
 

Accepted Manuscript

Agile Methods in Embedded System Development: Multiple-Case
Study of Three Industrial Cases

Kaisa Könnölä, Samuli Suomi, Tuomas Mäkilä, Tero Jokela,
Ville Rantala, Teijo Lehtonen

PII: S0164-1212(16)30041-3
DOI: 10.1016/j.jss.2016.05.001
Reference: JSS 9748

To appear in: The Journal of Systems & Software

Received date: 17 March 2015
Revised date: 8 April 2016
Accepted date: 1 May 2016

Please cite this article as: Kaisa Könnölä, Samuli Suomi, Tuomas Mäkilä, Tero Jokela, Ville Rantala,
Teijo Lehtonen, Agile Methods in Embedded System Development: Multiple-Case Study of Three
Industrial Cases, The Journal of Systems & Software (2016), doi: 10.1016/j.jss.2016.05.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jss.2016.05.001
http://dx.doi.org/10.1016/j.jss.2016.05.001


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• Examines three cases on applying agile practices into
embedded system development.

• Visibility of work and system-wide understanding in-
creased.

• Improved communication diminished the need for in-
ternal documentation.

• Slow hardware development and specialization of team
members challenged agile methods.

• If not possible to present working product, visualize
the progress in other ways.

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Agile Methods in Embedded System Development: Multiple-Case Study of Three
Industrial Cases

Kaisa Könnölä (corresponding author), Samuli Suomi, Tuomas Mäkilä, Tero Jokela, Ville Rantala, Teijo Lehtonen

Technology Research Center, University of Turku, Turku, Finland
Email: { kmkkon, smsuom, tusuma, tetajo, vttran, tetale } @utu.fi

Web: http://embedded.utu.fi

Abstract

Agile methods are widely utilized in software development but their usage in embedded system development is often
limited to software. A case study of three industrial cases was carried out to understand how to tailor agile methods
effectively including also hardware development.

Agile practices, mostly derived from Scrum, were tailored to fit the needs of each team and the method development
was closely followed. Surveys conducted in the beginning and in the end of the cases were compared and complemented
with interviews to understand the new working methods and their effects.

Case evidence shows that interdependencies between work of each developer were taken into account better, visibility
over the whole product increased and need for internal documentation diminished due to improved communication, but
dividing hardware tasks into iterations was experienced difficult. With some tailoring, agile practices are beneficial also
in the embedded system development.

To successfully adopt agile methods into embedded system development, the team must consist of all the project
members, the natural cycle lengths of different disciplines and different knowledge between the developers must be
accepted and built upon, and the progress of the product must be presented or visualized in the end of each iteration.

Keywords: embedded system, agile, agile method, case study

1. Introduction

Agile methods, such as Scrum and Extreme Program-
ming, are widely used in software development. They
emphasize customer collaboration, self-organizing teams,
working software throughout the software development and
welcoming changes in any phase of the development. Ag-
ile methods aim to make the development work more ef-
ficient and productive by improving the process flexibility
and transparency using iterative and incremental develop-
ment. In practice, the methods give guidelines on how to
organize the teamwork according to the agile values [1].

Embedded systems are specialized computer systems
that are designed for specific tasks and typically consist
of software and hardware. The agile methods are still not
widely utilized in the development of whole embedded sys-
tems and most of the present usage is focused on software
development [2]. The hardware development, typically in-
cluding electronics and mechanics, is left out of the scope of
the agile methods. Enhancing teamwork and focusing on
the essential could bring benefits also to embedded system
development, but the special characteristics of combining
hardware and software development must be taken into
account.

In this paper, three cases of bringing agile practices
into embedded system development are presented. Sec-

tion 2 provides the background for the agile development
and especially provides a view of the agile methods and
their opportunities and challenges when utilized in the em-
bedded system domain. Section 3 presents the case study
method utilized in the three cases. The industrial cases,
the practice definitions and adaptations in the companies
especially from the embedded development point of view
are presented in Section 4 . A survey on the ways of work-
ing was conducted before and after the method evolution,
and the differences and similarities between these surveys,
i.e. the effects of the adopted agile practices, are evalu-
ated in Section 5 as well as the experiences of the teams
based on the survey and interviews. Before the conclu-
sions, in Section 6, recommendations for the adaptation
of agile practices into embedded system development are
given and the experienced benefits and drawbacks are re-
flected with software development.

2. Background

2.1. Agile Development

In 1970, Winston W. Royce introduced a method of
dividing the software development process into two phases
for small projects, analysis and coding, and into seven

Preprint submitted to Journal of Systems and Software May 9, 2016



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

consecutive phases for larger projects [3]. This straight-
forward model is currently referred to as the waterfall
model. Even though Royce implied that iterations were
needed when developing products with complex designs,
the waterfall model formed a commonly used basis for soft-
ware development for years. Alternative software develop-
ment methods, such as iterative and incremental develop-
ment, have also seen use during the decades [4] but they
did not gain wider popularity before the introduction of
agile software development in the turn of the century.

In the 1990s, some lightweight methods, such as Scrum
[5] and Extreme Programming (XP) [6], emerged as alter-
natives to the traditional approaches driven by up-front
planning. These methods emphasized small, co-located
and self-organizing development teams working close to
each other, taking advantage of frequent feedback gathered
from close customer collaboration, and embracing change
[7].

In 2001, a group of proponents of these lightweight
methods formed ”a Manifesto for Agile Software Devel-
opment” (commonly referred to as the agile manifesto)
which comprised four values and twelve principles listed
in Table 1 and Table 2, respectively [1]. The values and
principles of the manifesto encapsulate the common ideas
in different lightweight development methods into a new
concept of agile development. After the agile manifesto,
the research on agile software development has been in-
creasingly popular, especially after 2005 [8].

While the agile manifesto is written on quite an ab-
stract level, multiple agile methods, such as the previ-
ously mentioned Scrum and XP, provide practical ways
to achieve the goals behind the manifesto. Common to
all of them are iterative and incremental development,
close collaboration between all the stakeholders, welcom-
ing changing requirements even late in the development,
frequent delivery of working software, and trusting indi-
viduals in their work through self-organizing teams. When
developing iteratively, i.e. in short cycles making it possi-
ble to change the direction, and incrementally, i.e. adding
new working features on top of the current working prod-
uct, the product development process proceeds step by
step towards the final product in a controlled way without
comprehensive plans being written at the beginning of the
project.

While the presentation in the original manifesto is purely
directed to software engineering, there has been interest to
expand agile thoughts into other areas as well, for instance
to management and product development [9]. From an-
other perspective, methodologies and concepts that over-
lap with the agile manifesto had already been introduced
before the manifesto was published. For instance, ag-
ile manufacturing, while lacking a coherent definition, is
a collection of mostly high-level descriptions of compet-
itive manufacturing environments where companies need
to cope with irregular and unpredictable demand [10].

There are several recognized benefits of agile methods
in software development. The agile methods can have pos-

Table 1: Agile values presented in the Agile Manifesto [1].

We are uncovering better ways of developing soft-
ware by doing it and helping others do it. Through
this work we have come to value:

Individuals and interactions over processes and
tools
Working software over comprehensive documen-
tation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right,
we value the items on the left more.

itive effects on both productivity and wellbeing at work
[11]. The iterative development process helps equalizing
the burden during projects and eliminating the stress in
the final parts of projects. There exists several surveys
about the agile practitioners and their perceptions of bene-
fits and drawbacks of agile development. The 10th Annual
Agile Survey by VersionOne, a company developing agile
lifecycle management software [12], lists the following top
four benefits: 1) ability to manage changing priorities, 2)
increased team productivity, 3) improved project visibility
and 4) improved team morale/motivation. Similar effects
were also recognized in a survey made in the Finnish soft-
ware industry [13], where the top three benefits were 1) im-
proved team communication, 2) enhanced ability to adapt
to changes and 3) increased productivity. In a survey con-
ducted at Microsoft [14] in several teams, the benefits were
seen to be in improved communication and coordination
as well as in the capacity to deliver releases quicker.

Also some challenges in applying agile methods in soft-
ware development have been noted. According to the Ag-
ile Survey by VersionOne [12], the main barriers for fur-
ther agile adoption were the inability to change the or-
ganizational culture and the general organizational resis-
tance to change. In the survey conducted in Microsoft the
main challenges were at scaling, and also too many meet-
ings when utilizing Scrum were noted [14]. The survey in
Finnish software industry revealed challenges in top man-
agement support, customer/supplier collaboration, and cul-
tural change between development teams and the rest of
the business [13].

2.2. Agile Development of Embedded Systems

To gather accurate information about agile methods in
the embedded system industry, a systematic literature re-
view was conducted by the research group of the authors
in 2013 [2]. It was found out that agile development of em-
bedded systems is not a completely novel field of academic
research. Several papers have been published during the
last few decades and many embedded system companies

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: Agile principles presented in the Agile Manifesto [1].

1. Our highest priority is to satisfy the customer
through early and continuous delivery of valuable
software.
2. Welcome changing requirements, even late in de-
velopment. Agile processes harness change for the
customer’s competitive advantage.
3. Deliver working software frequently, from a couple
of weeks to a couple of months, with a preference to
the shorter timescale.
4. Business people and developers must work to-
gether daily throughout the project.
5. Build projects around motivated individuals. Give
them the environment and support they need, and
trust them to get the job done.
6. The most efficient and effective method of convey-
ing information to and within a development team is
face-to-face conversation.
7. Working software is the primary measure of
progress.
8. Agile processes promote sustainable development.
The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.
9. Continuous attention to technical excellence and
good design enhances agility.
10. Simplicity – the art of maximizing the amount
of work not done – is essential.
11. The best architectures, requirements, and designs
emerge from self-organizing teams.
12. At regular intervals, the team reflects on how
to become more effective, then tunes and adjusts its
behavior accordingly.

are applying agile methods in one way or another. How-
ever, based on the literature review, most related work
about the utilization of agile methods is centered around
embedded software development while hardware is left out
the scope of agile practices [15] [16] [17]. Additionally, it
has been concluded that agile development can even be ap-
plied to mass-produced embedded systems where the full
R&D process cannot be agile [18]. However, the hardware
development is again left out of the scope in the described
cases.

In a company where hardware development is done in-
house or where the work consists entirely of hardware de-
velopment, the question about the applicability of agile
practices in hardware development cannot be dismissed.
While there are more general-purpose methodologies (e.g.
agile manufacturing) available that might be applicable in
some types of embedded system development, guidelines
on how to organize development work on a weekly basis do
not exist for embedded system development in the same
way as they do for software development (e.g. Scrum and
XP).

Many of the principles of the agile manifesto, such as
the principles concerning people and teamwork, can be di-
rectly transferred over to embedded system development
while some of them require changes or reinterpretations.
For instance, the manifesto declares that working software
should be the primary measure of progress: in the embed-
ded system development, the principle can be interpreted
in a way that the primary measures for progress are actu-
ally demonstrations of the whole system being developed.
[19]

2.2.1. Opportunities

The popularity of agile methods in software develop-
ment is due to the benefits they bring. Agile methods have
positive impact on the embedded system development, at
least in the software domain [2] and can be expected to
have opportunities also in the embedded system develop-
ment. The main opportunities for the agile methods in
embedded system development are mostly related to the
discipline and the fluency of development work as well as
the efficiency, productivity and flexibility.

System-wide understanding. Agile practices have been noted
to have positive effects on communication inside the devel-
opment teams [20] in software development. Better com-
munication will enhance the system-wide understanding,
which can be the most focal benefit for embedded sys-
tem development. Agile practices may give tools for un-
derstanding better the interdependencies between the dif-
ferent sections of the system being developed and conse-
quently align the development work better.

Managing changes. Static requirements and specifications
are often unrealistic in many new product development
projects and embedded system development is not an ex-
ception. The plans change during the project and the
final product is in many ways different from the domi-
nant impression at the beginning of the project. The agile
methods help to handle the changing requirements in the
projects where the specification evolves towards its final
form iteratively throughout the project. Typically, devel-
opment teams are forced to cope with the changing re-
quirements by working overtime, for example. Agile prac-
tices accept the changing requirements as a convention and
give tools to handle them [7].

Managing interdependencies fluently. An embedded sys-
tem development team is typically a multidisciplinary team
with different domains of expertise where there can be
complex interdependencies between the work of different
people. These kinds of teams may face situations where
a developer has to wait for someone else to finish a task
before another task can be proceeded with. These inter-
dependencies cause critical paths where the fluency of the
work is endangered. Agile practices attempt to improve
the system-wide understanding and transparency in a way
that these kind of situations could be solved.

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.2.2. Challenges and Obstacles

Opposite to the opportunities, the special domain of
embedded system development presents also challenges to
the core ideas of agile development. These need to be taken
into account, when tailoring agile methods in embedded
system development.

One change may affect the whole system. The interactions
between hardware and software are sensitive to changes
[15]. Any changes in the design can cause variations in
timing or other behavior inside the system. While the ag-
ile methods accept the fact that changes will occur and try
to postpone the decisions as late as possible, in hardware
development these interactions tend to force at least some
up-front design to be done [21] and hinder the usage of
refactoring, a practice used for instance in XP [22]. Crit-
ical interfaces and characteristics of the developed system
should be defined early enough in the process to give space
for agile development in these given boundaries.

Delivering a new version of a product in short cycles is
challenging or even impossible. In software development,
it is possible to release small increments of working and
tested software at the end of each iteration. In hardware
development, the natural cycle of development is longer
[23] consisting of various more or less systematic tasks,
such as circuit board design, prototype manufacturing,
testing and verification. Also the cost of manufacturing
a new circuit is high and thus creating a new working
product consisting of new hardware parts every few weeks
is often impossible. These factors cause the inevitable
waterfall-shaped process on some phases of the product
development and require the system level documentation
to be written [21].

Teams consist of specialists of different disciplines. Ag-
ile methods promote cross-functional teams where every
member can complete any task and, rather than only being
responsible for their personal work, is collectively respon-
sible for the outcome of the whole product development
project with other team members. In embedded system
development, the individual team members are usually
highly specialized in different professional tasks either in
hardware or software development, creating natural barri-
ers that are likely to prevent the circulation of tasks inside
the whole development team. The software–electronics
and electronics–mechanics interfaces, both technical and
interpersonal, highlight the importance of transparency,
collaboration, efficient documentation and communication
between the different disciplines. In an organization, where
agile practices are already successfully utilized, achieving
cross-functionality might be possible in a way that person-
nel from different disciplines understand each other’s work
better and can therefore synchronize their work more ef-
ficiently. Complete cross-functionality, i.e. everyone being
able to complete every task, would solve the problem, but
is likely impractical, since it would require the team mem-
bers to have multiple professions and specialization areas.

3. Case Study Design

While there are challenges and obstacles in the adop-
tion of agile practices in the embedded system develop-
ment, such as developers with different knowledge and dif-
ficulties in releasing a new version in every iteration, the
core ideas behind the agile methods can offer benefits for
embedded system development as well. If the obstacles
can be avoided, the opportunities, such as better system-
wide understanding and managing both changes and inter-
dependencies, can be very beneficial in various embedded
system development projects. Evidence for understanding
the challenges, understanding the changes required to the
agile methods and supporting the benefits of the adoption
needs to be gathered. For gathering evidence, a case study
provides a valuable opportunity to understand the effect of
agile methods in embedded system development in real-life
context.

3.1. Case Study Methodology

A case study can be defined as ”an empirical inquiry
that investigates a contemporary phenomenon within its
real-life context, especially when the boundaries between
phenomenon and context are not clearly evident” [24].
Even though this definition originates from social sciences,
it fits well for software engineering case studies, where
many factors impact the outcome of a software engineering
activity [25].

In software development, the case study methods have
been defined mostly based on other research areas such
as social sciences or medicine. The first recommendations
for the use of case studies on software engineering were
focused more on quantitative data in the mid-90s [26], but
later on also qualitative data was taken into account at
the end of the 90s [27]. From there the recommendations
evolved for instance to guidelines or templates [28] [29].
One of the first papers in software engineering to report
the utilization of case study methodology was published
in 1988 by Curtis et al [30]. In the recent years also case
study papers about agile software development based on
the templates and recommendations have been published
[31].

A case study aims to understand better how and why
the engineering process works and to find a way to im-
prove it. Following a case study protocol helps to ensure
the quality of a case study, i.e. to take into account the
theoretical basis including formulating research questions,
using triangulation, presenting the chain of evidence with
traceable reasons and arguments, fully documenting the
case study and formally reporting the case study [24].

In our cases, a case study approach based on [25] is fol-
lowed. The case study is both i) explanatory, i.e. seeking
understanding over the effects of agile methods in embed-
ded system development and ii) improving, i.e. trying to
improve the development process.

The case study process, illustrated in Figure 1, can
be divided into three phases, which partially overlap. The

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Interviewsfand
survey Productfdevelopmentfproject

Retrospective RetrospectiveRetrospective

Interviewsfand
survey Analysis

Corefprojectfwork Methodfdevelopment Researchfactivities Meetingfnotes

Group
discussions

Group
discussions

Group
discussions

Preparation
workshops

Understandingfcurrentfprocess

Tailoringfandfmonitoring

Understandingfprocessfchangesfandfeffectsfoffagilefmethods

Figure 1: The case study process.

first phase is to understand the current situation inside the
company. The second phase of the study consists of devel-
oping and tailoring agile practices to fit both the embed-
ded system development and the company culture. The
aim of the third phase is to gain knowledge on changes of
the process through close follow-up in retrospectives and
group discussions, and also to understand the effects of the
changed process through a survey and interviews.

3.2. Research Design

The objective of the case study carried out on this work
is to investigate how agile methods can be applied to em-
bedded system development for the purpose of understand-
ing what benefits and challenges agile methods have when
utilized in embedded system development.

Since agile methods offer improvements in software de-
velopment, the theory is that agile methods can offer ben-
efits to embedded system development similar to benefits
in software development. However, the special characteris-
tics of embedded system development need to be taken into
account. The most closely related theory from the exist-
ing literature [12] [13] [14] presents benefits and drawbacks
connected to the use of agile methods in pure software de-
velopment. Also, [15] [16] [17] suggest that there is need
for modifications to agile methods in embedded context
but analyze the situation only from the embedded software
development point of view thus omitting the hardware de-
velopment.

In order to gather more compelling evidence, multiple-
case design was utilized [24]. In the three cases, the devel-
opment process was changed to utilize agile development
in order to find answers to the following two research ques-
tions:

• RQ1: How and why do agile methods need to be tai-
lored in order to take advantage of their full potential
in embedded system development?

• RQ2: What are the experienced benefits and draw-
backs of agile methods in an embedded system de-
velopment project and how they differ from software
development?

The research questions are related to the case study
setting so, that the second phase of the study, i.e. moni-
toring and tailoring agile methods focuses on the first re-
search question. The third phase answers to the second
question about the benefits and drawbacks the developers
experienced.

3.3. Case and Subject Selection

Three cases provided a possibility to apply and monitor
agile methods in a real-life environment in three compa-
nies that agreed to take part into the research project. The
development of embedded systems in each of these three
companies included also new hardware development, pro-
viding a possibility to understand better the special char-
acteristics and challenges hardware development poses to
agile methods. In each of the three companies one team
was selected as a unit of observation.

Case A was conducted in a digital RFIC team of LM
Ericsson, a multinational company that provides various
devices and services in the field of communications tech-
nology. The company of case B, Nordic ID, develops and
manufactures mobile and fixed RFID and barcode reader
devices and services which can be used in retail stores
and warehouses, for example. Case C was conducted in
Nextfour Group, which develops embedded systems for
medical, industrial and safety-critical markets based on
their clients’ requirements.

In the case projects, the outcome of each case project
was either a whole embedded system or a part of it. In
Nordic ID and Nextfour, the products usually consist of
both software and hardware. In Nordic ID, software and

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

electronics development is done in-house, while the me-
chanics design and manufacturing are outsourced, whereas
in Nextfour the design of software, electronics and mechan-
ics is done in-house and only manufacturing of mechanics
is outsourced. In Ericsson, the selected team was a hard-
ware development team, specifically developing integrated
circuits.

All three cases were conducted in Finland. In Nordic
ID, the team was resided in two locations within approxi-
mately 50 km apart from each other, whereas in the other
two companies the team resided in one location.

The characteristics for each case project is presented in
Table 3. These three different case studies provided a rep-
resentative collection of different kinds of teams developing
embedded systems. An important difference between the
teams was, that for case C, agile methods were somewhat
familiar already, whereas for cases A and B they were in-
troduced for the first time.

The selection of the project teams in the companies,
where the new practices were piloted, was based mainly
on availability and typicality of the project. In case A,
the team was selected beforehand and the driving factor
for the project selection was the availability of the project,
i.e. what was planned for the team for that time period.
Inside the large company, the team typically designs simi-
lar products, so the typicality was also ensured. In case B,
besides availability, also size and typicality affected the se-
lection of the case project: the desire of the company was
that the case project would include a relevant portion of
the R&D personnel and it would be a new product devel-
opment instead of a customization for a special customer.
In case C, the case project was desired to include both
hardware and software development as was typical for the
products of the company. The internal platform develop-
ment was selected, since it enabled more experimenting
than a customer project. The lack of a real customer was
simulated by giving the CEO of the company the customer
role for the project.

3.4. Data Collection and Analysis

Five different data collection methods were used to
ensure data triangulation: company specific process doc-
umentation, semi-structured interviews, surveys, partici-
pant observation and focused group discussions. The sur-
vey produced quantitative data, whereas other collection
methods were qualitative.

3.4.1. Understanding the Initial State

In the initial phase, there were three methods of data
collection: documentation, interviews and a survey. The
company specific process documentation gave the first in-
sight on how the development process was organized inside
the company and provided a basis for forming the inter-
view guide.

To understand the influences of the process to the daily
work of the employees, semi-structured interviews were

conducted for different levels of employees from the de-
velopers to the team leader or the CEO depending on the
size of the company. The interviews were mostly individ-
ual interviews, but some developers were interviewed to-
gether. The number of interviewees was 12 in case A, 8 in
case B and 5 case C. There were always two interviewers:
one of the interviewers took notes which were completed
afterwards using a recording when needed. The utilized
interview guides covered all the areas of the product devel-
opment: requirements and specifications, communication
within and outside the team, team work and work division
inside the team, testing and its organization, development
process and feedback. Also the challenges in the current
process were discussed. From the completed notes, the
data was rearranged into the areas of the interview guides
and a report was created. This report was presented to the
company to provide the understanding about the current
process by the researchers.

A survey for the whole team or R&D department gave
insight into whether the aspects found in the interviews
were general or personal. This survey was created based on
the knowledge gathered from the process documentation
and the initial interviews as well as from general knowl-
edge about the agile methods and the product develop-
ment. The approximately 100 statements covered similar
areas to the interviews and the areas with some example
questions are presented in Table 4. The utilized format
was a four-level Likert scale for agreement (strongly agree,
agree, disagree, strongly disagree) or five-level Likert scale
for frequency (never, seldom, sometimes, often, always or
too seldom, somewhat too seldom, in ok intervals, some-
what too often, too often) or amount (too little, somewhat
too little, adequately, somewhat too much, too much). In
addition to the statements the survey contained open ques-
tions about the negative and positive sides of the work in
terms of productivity, fluency and meaningfulness. The
survey was conducted in Finnish.

The team of researchers distinguished from the survey
data the most problematic issues: basically these were the
statements with the most disagreements. For example in
case B, two thirds of respondents somewhat disagreed with
the statement I know all the time what other developers in
other teams of the project are currently working on and
only one third somewhat agreed. Taking into account the
context, i.e. the teams being the software and hardware
teams, this was seen as one of the improvement areas.
These results were grouped together to themes, such as
insufficient feedback, and for each theme one researcher
was responsible for analyzing the interview data in order
to find out whether a similar theme existed in the inter-
views. Then the researcher also gathered practices related
to the theme from agile methods. After going through the
themes and possible solutions to them with the research
team, the themes and a first proposal of possible agile
practices were presented to the company representatives.

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 3: The case projects.

Case A (Ericsson) Case B (Nordic ID) Case C (Nextfour)
Project Upgrade work on older

RFIC product design
Already started new
RFID reader development
project

Internal platform develop-
ment

Team com-
position

Four hardware design
groups

Hardware and software
development distributed
in two locations

Hardware and software
development

Team size 14 (2–5 in each group and
a team leader)

7 (3 software and 3 hard-
ware developers, a project
manager)

5 (2 hardware and 3 soft-
ware developers; out of
which 2 worked in this
project only half-time)

Case study
length

5 months 6 months 2 months

Case study
schedule

Nov. 2013 – Mar. 2014 Oct. 2013 – Apr. 2014 Aug. 2013 – Oct. 2013

Previous
agile
knowledge

None None Some

Size of the
company

Large SME SME

3.4.2. Method Tailoring in Case Projects

Before beginning to change the current practices, a
workshop with researchers and company representatives
was organized to select and refine the initial practices for
the case project. While the suggestions came especially in
the beginning from the researchers, it was a decision of the
team which practices to utilize and how, as well as how to
alter the practices during the case.

The data for the evolution of the practices was collected
through participant observations and group discussions.
The researchers participated into the meetings of the new
process as observing participants taking notes on the pro-
cess related events, e.g. who were present and how the
practices were implemented. Especially retrospectives (see
Table 5) offered a good insight into how the team changed
the practices to better fit their needs, but the researchers
also observed some of the other meetings. Group discus-
sions with selected team members were also organized once
in every iteration. The participants in the group discus-
sions from the company side were the facilitators, i.e. a
member or members of the team taking responsibility of
promoting the new practices inside the team, and the team
leader or the project manager. These discussions provided
insight into what had happened between the observations
and a possibility to discuss about how agile methods could
help the team in their challenges.

The meeting minutes and observation notes of the re-
searchers were organized into a pilot diary. After the case
projects, the data in the diaries was organized into cate-
gories of different practices, containing information about
how the practices evolved during the cases. From the prac-
tice categories, themes were specified: whether the selected
practice or a modification in it was adopted directly from

agile methods, tailored especially to fit the embedded sys-
tems development or tailored due to the company culture.
The tailoring required by the embedded system domain is
discussed in more detail in Section 4.

3.4.3. Understanding the Effects of Agile Practices

The end survey was conducted after the case project.
In addition to the similar questions to the initial survey,
the teams were also inquired about each new or altered
practice as well as about the current practice set and its
utilization. Interviews were conducted again to provide a
way to understand how the team had experienced the new
working methods and to understand what had happened
after the case project ended. In these interviews the results
of the surveys were discussed, too. The number of the
interviewees in these interviews were 2 in case A, 5 in case
B and 3 in case C.

The data collected was analyzed after the end survey.
The initial and end survey were statistically compared,
giving insight to the changes between the surveys. The
noted changes were organized to themes and the end in-
terview data was also organized according to these themes.
The usability, usefulness and potentiality of the practices
were evaluated to see if there was any practice which stood
out from other practices. Open answers related to the
practices were grouped according to each practice in order
to see which themes were popular within each practice.
All of the results of the analysis were discussed with the
research group before presenting the results to the com-
pany in a meeting and in form of a report. The results
and their analysis are presented in Section 5.1.

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 4: The survey areas and example statements.

Covered area Description Example question/statement

Background Work experience, current position, dis-
cipline.

How long have you worked in this com-
pany?

Documentation Documentation sufficiency in terms of
knowledge transfer, own usage, reuse,
common working methods.

Documentation is sufficient in order to
transfer knowledge between teams.

Communication
and knowledge
transfer

Availability of required knowledge of
work done by others, general informa-
tion availability, amount of meetings,
confusion handling.

I know all the time what other devel-
opers in my team are working on.

Teamwork Task distribution, possibility to af-
fect own tasks, shared responsibility in
the team towards common goals, team
members supporting each others.

The work objectives are specified to-
gether in the team.

Requirements
and specifica-
tions

Amount of change of requirements and
reacting to them, possibility to affect
specifications, modularity and reuse.

I can affect the specifications of the
products.

Product devel-
opment process

Process usefulness, process evolution
from high level to details, division of
the process to phases, risk manage-
ment, process development.

The project goals are divided into
clearly understandable phases.

Challenges at
work

Schedules and possibility to affect the
goals, work amount and change in
it, handling multiple projects at same
time.

It is difficult to estimate the amount of
work for a specific time period.

Tools Tool usage and usefulness. Project tools (e.g. bug reporting sys-
tems, version control) make it easier
to organize my own work.

Feedback Individual and team feedback, learning
from mistakes and successes.

Feedback received by the team is pro-
cessed systematically.

Work efficiency Work efficiency, quality and prioritiza-
tion.

Prioritization of work is fluent and I
get sufficient support for it if necessary.

Customer
interface

Communication and collaboration
with different customers (inside or
outside the company, depending on
the situation).

There exists a common understanding
over the features and their prioritiza-
tion between the client and the devel-
opment team.

Testing Testing and verification throughout
the product development process.

Testing is taken into account already
in the definition of the project.

3.5. Validity and Reliability

Having three different cases provides a possibility to
compare the cases and especially to find out whether there
is a difference between the company for which agile meth-
ods were already somewhat familiar and the companies
for which they were completely new. On the other hand,
if similarities between the companies were found, it would
give the possibility to generalize the findings in order to
give more understanding about the phenomena of agile
embedded system development.

From the construct validity point of view, it is possible
to discuss the used terms during the interviews in order
to make sure that they are similarly understood by the
interviewer and the interviewee. This is not possible in a
survey. Thus it was seen important to return the results to
each team in separate meetings to clarify the interpretation
of the questions. The researchers were also often involved
in the meetings of the companies during the cases and
thus deepened the understanding on how the participants
interpreted the terms in order to utilize them similarly.

There are always some changes occurring inside the
companies during the cases regardless of the existence of

the case study. It is possible, or even probable, that these
changes also affect the responses in the surveys, causing
a threat to the internal validity. The interviews in the
end complemented the surveys, and at least some of the
other changes than the agile methods in the companies
were mentioned by the interviewees. For example, in case
A, a new hour reporting tool for working hours was taken
into use during the case project, and it affected the opin-
ions about the project and process tool usage.

There were challenges to the external validity especially
with the end survey, where the answer rate diminished
from the initial survey and the number of respondents was
quite small for a proper statistical analysis. The results
were generalized as results of the whole team, when only
67% – 75 % of the employees answered to the survey. Even
though there were three teams in three companies, both
the company and the team culture affect the results from
the generalization point of view. The results of the surveys
were always discussed with the team in order to give the
team a possibility to reason their answers to be able to
remove the effect of the company culture.

Researcher bias is one threat to reliability, especially

9



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

with the qualitative data collection and analysis. Some
countermeasures to researcher bias were taken: 1) in the
interviews, there were always two researchers present, 2)
in the meetings, there were often present more than one
researcher, 3) the analysis was discussed with the whole
research team and 4) all the reports delivered to the com-
panies were revised by several researchers and discussed
with company representatives.

Another threat to reliability is to consider only one
point of view. Often the change of a process in a company
is led by the management or the team leader, leaving the
team only to follow and implement the decisions. To get
a broader view, the interviews covered all the disciplines
and roles of the team in order to gain understanding from
several viewpoints.

From the reliability point of view, the researchers in-
fluenced the selection of practices by presenting a set of
possible solutions. The responsibility of selecting and re-
fining the practices was left to the team. This was done to
maximize the benefits for the companies, which was also
one of the objectives of the project.

4. Method Evolution in Case Projects

The adaptation of agile practices to embedded sys-
tem development started with finding the similarities be-
tween software engineering and designing of electronics
and mechanics, and examining which agile practices could
be straightforwardly utilized or customized to fit into these
areas. By starting from the more general practices, the in-
fluence of the practices can be seen and the need for more
field specific practices recognized. Also, the current pro-
cess and the challenges faced in each of the companies
played an important role in the customization of the prac-
tices, and the agile values guided both the selection and
the tailoring of the practices.

4.1. Understanding Initial State

In the initial state, the interviews and the survey re-
vealed some challenges in each company, which motivated
for changing the ways of working.

In case A, the team was originally divided into three
groups with specific working areas. The groups acted as
customers to each other: e.g. the output of one group was
utilized by the other groups. The communication was
based mostly on face-to-face communication. According
to the survey and the interviews, three key areas of im-
provement were indicated: 1) fluency and planning of the
work, 2) feedback enabling continuous improvement and 3)
internal communication to create transparency. According
to the survey, the amount of external disturbances, such
as old projects or new requirements to the current project,
was endangering the fluency of the work. Neither the team
nor the individuals received adequate feedback. Also, the
amount of documentation was seen inadequate and the
team meetings were infrequent.

In case B, the product development process was plan-
driven and based on milestones. From the developers’
point of view, milestones were mainly seen as deadlines
for documentation, and the actual structure of the devel-
opment process was considered somewhat fuzzy. Basically
the backbones of the development process were the highly
experienced employees with intrinsic knowledge on what to
do and when. The tools used and the documentation cre-
ated differed between the hardware team and the software
team, and these teams had difficulties in understanding
each other’s work and priorities. This had led to a point
where the focus was more on the tasks at hand, instead
of creating a product as a unified project team. Accord-
ing to the initial interviews and the survey, the identified
four key areas of improvement were: 1) the transparency
of the vision and motives behind the requirements, 2) the
common tool usage and documentation practices, 3) the
clarity of the development process, and 4) the experience
of both team and individual work. From these four chal-
lenges the vision related challenge was left to the future
projects, since the case project had been ongoing for a
while and this challenge was related to the beginning of a
project.

In case C, some agile practices had already been taken
into use, but were not systematically utilized in all the
projects. The used methods varied between projects based
on the customer needs. The agile practices were used
mostly in software development and taken mainly from
the Scrum method. The developer teams were already
quite self-organizing, and while many team members had
expertise in different areas, the team was somewhat cross-
functional. Some developers also took part in process de-
velopment tasks in the company. Based on the interviews
and the survey, the focus of the case project was decided to
be 1) refining and formalizing the existing processes and
2) testing and feedback practices. The current develop-
ment process was seen to be too heavy and no one was
responsible for it. The testing practices were not seen to
be systematic enough and the feedback was not received
adequately.

4.2. Practice Evolution in Embedded System Development

In the beginning of the case projects, the researchers
presented their ideas of the agile practices fitting each com-
pany and the teams selected and defined the details and
practical implementations of the practices. Even though
the presentations offered ideas from several agile meth-
ods, the initial method selected by the companies ended
up having most elements from Scrum. Later on, the teams
changed and refined the practices according to their needs.

Initial backbone of the new agile method. In general, in all
the companies the backbone of the method was initiated
by the researchers and ended up being similar: iterations,
which started with planning of the work for the iteration
and ended with reviewing the work done including also
retrospecting how the method could be further improved.

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The tasks under work were held in a backlog and the work
during iteration was followed-up in status meetings. The
two agile roles utilized in all the cases were a sponsor and
a facilitator. The role of the sponsor was to provide sup-
port from the management level of the organization for the
agile team. The facilitator supported the team from the
inside to utilize the agile practices, similarly to a Scrum
master in Scrum. Self-organization, i.e. giving the team a
possibility to choose how they can best accomplish their
work, was a key practice in all the cases, and the teams
had a possibility to change also the process in a way they
wanted. Especially in case C, self-organization was em-
phasized and discussed e.g. in every retrospective. The
team defined details of each practice are collected in Table
5 including also short practice explanations.

The retrospectives, while not differing from software
practices, offered a possibility to experiment and tailor
the practices to better fit the needs of the project team
and were thus an essential part of the practice evolution
in all three cases. The retrospectives were mostly based
on a new practice called the agile checklist, which was in-
specting the selected practices, finding out what was good
and bad and what required changes in them.

System-wide understanding. In agile software development,
the team has both developers and testers, i.e. it consists
of all the people related to the project. In the three cases,
the scope of the team was widened already from the be-
ginning to include both software and hardware developers,
as well as testers. The definition of a team was redefined
especially in cases A and B. In case A, earlier the team
was splitted to four groups of their individual design roles,
but now the work was planned as a whole team. In case B,
earlier the team had composed of people of the same disci-
pline, but now it was reformed to include all the members
of the same project. The motivation behind this was to
widen the understanding over the system and the work of
other disciplines in order to manage the interdependencies.
In the case C, the agile methods were already in use and
the team already consisted of both hardware and software
developers. The agile value of individuals and interactions
was emphasized by making the team members collaborate
more.

Integrating different disciplines. The slower nature of hard-
ware development affected the practices. In case A, the
status meetings were first held in three small groups, but
after the first iteration the team decided to integrate them
into one team meeting of fifteen people. At the same time,
the frequency of the status meetings was diminished from
5 to 3 times in a two-week iteration. The team made the
changes in order to enhance the information flow but also
to ensure that the time is spent effectively in the meet-
ings. In case B, the iteration length was decided to be
tied to a natural development event (such as the end of
layout design) in the beginning. This selection of iteration
length led the first iteration to be 7 weeks. After the first

iteration, the team changed the iteration length into ex-
actly 4 weeks in order to be able to plan and execute the
iterations properly – since it was a challenge in the 7 week
iteration. In cases A and B the status meetings were held
only once or twice a week instead of the daily standups
of Scrum, since the team experienced that in one day the
design evolves quite little, and thus discussing the work ev-
ery day would have been a waste of time. These changes
improved the interactions between individuals, as specified
in the agile values, through making the team members col-
laborate regularly.

Reacting to changes. In case B, the availability and deliv-
ery time of components was an issue in some iterations.
Agile methods made this issue more visible than before,
making it possible to take it into account. Sometimes
there were new features added to the backlog, or old ones
dropped, when seen feasible. In all three cases, the short
iteration was utilized as a checkpoint to see where the
product was heading to and made it possible to change
the direction when required.

In case A, there was a need to manage sudden new
requests for the current product from other departments of
the company, since they were interrupting the daily work.
To address this, a spare planning meeting, a possibility to
adjust the content of the ongoing iteration, could replace
the status meeting in the middle of an iteration. The team
utilized this practice several times.

The changes in the cases came more from the improved
understanding about the product status during the devel-
opment. Agile practices gave the possibility to react to
these changes systematically when planning the work for
the next iteration.

Managing interdependencies. The planning meeting was
seen as a way to manage interdependencies between the
hardware and the software development. In cases A and B,
each individual or discipline had already been splitting the
work into tasks before the planning meeting. The meet-
ing focused more on aligning the work and going through
the amount of work planned inside the iteration. In the
case C, one of the team members was always responsible
for each requirement, even though he/she could divide it
into several tasks for several team members. Sometimes
the planning meeting was divided into two parts: first the
requirements were divided into tasks in groups of each dis-
cipline, and only then they were checked with the whole
team in order to align the work. Both product and iter-
ation backlogs were utilized by all three teams and they
presented the work of the whole product team, not only the
work of each discipline. Also the status meetings served as
a place to check the schedule of the tasks which affected
each other. The planning meeting differed from Scrum
method: the team did not split the work into tasks to-
gether, but planned the work more within disciplines, and
then aligned the work during the planning meeting.

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 5: The practices utilized in the case projects.

Practice Description Case A
(Ericsson)

Case B
(Nordic ID)

Case C
(Nextfour)

Iteration A key feature of the agile ap-
proach. A project consists of
a sequence of iterations, the
length of which is pre-defined.

Length 2 weeks Length 4 weeks Length 2 weeks

Product back-
log

List of features that are known
to be necessary to finalize a
product.

Custom
spreadsheet
based

Text and
spreadsheet

Bug tracker
tool

Iteration back-
log

List of tasks that are known to
be necessary to finalize an iter-
ation.

Custom
spreadsheet
based

Bug tracker
tool

Bug tracker
tool

Iteration plan-
ning

A meeting for the team in
the beginning of an iteration,
where the goals and the func-
tionality of the next iteration
are decided.

Used Held via tele-
conference

Used

Spare iteration
planning

A meeting for the team that
is arranged, if necessary, to
enable the team to react to
changes in requirements in the
middle of an iteration.

Used a couple
of times during
the project

Not used Not used

Review A meeting at the end of each
iteration, where the team and
other stakeholders attend. A
demonstration of the product
is presented in the meeting and
the work done in the iteration
is inspected.

Used Held face-to-
face

Used

Retrospective A meeting with the purpose
to learn what works and what
does not work in the current
working methods and make ad-
justments for the next itera-
tion.

Used Held face-to-
face

Used

Status meet-
ings

Meetings during the iteration
to keep track of the progress of
the team and share knowledge
of the tasks and challenges cur-
rently under work.

Held two to
three times in
an iteration

Held weekly us-
ing teleconfer-
ence

Held every day

Maintenance
hour

The last hour of each work-
ing day reserved for mainte-
nance tasks. Used for reducing
the interruptions to the current
work.

Tested in the
case project,
but not contin-
ued

Not used Not used

Agile roles Roles utilized in the case
projects.

Facilitator,
sponsor

Facilitator,
sponsor

Facilitator,
sponsor, em-
phasized
self-organizing
teams

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

When the content of each iteration was planned to-
gether, it shifted the focus away from the documentation
towards the product according to the agile values. Man-
aging the interdependencies between the work of different
developers was not tied only to the documentation and
its readiness, but the tasks dependant of each other were
agreed in the planning meeting and followed-up in the sta-
tus meetings. This way the different parts of same feature
were implemented simultaneously.

Working product. In contrast to software development, ar-
ranging the review meeting in embedded system develop-
ment was difficult as there was not a working product to
be presented in the end of every iteration. Instead the
progress of the product and the work accomplished was
reviewed. In cases A and B, the review meeting was a
new practice. It focused on reviewing the tasks defined for
the iterations and either closing them together or inspect-
ing the statuses of the unfinished tasks. Even though this
improved the knowledge of the progress of the product, it
kept the focus on quite a detailed level. In case C, the team
formalized a review template, which contained inspection
of the main goal of the iteration, possible demonstration,
going through the finished requirements against the defini-
tion of done, backlog prioritization and agreeing the goal
for the next iteration with the customer. The demonstra-
tion was not obligatory and it was presented only when
appropriate.

Utilization of backlogs was seen as a way to define the
product at given time. Each team developed best prac-
tices for the implementation of the backlogs. In case C,
there were three levels of backlogs: between the product
backlog and the iteration backlog was a milestone backlog
containing requirements which needed to be accomplished
before a certain milestone. Also in case A, the need for re-
lease planning was noticed at the end of the case project,
instead of only a long term product backlog and a short
term iteration backlog. In case B, the same issue was tack-
led with the product backlog, where the requirements of
each feature were specified as maturity steps to be devel-
oped inside the iterations.

In case A, maintenance requests interrupted the cur-
rent project. To handle them, a practice called mainte-
nance hour was introduced. As the last hour of every day,
it was utilized to handle all the support requests received
during the day. The idea of this arrangement was to reduce
the interruptions in the current project due to the mainte-
nance of previous products through categories: the request
implementations were either postponed through the prod-
uct backlog or implemented during the maintenance hour.
As a rarely occurring exception, critical maintenance re-
quests could be taken into execution immediately although
affecting the current iteration. However, the team dis-
carded maintenance hour and interruption practices after
a short trial, partly due to other departments of the com-
pany not understanding or respecting the practices but
also because the developers eventually did not consider

them beneficial.
The reason for the trial of maintenance hour was to en-

sure that the focus would be kept in the current product
without sudden interruptions. The utilization of review
and backlogs shifted the focus from the plans to the prod-
uct under development, as specified in the values of the ag-
ile manifesto. When the iteration content was agreed and
checked together and the understanding of the progress
of the product was more visible, there was a better un-
derstanding on how the individual tasks influenced the
progress of the product. Still, the agile idea of having
a working and deliverable product all the time required
the most interpretation.

5. Results of Surveys and Interviews

In all the companies, the majority of the respondents
of the initial and end survey were the same and this pro-
vided a possibility to compare the survey results through
statistical methods. The answer rate decreased from the
initial survey to the end survey in each case as presented
in Table 6.

In addition to similar statements as in the initial sur-
vey, the end survey contained also a new collection of state-
ments about the experiences of each individual practice
and the utilization of the new methods. The survey anal-
ysis was complemented with interviews, a researcher group
analysis, opinions shared when presenting the results, and
answers to the open questions about the utilized agile prac-
tices.

5.1. Initial and End Survey Comparison

The quantitative analysis between the initial and end
survey was done with a Wilcoxon signed rank test, which
is a test of difference in location between two dependent
samples [32]. To be able to utilize a test of dependent sam-
ples, only the respondents who took part in both surveys
were taken into the statistical analysis (see Table 6). From
the approximately 100 questions asked, here are presented
the ones, where the statistical significance level (p-value)
is below 0.05 according to convention. The significance
level of each statement is presented also in the figures.

The analysis of the survey comparison was carried out
in two parts, due to similarities in cases A and B, and their
differences to case C: 1) the beforehand knowledge of the
agile methods, 2) the percentage of the respondents to the
survey taking part into the case project and 3) the time
the end survey was conducted related to the case project
and. In case A, the surveys were conducted inside the case
project team, and in case B, all the survey respondents
were from the R&D department, including only one person
outside the case project team. In case C, only half of the
respondents to the end survey took part in the case project
while the other half consisted of other R&D department
members. In both cases A and B, the end survey was
conducted right after the case project, whereas in case C

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 6: The survey data for the case projects.

Initial survey answer
rate

End survey answer
rate

Number of same re-
spondents in surveys

Case A 94 % (15/16) 71 % (12/17) 11
Case B 100 % (12/12) 67 % (8/12) 8
Case C 88 % (14/16) 75 % (12/16) 11

Figure 2: Case A: ”Documentation is good enough for knowledge
transfer between teams.” (p=0.025)

Figure 3: Case B: ”The amount of documentation made by others
for my own work is...” (p=0.046)

Figure 4: Case A: ”Regular team meeting organization frequency
is...” (p=0.033)

the end survey took place half a year after the case project
had ended. This was due to the small size and short length
of the case project, and especially the plan of continuing
it later, which did not realize at least during the follow-
up time of this research. The company of case C was the
only one already utilizing agile methods – at least to some
extent – before the case project, and the initial survey
actually gave more positive results compared to the two
other companies.

5.1.1. Cases A and B – Introducing and Defining Agile
Practices

Some common themes could be found in the survey
results in cases A and B: 1) diminished need for internal
documentation, 2) improved visibility and teamwork and
3) challenges in changing the process.

Diminished Need for Internal Documentation. According
to the end survey, the documentation related opinions had
improved from the initial situation. Especially in case A,
the documentation was better in terms of knowledge trans-

Figure 5: Case B: ”The team members give their best expertise
towards commonly specified goals.” (p=0.046)

Figure 6: Case A: ”Continuously evaluating and improving process
feels like extra burden and takes time away from productive work.”
(p=0.046)

Figure 7: Case A: ”The usage of project tools makes it easier to
organize my own work.” (p=0.014)

fer between the teams as illustrated in Figure 2, whereas
in case B according to Figure 3, the amount documenta-
tion made by other developers was felt more sufficient than
before.

The documentation in both cases had remained sim-
ilar to what it had been. The only change in documen-
tation was that the product and iteration backlogs were
taken into use and contained information in written form.
According to the interviews, the new backlog tools and
improved communication were the main reason for the di-
minished need for internal documentation.

Improved Visibility and Teamwork. Half of the respon-
dents in case A considered that the amount of meetings
was even too much as can be seen from Figure 4. The
meeting frequency in case A did change quite dramatically,
from one meeting in two weeks to two to three meetings
per week. Even though the number of meetings also in-
creased in case B – especially for the hardware developers
– it was considered suitable.

The understanding about the work of other team mem-

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 8: Case A: ”Maintenance of old projects disturb the imple-
mentation of the new project.” (p=0.011)

Figure 9: Case B: ”My working was very efficient during the latest
project.” (p=0.025)

bers improved during the cases. According to Figure 5, the
team of case B was contributing its full expertise to the
commonly defined goals. The progress of the project was
more tied to the practical tasks defined together.

Introducing the new practices involved adding new meet-
ings and refining old ones. The new practices also involved
developers to plan and share their work in progress with
each other better than before. According to the interviews,
these practices enhanced the internal communication of
the team and visibility over the work in progress.

Challenges in Changing the Process. The developers were
given a possibility to change the process. In case A, the
improvement of the process was seen more as an extra
burden as presented in Figure 6 and the project tools were
not considered to ease the organization of the work of the
developer as well as before as presented in Figure 7. The
changes agreed together in the retrospectives were not ac-
tualized and made also the improvement of the process
frustrating. Even though the new backlog tool was im-
proved several times, it was not adequately used by all the
team members. At the same time, also a new reporting
tool for working hours was taken into use inside the com-
pany. These were seen to be the reasons behind the more
negative attitude towards the project tools. As presented
in Figure 8, in case A, the maintenance tasks disturbed
even more than before. According to the interviews, this
was due to the project situation, but it still indicates that
maintenance is an issue to be addressed in the future.

The improved visibility had its downsides, too: Figure
9 shows that in case B the work was not felt as productive
as before. Periodically reviewing the implemented work
over plans visualized that all the planned work was not im-
plemented causing the feeling of inefficiency. Still, accord-
ing to the interviews, the transparency received was con-
sidered beneficial: through planning the work and defining
the tasks together, the developers got a better understand-
ing over the work of other team members.

Figure 10: Case C: ”It is difficult to evaluate the amount of required
work for a specified time.” (p=0.025)

Figure 11: Case C: ”It is possible to circulate tasks inside the team
in order to gain knowledge.” (p=0.046)

Figure 12: Case C: ”The feedback received by the team is gone
through systematically.” (p=0.020)

Both teams were taking the first steps in making their
work more agile. The new agile process was formed and
it contained many new practices. The change from new
practices into daily routines takes time, and it was still
ongoing at the time of the end survey. Together with the
quite short follow-up time, these were the factors of the
negative answers. Still, in both cases, the teams decided
to continue the utilization of the new working methods
– despite the survey results, there were seen to be more
benefits than drawbacks.

5.1.2. Case C – Refining and Spreading Agile Practices

The results of the survey comparison in case C actually
present more the changes inside the whole company than
only the effects of the case project. Case C also gives more
answers on how to refine the current agile practices and on
how they have been spread in the whole company.

Team Related Changes. As presented in Figure 10 the
evaluation of the personal workload was seen to be eas-
ier than before. On the other hand, circulating tasks in-
side the team decreased and the feedback was inspected
less systematically than before, as Figure 11 and Figure
12 illustrate.

The backlog tool was improved during the process giv-
ing a better insight to the current situation of the product
and these improvements have been taken to other projects
as well. Even though the backlog made work more visible,
circulating tasks inside the team was experienced difficult
due to different backgrounds and knowledge between the

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 13: Case C: ”Schedules and deadlines make organizing my
own work and reaching goals easier.” (p=0.025)

Figure 14: Case C: ”The objectives of the projects are clearly divided
into understandable phases.” (p=0.014)

Figure 15: Case C: ”The objectives can be changed in order to keep
the agreed schedule.” (p=0.020)

Figure 16: Case C: ”The test results are documented well enough.”
(p=0.034)

team members. According to the end interview it was seen
more probable to borrow resources from other projects
than taking time to learn completely new things in order to
be able to complete every task of the project. Retrospec-
tives have not been conducted after the case project and
there exists a need to concentrate more on the feedback.

According to the interviews, the case project team mem-
bers would like to bring the refined practices to the whole
company, but have experienced it to be more difficult than
in the small case project. The improvements of the backlog
tool are available to all the projects.

Changes in the Process. According to Figure 13 and Fig-
ure 14 the schedules and deadlines are making the orga-
nizing of work less easy than before and the phasing of
projects is less clear than before. The possibility to change
the objectives in order to keep the schedule, as presented
in Figure 15, is not as good as it used to be, but the testing
is better documented than before, as presented in Figure
16.

According to the interviews, the company-wide instruc-

tions for phasing and schedules of projects are currently
under work, and hence they are still somewhat unclear and
changing from project to project causing the process to be
somewhat unclear, too. When the customer is external,
the customer presence – which is seen important – is not
always at as good level as during the case project. On the
other hand, after the case there has been focus on testing
practices and involving the testing better already in the
design phase.

In case C, the pilot project was really short, but gave
positive indications. After the pilot, there have been slip-
ping from the practices, which explains the more negative
results in the end survey. All in all, the answers in case C,
which was somewhat familiar with agile practices even be-
fore the case project, were more positive than in the cases
A and B.

5.1.3. Efficiency and Feedback - Staying the Same

Since the number of people taking part into surveys was
quite small, the interpretations of the surveys had to be
careful. Mostly there were no significant changes between
the surveys, but a few things which did not change are
highlighted here.

According to the surveys, the developers did not ex-
perience positive changes in efficiency and productivity,
which are often related to agile methods. The lengths of
the case projects were quite short and the only measure-
ments for the efficiency and productivity were the opinions.
On the other hand, the visibility was improved and it gave
more understanding on how the project proceeded.

Feedback was one of the original issues in all the com-
panies. The review and retrospective offered good possibil-
ities to improve feedback. Still, it was experienced similar
to what it had been. In cases A and B, the customer was
not present in reviews and the implementation of changes
agreed in retrospectives proved to be difficult. In case C,
the retrospectives were not organized after the case project
ended.

The R&D process in each company was improved and
made closer to developers. The processes were still under
development in the end of the case projects, making it a
little bit unclear for the developers. Still, all the teams de-
cided to continue to utilize the developed new agile work-
ing methods and develop them further.

5.2. Team Specific Experiences

In the practice survey, the team members were in-
quired about the difference in regard to former practices
and the usage, potentiality and usefulness of each practice,
but were also encouraged to give their own free comments
about the practices. The new or refined practices were
seen useful and potential at least to some extent. Each
practice was questioned separately, and a sum of all the
practices in each case is presented in Figure 17.

In case A, the experiences of the team were divided.
A little over half of the team considered that the usage of

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TFigure 17: Usefulness and potentiality of practices in the cases.

Figure 18: ”Usage of the practices of the case projects would be
beneficial also in the future projects”.

the practices would be beneficial also in future projects,
as presented in Figure 18. According to the comments in
the survey, the main benefit was seen in the planning of
work together and thinking of priorities. According to the
interviews, the communication inside the team had also
improved notably. The dropped maintenance hour was
naturally seen to be the least useful practice, but also the
usefulness of status meetings was questioned, since they
often included information which was already familiar or
not seen necessary. These two practices decrease the use-
fulness and potentiality in Figure 17. In the backlog tool,
a graphical presentation of the progress of the product was
missing, and it would have been beneficial according to the
open answers. The idea of the backlog was seen beneficial,
despite the lack of the tool. Some criticism was also pre-
sented to the retrospectives: they were seen useless, since
the changes agreed in the retrospectives were not imple-
mented. In the future, the team would like the process
to be more release-based, where releases are more seldom
than the two-week iterations.

Figure 18 presents that in case B, all of the team mem-
bers agreed that the practices would be beneficial also in
the future projects. According to the survey, the usage
of backlogs and retrospectives were seen to be the areas
of improvement in the future. The project backlog was
utilized mainly by the project management, and thus the
overall picture was not clear for the developers, who fo-
cused more on the implementation of the individual tasks.
According to the interviews, the development process is
currently better defined and the tools are similarly utilized
by all the team members, whereas before the case project
the working methods and tools differed between software

and hardware teams hindering the collaboration. The new
process has improved the visibility of the schedules and
of the interdependencies between the work of developers.
Both splitting the work into small enough pieces for an it-
eration and keeping the tasks up to date were seen difficult
at the beginning of the project, but improved by the end
of the project, as the benefits of common understanding
became clearer and the practices more familiar. The most
focal benefit was the improved transparency over the work
in progress. Introducing and improving the new practices
made the developers think more about the tasks, their sizes
and their pacing and improving the product development
process.

Also in case C, all of the team members agreed that the
practices would be beneficial also in the future projects as
presented in Figure 18. According to the interviews, the
practices were used more efficiently than before. The pro-
cess was clarified in the case project: for instance, review
and retrospective templates were formed, the definition of
done was defined for every requirement, and the used back-
log tool was improved to better fit the needs of the team.
On the other hand, the developers were also involved in
other projects and thus the unknown resources posed a
problem especially to the planning and self-organization
of the team. The case project was quite small in terms of
length and team size, and according to the interviews the
challenges were more on how to spread the practices to
other projects inside the company after the case project.

5.2.1. Practice Specific Experiences

The usage of iterations was new in cases A and B, and
thus queried only in them. In these teams, the iterations
were considered to give transparency over the project and
the work of others. It also made the work more jointly
planned, made the developers to take more responsibility
and helped to organize their own work and to estimate
their workload.

The planning meeting enhanced the prioritization of
tasks and taking into account what other developers were
working on and helped to understand their own workload.
When the whole agile mindset was a new thing, i.e. in cases
A and B, planning was often only going through what
everyone had thought to accomplish inside the iteration
and did not include the team led creation of tasks. The
usefulness came then more from the possibility to align the
work, instead of planning it together. The review of the
work done in an iteration gave the developers a better view
of what has been achieved, but in case A the difference
from status meetings was not clear enough. The review
meeting clearly had potential to improve by focusing more
on the whole product instead of individual tasks.

The status meetings were considered to be a valuable
time to change opinions and transfer information. The
backlog tool was also used in them and it enhanced trace-
ability. The retrospective, which was a new practice to
all the teams, enhanced discussion about working prac-
tices, but the difficulty was the implementation of agreed

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

changes – it was slow and sometimes it did not work at all.
Thus, the usefulness and the potentiality of this practice
were among the weakest ones.

Especially when the backlogs were used for the first
time, i.e. in cases A and B, they were considered to need
more practice to get the full potential out of them. In
the case A, the tool itself got a lot of criticism during
the project, and in the survey it was seen less useful than
the idea of a backlog. In case B, the product backlog
was mainly used by only those who were managing the
prioritization of features and requirements. The product
backlog was not aiding the defining of the tasks enough
for the planning, whereas the iteration backlog provided a
good list of tasks currently under work. In the case C, the
backlog tool was improved and new features were added,
which made it more beneficial than before. In all the cases,
the backlogs eased the project follow-up.

The maintenance hour was used only in case A and
it was dropped in the beginning of the project. On the
other hand, some stated, that it might have helped, if other
departments would have been informed better about the
new practice and everyone had agreed to truly experiment
the practice.

6. Discussion

In order to answer RQ1, i.e. how to tailor agile methods
in embedded system development, the two main challenges
are explained and guidance for introducing agile practices
into embedded system development is presented in Sec-
tion 6.1. The benefits and drawbacks noted in the three
cases are discussed in Section 6.2 also in the light of the
known benefits and challenges of agile methods in software
development. This provides an answer to RQ2.

6.1. Tailoring Agile Methods to Embedded System Devel-
opment

Based on the three cases, there are two main challenges
that the embedded system development poses to the agile
methods: 1) the slow nature of the hardware development
and 2) the specialization of the team members in the hard-
ware or software tasks.

The slow nature of hardware development was seen in
the ways the teams decided to tailor the practices. For
all three teams, there was not a working product to be
implemented in the end of every iteration and there was
a need to organize the work in a third level on top of
iteration and product backlogs. In cases A and B, the
status meetings were less frequent than once a week.

The specialization could be seen in the original situa-
tion: the product development in cases A and B were di-
vided into teams or groups based on the specialization. On
the other hand, it also affected the tailoring of the planning
meeting for all three teams: the tasks were defined by each
discipline or individual representing the discipline already
before the planning meeting, and the meeting concentrated

more on the prioritization and taking into account the in-
terdependencies between the tasks.

The case evidence from the three cases enforces the sec-
ond part of the presented theory, i.e. that there are special
characteristics, which need to be taken into account when
utilizing agile methods in embedded system development.
Similar characteristics have been already noted in the em-
bedded software development, but the solutions have not
altered the ways of working in the hardware development
side and have instead focused on the software development
or their tools. When also hardware development is present,
these characteristics create barriers for utilizing the agile
methods as specified in software engineering and require
tailoring of the methods.

6.1.1. General Recommendations

Based on the three cases, recommendations were formed
in order to be followed when implementing agile methods
for the first time to embedded system development. Espe-
cially the four first recommendations are embedded system
specific and affected by the recognized challenges of slow
nature of hardware development and the specialization of
team members. Since there were seen also similarities be-
tween software and embedded system development, the
three latter recommendations are more general ones, but
must be taken into account also when tailoring the agile
methods to embedded system development.

1) Take into account the different natural cycle lengths
for development. Form a consensus between the quickly
changing software and slower hardware development. Take
also into account how often the priorities of the require-
ments change and new requirements emerge when deciding
the iteration length. Consider the amount of meetings and
iteration length to be suitable for both the software and
the hardware development.

2) Create team-driven agile practices inside the iterations.
Redefine the team to consist of all the members in the
project. Start with implementing simple iterative prac-
tices to get the wheel going. When it works, it is easier
to add more sophisticated practices. Be still aware that
you are not implementing plan-driven development inside
iterations – make the plans only to the extent required in
each phase.

3) Accept the different knowledge between developers and
build on it. In embedded system development, different
knowledge is present. Organize work planning according
to disciplines, but make sure that the work of different
disciplines is aligned and understood. Make it possible
for everyone to understand the work of others better, for
example through different meetings, in order to have more
people who will be able to solve the arising problems and
to be able to prioritize their own work from viewpoint of
the whole product.

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4) Define the progress based on work, not schedules or doc-
umentation. Even though it is not possible to present a
working product at the end of each iteration, review the
work done. The aim is to present e.g. simulations or other
work products but, even if this is not possible, at least
visualize the progress of the product. Take care of longer-
term goals such as releases, which might be less frequent
than the iterations, but need to be managed e.g. in the
backlogs.

5) Clarify the reasoning behind the utilized practices to-
gether in the team. The key to a successful introduction
of new practices is to understand why the current practices
are altered. Transparency, for example, will help everyone:
the project manager will see the real status of the project,
whereas the developer will be able to organize his work
according to the needs of other developers thus minimiz-
ing the waiting time and frustration. Also the visibility of
external disturbances, such as manufacturing, component
delivery waiting time or new requirements, will increase,
which provides further understanding about the bottle-
necks of the project.

6) Try more advanced agile techniques. When the team
is familiar with self-improvement, it is more eager to try
out new solutions. In embedded system development e.g.
platform-based design will offer quicker solutions for test-
ing new features and test-driven development can improve
the development process. The team can try new tech-
niques and select the ones that work best for them.

7) Involve the whole organization. In order to truly un-
derstand what the product is, input is also required from
other members of the organization than just the developer
team. If the end customer is not clear, e.g. business and
marketing people will be able to shed light on where the
requirements have originated from. When the process is
changed to utilize agile practices, it will affect also the
ways the developers co-operate with other departments,
and without support from the whole organization some
practices may be difficult to implement effectively.

These guidelines formed by the experiences of the three
cases are considered to help other teams in the embedded
system domain to conquer the challenges detected in this
work and acquire the benefits of combined agile and em-
bedded system development.

6.2. Effects of Agile Methods in Embedded System Devel-
opment

In software development, the main benefits of agile
methods are seen to be better productivity, possibility
to manage changing priorities, and improved team morale
and communication [12] [13] [14].

Even though similar effects would be welcome in em-
bedded system development, all of them were not appar-
ent. The productivity was not measured, but the none of

the three teams experienced enhancements in the produc-
tivity. Especially for cases A and B where agile mindset
was a new thing, this could be partly due to the short
follow-up time, upon which the new practices were only in-
troduced and not thoroughly adopted as routines. Learn-
ing new ways of working takes time, and can diminish the
productivity for a while.

In cases A and B, the interdependencies were taken into
account better between the different disciplines. Not only
the changes of priorities were now managed, but also the
priorities were reconsidered from the whole product point
of view. Also teamwork and communication enhanced,
and the most focal benefit from that was the system-wide
understanding. This affected also the diminished need of
documentation, similar result that has been seen in soft-
ware development at least in a survey conducted in Erics-
son [31].

In case C, which focused in refining and spreading ag-
ile practices to the company, the most focal benefit was
seen to be more efficient usage of the practices in the case
project. On the other hand, similarly to software develop-
ment [14], there were challenges in scaling.

In cases A and B difficulties of implementing the changes
agreed in retrospectives can tell about resistance to change,
which is one of the challenges noted in software engineering
[12] and in case B also difficulties with other departments
were note, similarly to software engineering [13]. An em-
bedded system specific challenge was encountered when
trying to split the work to small enough tasks to be ac-
complished in one iteration. The slow nature of hardware
development created this challenge, and as a solution, it
was quite common that some tasks were not accomplished
within one iteration. This steered the focus away from the
working product – as specified in agile values – into work
accomplished.

According to the experiences of the three case studies,
one should not expect dramatical improvement in produc-
tivity when taking the agile methods into use in embed-
ded system development. The benefits come from the im-
proved system-wide understanding, which enables better
prioritization of the tasks. This is enabled by the improved
teamwork and communication.

The analysis shows that the findings of our case study
are mostly aligned with the previous research on the ben-
efits and drawbacks of the agile methods in software de-
velopment. However, there are also some abbreviations
e.g. no notable increase in productivity, which may be
partly due to the short observation time within which the
practices were still forming and not adopted as routines.
The similar the findings strengthen the theory set in the
beginning of this paper saying ”agile methods can offer
benefits to embedded system development similar to ben-
efits in software development”. The found abbreviations
suggest that also the second part of the theory considering
the special nature of embedded system development might
also be true.

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7. Conclusions

In this paper, a case study of three cases on the adap-
tation of agile practices into embedded system develop-
ment was presented. All of the three case projects in-
cluded hardware development and one of them consisted
of only hardware development. Thus the case study of-
fered a possibility to expand agile development practices
outside software development, where it originates from.

The case study consisted of three parts: 1) understand-
ing the process in the companies before introducing or re-
fining agile practices through interviews and a survey, 2)
observing and assisting in the method development and
3) understanding the changes and experiences of the case
project through interviews and a similar survey to the ini-
tial one.

The case evidence strengthened the theory presented
in this work: agile methods offer benefits to embedded sys-
tem development similar to benefits of software benefits,
but the methods need to be tailored due to the special char-
acteristics of embedded system development. From the spe-
cial characteristics, there were especially two recognized:
1) the slower nature of hardware development, which was
seen e.g. in the absence of working product in the end of
every iteration and 2) the different knowledge between de-
velopers, which e.g. required tailoring the planning meet-
ing according to the disciplines.

Based on the case company experiences, recommenda-
tions were formed for the tailoring of the agile practices
into embedded system development, when also hardware
development is included in the scope. Forming a unified
project team of different disciplines provides better un-
derstanding over the work of others. Even though cir-
culating tasks is not possible due to different disciplines,
planning the work together facilitates the prioritization of
tasks and makes it possible to take into account the in-
terdependencies between different disciplines. Since it is
often impossible to present a new version of working prod-
uct in small intervals, the work done is the best available
measure of progress. The product is presented in the end
of each iteration, preferably in the form of demonstrations
or simulations, or at least through closing the tasks and
requirements together. The naturally longer development
cycle of hardware development must be taken into account
also in e.g. iteration length or meeting frequency. After the
first iterative practices are in place, even more advanced
agile techniques, such as platform-based design, can be im-
plemented. In order to successfully adopt agile practices,
also other than embedded system development related rec-
ommendations must be followed: the motivation for the
change must be found and the whole organization should
be involved.

Compared to the typical experienced benefits of agile
methods in software development, there is a change of em-
phasis. According to the experiences of the three cases,
productivity and efficiency was not improved as has been
experienced in software development. This may have been

affected also by the short length of the observation time.
Similarly to software development, teamwork and commu-
nication were enhanced, and in the long run the enhanced
teamwork and communication will probably lead to better
productivity and efficiency. In short term, the improved
teamwork and communication lead to better system-wide
understanding and diminished need for documentation,
and enabled taking interdependencies better into account
when defining and changing priorities of the tasks.

Dividing the work into iterations especially on the hard-
ware side was experienced difficult and all the tasks were
not completed in one iteration. Utilization of agile meth-
ods in embedded system development challenged most the
agile value of the working product: the focus shifted from
the documentation to the work accomplished, instead of
the working product.

In the case studies it was noted, that the agile value
of respecting individuals and interactions is a key for suc-
cessful adoption of agile practices. The team – and each
individual in it – is responsible for the development of their
own working methods. Obtaining the full benefits of agile
methods in embedded system development takes time but
it is worth the effort.

Acknowledgment

The research reported in this article has been con-
ducted as a part of AgiES (Agile and Lean Product De-
velopment Methods for Embedded ICT Systems) project.
The project is carried out in collaboration with Finnish In-
stitute of Occupational Health and industry partners BA
Group, FiSMA, Lindorff Finland, LM Ericsson, Neoxen
Systems, Nextfour Group and Nordic ID. The project is
mainly funded by Tekes – the Finnish Funding Agency for
Technology and Innovation.

References

[1] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cun-
ningham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt,
R. Jeffries, J. Kern, B. Marick, R. Martin, S. Mellor,
K. Schwaber, J. Sutherland, D. Thomas, Agile manifesto, in:
http://agilemanifesto.org/, 2001.

[2] M. Kaisti, V. Rantala, T. Mujunen, S. Hyrynsalmi, K. Könnölä,
T. Mäkilä, T. Lehtonen, Agile methods for embedded sys-
tems development – a literature review and a mapping study,
EURASIP Journal on Embedded Systems 2013 (1). doi:

10.1186/1687-3963-2013-15.
URL http://dx.doi.org/10.1186/1687-3963-2013-15

[3] W. Royce, Managing the development of large software systems:
Concepts and techniques, in: IEEE WESTCON, 1970.

[4] C. Larman, V. Basili, Iterative and Incremental Development:
A Brief History, Computer 36 (6) (2003) 47–56. doi:10.1109/

MC.2003.1204375.
[5] K. Schwaber, M. Beedle, Agile Software Development with

Scrum, Prentice Hall, 2001.
[6] K. Beck, Extreme Programming Explained: Embrace Change,

Addison-Wesley Professional, 1999.
[7] C. Larman, Agile & Iterative Development: A Manager’s Guide,

Addison-Wesley, 2003.

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[8] T. Dingsøyr, S. Nerur, V. Balijepally, N. B. Moe, A decade
of agile methodologies: Towards explaining agile software de-
velopment, Journal of Systems and Software 85 (6) (2012)
1213 – 1221, special Issue: Agile Development. doi:http:

//dx.doi.org/10.1016/j.jss.2012.02.033.
URL http://www.sciencedirect.com/science/article/pii/

S0164121212000532

[9] A. Cockburn, Agile Software Development, 2nd Edition,
Addison-Wesley, 2007.

[10] P. Kettunen, Adopting key lessons from agile manufacturing to
agile software product developmenta comparative study, Tech-
novation 29 (67) (2009) 408 – 422. doi:http://dx.doi.org/10.
1016/j.technovation.2008.10.003.
URL http://www.sciencedirect.com/science/article/pii/

S0166497208001302

[11] M. Laanti, Agile and wellbeing – stress, empowerment, and
performance in scrum and kanban teams, in: System Sciences
(HICSS), 2013 46th Hawaii International Conference on, 2013,
pp. 4761–4770. doi:10.1109/HICSS.2013.74.

[12] VersionOne. The 10th annual state of agile development survey
[online] (2015).

[13] P. Rodŕıguez, J. Markkula, M. Oivo, K. Turula, Survey on ag-
ile and lean usage in finnish software industry, in: Proceed-
ings of the ACM-IEEE International Symposium on Empiri-
cal Software Engineering and Measurement, ESEM ’12, ACM,
New York, NY, USA, 2012, pp. 139–148. doi:10.1145/2372251.
2372275.
URL http://doi.acm.org/10.1145/2372251.2372275

[14] A. Begel, N. Nagappan, Usage and perceptions of agile software
development in an industrial context: An exploratory study, in:
Proceedings of the First International Symposium on Empiri-
cal Software Engineering and Measurement, ESEM ’07, IEEE
Computer Society, Washington, DC, USA, 2007, pp. 255–264.
doi:10.1109/ESEM.2007.85.
URL http://dx.doi.org/10.1109/ESEM.2007.85

[15] B. Greene, Agile methods applied to embedded firmware de-
velopment, in: Agile Development Conference, 2004, 2004, pp.
71–77. doi:10.1109/ADEVC.2004.3.

[16] N. Van Schooenderwoert, Embedded agile project by the num-
bers with newbies, in: Agile Conference, 2006, 2006, pp. 13
pp.–366. doi:10.1109/AGILE.2006.24.

[17] M. Fletcher, W. Bereza, M. Karlesky, G. Williams, Evolv-
ing into embedded develop, AGILE Conference 0 (2007) 150–
155. doi:http://doi.ieeecomputersociety.org/10.1109/

AGILE.2007.25.
[18] U. Eklund, J. Bosch, Applying agile development in mass-

produced embedded systems, in: C. Wohlin (Ed.), Agile Pro-
cesses in Software Engineering and Extreme Programming,
Vol. 111 of Lecture Notes in Business Information Process-
ing, Springer Berlin Heidelberg, 2012, pp. 31–46. doi:10.1007/
978-3-642-30350-0_3.
URL http://dx.doi.org/10.1007/978-3-642-30350-0_3

[19] M. Kaisti, T. Mujunen, T. Mäkilä, V. Rantala, T. Lehtonen, Ag-
ile principles in the embedded system development, in: 15th In-
ternational Conference on Agile Software Development XP2014,
2014.

[20] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, J. Still,
The impact of agile practices on communication in software de-
velopment, Empirical Software Engineering 13 (3) (2008) 303–
337. doi:10.1007/s10664-008-9065-9.
URL http://dx.doi.org/10.1007/s10664-008-9065-9

[21] L. Cao, How extreme does extreme programming have to be?
adapting xp practices to large-scale projects, in: 37th Hawaii
International Conference on System Sciences, 2004, pp. 1–10.

[22] J. Ronkainen, P. Abrahamsson, Software development un-
der stringent hardware constraints: Do agile methods have a
chance?, in: 4th International Conference on Extreme Program-
ming and Agile Processes in Software Engineering, 2003, pp.
73–79.

[23] U. Eklund, H. Holmström Olsson, N. J. Ström, Industrial chal-
lenges of scaling agile in mass-produced embedded systems, in:

T. Dingsøyr, N. Moe, R. Tonelli, S. Counsell, C. Gencel, K. Pe-
tersen (Eds.), Agile Methods. Large-Scale Development, Refac-
toring, Testing, and Estimation, Vol. 199 of Lecture Notes in
Business Information Processing, Springer International Pub-
lishing, 2014, pp. 30–42. doi:10.1007/978-3-319-14358-3_4.
URL http://dx.doi.org/10.1007/978-3-319-14358-3_4

[24] R. K. Yin, Case Study Research: Design and Methods, SAGE
Publications, 2003.

[25] P. Runeson, M. Höst, A. Rainer, B. Regnell, Case Study Re-
search in Software Engineering: Guidelines and Examples, Wi-
ley Blackwell, 2012.

[26] B. Kitchenham, L. Pickard, S. L. Pfleeger, Case studies for
method and tool evaluation, Software, IEEE 12 (4) (1995) 52–
62. doi:10.1109/52.391832.

[27] C. B. Seaman, Qualitative methods in empirical studies of soft-
ware engineering, IEEE Trans. Softw. Eng. 25 (4) (1999) 557–
572. doi:10.1109/32.799955.
URL http://dx.doi.org/10.1109/32.799955

[28] P. Runeson, M. Höst, Guidelines for conducting and report-
ing case study research in software engineering, Empirical
Software Engineering 14 (2) (2009) 131–164. doi:10.1007/

s10664-008-9102-8.
URL http://dx.doi.org/10.1007/s10664-008-9102-8

[29] P. Brereton, B. Kitchenham, D. Budgen, Z. Li, Using a pro-
tocol template for case study planning, in: Proceedings of the
12th International Conference on Evaluation and Assessment
in Software Engineering, EASE’08, British Computer Society,
Swinton, UK, UK, 2008, pp. 41–48.
URL http://dl.acm.org/citation.cfm?id=2227115.2227120

[30] B. Curtis, H. Krasner, N. Iscoe, A field study of the software
design process for large systems, Commun. ACM 31 (11) (1988)
1268–1287. doi:10.1145/50087.50089.
URL http://doi.acm.org/10.1145/50087.50089

[31] K. Petersen, C. Wohlin, The effect of moving from a plan-driven
to an incremental software development approach with agile
practices, Empirical Softw. Engg. 15 (6) (2010) 654–693. doi:

10.1007/s10664-010-9136-6.
URL http://dx.doi.org/10.1007/s10664-010-9136-6

[32] K. R. Neil J. Salkind (Ed.), Encyclopedia of Measurement and
Statistics, 0th Edition, Sage Publications, Inc., 2007. doi:http:
//dx.doi.org/10.4135/9781412952644.
URL http://dx.doi.org/10.4135/9781412952644

21



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Biography
Kaisa Könnölä has M.Sc. (Tech.) degree, majoring

in telecommunication, from University of Turku in 2004.
She has several years’ experience as software professional
in industry mainly from software integration. She has been
working in Technology Research Center at the University
of Turku since 2013 as a researcher. Her research interests
include developing and investigating agile and lean meth-
ods in embedded system and space system development.

Samuli Suomi received the B.Sc. (Tech.) degree in
computer science and the M.Sc. (Tech.) degree in software
engineering from the University of Turku, Turku, Finland,
in 2013 and 2015, respectively. His work as a project re-
searcher in Technology Research Center at the University
of Turku has focused in agile development and agile tools.

Tuomas Mäkilä works as a Senior Research Fellow
at the University of Turku, Technology Research Center.
He holds a D.Sc. (Tech.) degree in software engineering
and wrote his doctoral thesis on the modelling techniques
of software development processes. He has experience on
wide variety of software engineering topics, including soft-
ware development methods and tools, software architec-
tures, and web and game development.

Tero Jokela received the D.Sc. (Tech.) degree in
telecommunication from the University of Turku in 2010.
His research interests include multiple antenna communi-
cations, error control coding, receiver algorithms, cognitive
radio and wireless broadcasting.

Ville Rantala received the D.Sc. (Tech.) degree in
electronics from the University of Turku, Turku, Finland,
in 2012. Dr. Rantala has expertise in both circuit and sys-
tem level digital IC design using modern EDA tools and
languages such as VHDL and SystemC. His research in-
terests include iterative development processes for safety-
critical embedded system industry.

Teijo Lehtonen works as a Senior Research Fellow
at the University of Turku, Technology Research Center,
where he leads the Embedded and Mixed-Reality Systems
research group. Lehtonen holds a D.Sc. (Tech.) degree
in electronics from the University of Turku in 2009. Dr.
Lehtonen has been the principal investigator in numerous
research and development projects with the total value of
several million euros. His research interests includes adop-
tion of agile methods to embedded system development,
and mixed-reality technologies and applications.

22


