we see that while
the models built based on features selected by SIVS use fewer fea-
tures compared to their counterparts, their performance is more
uniform across different runs with different cross-validation ran-
dom seeds (Fig. 2C) which indicates the stability and robustness of
the models built using features selected by SIVS. We observed
similar behavior and performance on the Arcene benchmarking
dataset as compared to the aforementioned results (Fig. 2 and
Supplementary Table S2). Additional performance metrics for all
datasets that show similar trends as AUROC are available in
Supplementary Table S2.

While SIVS produced a smaller feature space than the standard
glmnet, the overlap of the selected features by SIVS across the differ-
ent runs was markedly higher (Fig. 2D). In addition, the small stand-
ard deviation of the AUROC values across the 100 different runs,
further supported the stability of the SIVS-based models. Moreover,
it is worth noting that the features selected by SIVS were a subset of
the features selected by the standard glmnet (Fig. 2D).

Comparisons with Boruta and RFE revealed that SIVS per-
formed consistently as well as them or even slightly outperformed
them in terms of the number of selected variables (Fig. 2 and
Supplementary Fig. S1). Most importantly, SIVS produced substan-
tially more stable feature sets compared to stock glmnet (Fig. 2 and
Table 2) but also compared to RFE, especially in Arcene dataset
(Supplementary Fig. S1).

4 Discussion

This study introduces SIVS, a novel feature selection method that
can effectively reduce the feature space, especially in high-
dimensional data, and provides insight into each feature’s impact
with regards to the response value. SIVS starts from aggregating the
results of multiple multivariable modeling runs using different cross-
validation random seeds. As a result, it provides feature importance
scores for the features and consequently orders them accordingly.
This score is then utilized in an RFE step to inspect the effect of each
feature’s removal on the stability and predictive power of the result-
ing model, which is ultimately used in narrowing down the list of
important features to a much smaller subset.

To assess the performance of SIVS and the goodness of the
selected features, 100 models built using SIVS’ features were com-
pared with 100 models built using plain glmnet. These models were
compared based on their predictive power on a separate test set,
considering the number of features they have and the variability of
these features among the 100 models. This procedure was applied to
three different datasets. The presented results demonstrate the ef-
fectiveness of SIVS as a feature selection method on various high-
and low-dimensional biomedical data, where SIVS reduced the fea-
ture space down to 38% of the features that LASSO can typically se-
lect, without having any significant drawback in the predictive
power of the model over independent test sets. Moreover, the fea-
tures selected by SIVS were markedly more stable over multiple runs
than those selected by standard glmnet.
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Table 2. Run-type comparison and their models’ consistency

Boruta + glmnet

SIVS + glmnet

glmnet

Run-type

Breast cancer Lung cancer Cardiovascular Arcene  Breast cancer Lungcancer Cardiovascular Arcene

Breast cancer Lung cancer Cardiovascular Arcene

Detail

Metric

11
11
11
11

35
34

10
10
10
10

13
13
13
13

45

59 41

43

15
15

158

114

107

Maximum

Median

Mean

Number of

43

41

76

selected
features

6.44

33.62
32

42.42
41

41

41.88

28

14.74
14

114.08

76

79.12
59

41

Minimum

0.4989

0
11
11

0.8261

30
35

0
13
13

1.165

41

7.9089 0
41

26

0.4408

14
16

9.6685 15.9524
58
177

54
112

Standard deviation

Intersect

10
10

45

41

60

Union

69.48%

99.28% 69.38%

56.96%
56.93%
56.93%
56.89%

72.73%

69.58% 75.53% 61.16% 99.37% 69.43%
60.88%

99.36%

64.05%

Maximum
Median

Mean

AUROC

99.16% 69.31% 69.32%
99.16%

71.39%

69.37%
69.37%
69.37%

99.30%

99.19% 69.51% 74.84%

99.17%
98.83%

62.51%

[validation]

69.24%

69.32%

71.58%

99.30%

74.74% 60.93%

69.52%

62.01%

68.59%

69.31%

98.99%

70.74%

99.25%

74.19% 60.74%

69.45%

59.42%

Minimum

0.0001 0.0053 0.0002 0.0005 0.0002 0.0023

0.0002

0.001

0.0009 0.0003 0.0041

0.0108

Standard deviation

Note: For each data type that is used in this article and for each method, 100 modelings and testings have been done using 100 different cross-validation seeds. This table presents the consistency of each method in terms of

the number of selected features and AUROC.

Feature selection methods can be divided into three categories:
filter methods, wrapper methods, and embedded methods (Saeys
et al., 2007). In general, filter methods are independent of the ma-
chine learning method, i.e. model-agnostic, whereas wrapper and
embedded methods are model-dependent. There have been some
attempts to address model-agnostic feature selection on high-
dimensional data (Labani et al., 2018; Reggiani et al., 2018; Yu and
Liu, 2003), but the majority of available methods are model-
dependent. Among these, some are designed to work for specific
types of application (Wehrens and Franceschi, 2015), and some are
more general (Perrot-Dockes et al., 2017; Xu and Chen, 2014;
Wehrens and Franceschi, 2015). SIVS is a method that falls into the
model-dependent wrapper category, but due to the usage of internal
methods, it is not dependent on one specific algorithm and is, there-
fore, more versatile. Although in the present study, we focused on
glmnet as the underlying feature selection and model building
method, the general concept can, in theory, be extended to methods
with embedded feature selection/importance that depends on cross-
validation for evaluating the weights for features such as random
forests or Generalized Boosted Regression Models.

At the time of writing this article, there are 51 packages depend-
ent on glmnet, out of which seven address feature selection
[BioMark (Wehrens and Franceschi, 2015), elasso (Guo, 2015),
EstHer (Bonnet and Levy-Leduc, 2015), glmvsd (Nan et al., 2016),
GRridge (van de Wiel and Novianti, 2020), MultiVarSel (Perrot-
Dockés et al., 2019) and SMLE (Zang et al., 2021)]. As is suggested
by our results, standard glmnet models were inherently not consist-
ent in terms of the selected features or accuracy and, therefore,
methods that use glmnet models internally without building multiple
glmnet models and somehow aggregate their results are also suscep-
tible to inherit this inconsistency.

SIVS is shipped with a method to suggest an appropriate cutoff
for the exclusion of features with lower importance. The strictness
of this suggestion method can be tuned (default=0.01), and it is im-
portant to note that there is no one size fits all solution. The strict-
ness threshold is subjective, and we encourage users to choose the
threshold based on the RFE plot. To stay fair in this study, we con-
sistently used the default parameters without modifications or tun-
ing, but this is not to undermine the fact that the SIVS should not be
treated as a blackbox feature selection method, and the parameters
should be tuned according to the specification of data and the ques-
tion in hand.

A major strength of this study is that we have focused on real-
world datasets instead of synthetic data to demonstrate the practical
utility of the method. Moreover, we have used independent valid-
ation datasets to show how much the selected features generalize to
other datasets. Lastly, we provide a ready-to-use implementation of
the method. The method is implemented in R language and in com-
pliance with the Comprehensive R Archive Network (CRAN) stand-
ards and regulation and is published on CRAN. Therefore, SIVS can
be freely accessed, installed, and tested. Additionally, the SIVS
source code is published under General Public License v3.0 (GPL3)
and is publicly available on Github.

A drawback of SIVS is that despite the multithreaded implemen-
tation of the method, it is relatively slow to compute due to multiple
iterations (k=100 by default). Additionally, considering that SIVS
is wrapping the internal method, consequently it will inherit the
limitation of that method as well (in the case of current implementa-
tion, glmnet). For example, due to L1 regularization, LASSO is
known to have issues with colinear features which was not explored
here. However, the aim of this study was to show the feasibility of
the proposed method with a working implementation. For further
optimization in the future, various possible alternatives could be
considered. For example, the effect of replacing LASSO with a
smooth function or exploring the effect of colinear features on SIVS
performance as well as implementing alternative performance met-
rics and testing other prediction scenarios, such as multilabel classi-
fication, will be left as next steps for future research.

In this article, we have showcased SIVS with glmnet as an intern-
al method via three binary classifications, but in theory, SIVS can be
applied on any of the model families that glmnet can be used for, as
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Fig. 2. Side-by-side comparison of glmnet and SIVS. (A) The number of features that were used in each of the 100 glmnet models built using SIVS features (SIVS + glmnet),
Boruta features (Boruta + glmnet) and plain glmnet. For each dataset, all three types of runs were performed 100 times with 100 different cross-validation seeds to assess the
stability of the outcomes. (B and C) Performance of these models on the test sets. The plots on the second row (panel B) illustrate that there is no significant difference in the
performance between the models that were built using features selected by SIVS and models that were built without despite the fact that the models built using SIVS use far
fewer features as illustrated in panel A. Additionally, the plots in panel C illustrate the same data points as panel B, but are zoomed-in to show the performance robustness of
models that are built using SIVS selected features compared to glmnet and Boruta + glmnet. (D) Venn diagrams depicting the overlap of the selected features via their intersec-
tion (N) and union (U), showing that the feature space suggested by SIVS is always a subset of standard glmnet feature space, and typically the feature space of SIVS is so robust

that the intersect and union are the same set

long as the predicted outcome can be used in receiver operating
characteristic (ROC) curve calculation in pROC package. This limi-
tation could also be loosened by the addition of other performance
metrics into SIVS. In addition to glmnet, SIVS also naturally extends

to other forms of modeling with embedded feature selection or
shrinkage methods, such as random forest. Implementing these add-
itional internal methods and other performance metrics will be done
in the next versions of the SIVS R package.
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Fig. 3. Significance of SIVS feature reduction on the final model. The AUROC of the
glmnet models built using the full feature space and built using only SIVS suggested
features were tested in a pair-wise fashion where models that were built using the
same cross-validation seeds were compared together using the Delong method with
two-sided alternative hypothesis (DeLong et al., 1988)

5 Conclusion

This study shows how a single run of glmnet is not an optimal so-
lution for finding the best feature space in terms of consistency in
performance and the number of incorporated features in the final
model. SIVS, the method presented in this article, is a feature se-
lection method that can drastically reduce the feature space with-
out substantially sacrificing the performance and produces
consistent results across multiple runs. This indicates that the
‘true signal’ is more effectively captured by SIVS compared to the
standard glmnet.

All the scripts for data preprocessing and analysis are available
upon request. The SIVS can be directly installed from CRAN, and
the source code can be accessed through the following webpage:

* https://cran.r-project.org/package=sivs
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