
Undecidable word problem in subshift
automorphism groups

Pierre Guillon1, Emmanuel Jeandel2, Jarkko Kari3, and Pascal Vanier4

1 Université d’Aix-Marseille, CNRS, Centrale Marseille
I2M, UMR 7373 – 13453 Marseille, France

pierre.guillon@math.cnrs.fr
2 Université de Lorraine, CNRS, Inria

LORIA – F 54000 Nancy, France
emmanuel.jeandel@loria.fr

3 Department of Mathematics and Statistics
FI-20014 University of Turku, Finland

jkari@utu.fi
4 Laboratoire d’Algorithmique, Complexité et Logique

Université de Paris-Est, LACL, UPEC, France
pascal.vanier@lacl.fr

Abstract. This article studies the complexity of the word problem in
groups of automorphisms (or reversible cellular automata) of subshifts.
We show in particular that for any computably enumerable Turing de-
gree, there exists a (two-dimensional) subshift of finite type whose auto-
morphism group contains a subgroup whose word problem has exactly
this degree. In particular, there are such subshifts of finite type where
this problem is uncomputable. This remains true in a large setting of
subshifts over groups.

Subshifts are sets of colorings of a group G avoiding some family of forbidden fi-
nite patterns. They have first been introduced, for G = Z, as a way of discretizing
dynamical systems on compact spaces. SFTs correspond to the particular case
when only finitely many patterns are forbidden; they are used in information
theory to model data streams with coding constraints. When G = Z

2, SFTs
turn out to be, up to recoding, the sets of colorings defined by some Wang tiles,
and a tool to study decidability questions. When G is the free group, subshifts
can be seen as sets of colorings of a tree; the case of the free monoid is known to
correspond to the so-called tree languages, and SFTs to tree automata [1,2,3].

Subshifts are hence both a means to model complex systems, and to provide
complete problems for a wide range of complexity and computability classes.

An automorphism of a subshift X is a shift-invariant continuous bijection
from X onto X, or equivalently a reversible cellular automaton on X. Under-
standing the automorphism group of a subshift can be seen as a way to un-
derstand how constraints over the “physical space” (the possible configurations)
restrict the interactions between the cellular automata that act on them.

Little is known about automorphism groups of subshifts in general, besides
that they are countable. As an example of our ignorance, it is a long-standing

open problem whether the automorphism groups of the 2-symbol full shift and
of the 3-symbol full shift are isomorphic.

Many results have nevertheless been recently reached, for G = Z, in two
kinds:

– The automorphism group of some large subshifts (positive-entropy SFTs,
. . .) is rich [4]: it contains all finite groups, finitely generated abelian groups,
countable free and free abelian groups, . . . This means that when you pick
some reversible cellular automata over these subshifts, they can have very
complex interactions. In [5], it is proved that periodicity of cellular automata
is undecidable, which can be interpreted as the torsion problem for the au-
tomorphism group of these subshifts.

– The automorphism group of some small subshifts (small complexity func-
tion, substitutive, . . .) is poor [6,7,8]: in the most extreme case, it is proven
to be virtually Z, which means that every reversible cellular automaton is
essentially the shift (up to finitely many local permutations).

With G = Zd when d ≥ 2, computability has played a central role in the
study of SFTs. From a computability point of view, it is noted in [9] that their
automorphism groups have a computably enumerable word problem (which is
formalized in a general setting in Theorem 2). The word problem essentially
corresponds to picking up a reversible cellular automaton rule over this subshift,
and asking whether it is equal to the identity. We show that it can be arbitrarily
complex: for any given computably enumerable degree, one can construct an
SFT the automorphism group of which has a word problem with this degree
(Corollary 2).

1 Preliminaries

By countable set, we mean injectable in N. Let λ denote the empty word. For
A a countable alphabet, we note A∗ :=

⊔
n∈NAn the set of finite words over A.

We also note A≤r :=
⊔
n≤rAn for r ∈ N.

Let us note XC the complement of set X. W b X means that W ⊂ X and
W is finite. V tW means V ∪W assuming that V ∩W = ∅.

1.1 Computability

Computability problems are naturally defined overN, but can easily be extended
through subsets of it, cartesian products or disjoint union (by canonically inject-
ing N in sets of tuples). For example, if G ⊂ N, then the set G∗ of tuples admits
a simple injection into N. Let us fix a (computable) countable set I, that we can
identify to integers.

Definition 1. Let us define the following reducibility notions, for X,Y ⊂ I:

1. X is Turing-reducible to Y , X ≤T Y , if: one can compute X with oracle Y .

2. X is enumeration-reducible to Y , X ≤e Y , if: from any x and any integer
i ∈ N, one can compute a finite set Yi(x) such that x ∈ X if and only if
∃i ∈ N, Yi(x) ⊂ Y .

3. X is positive-reducible to Y , X ≤p Y , if: from any x, one can compute
finitely many finite sets Y0(x), . . . , Yn−1(x) such that x ∈ X if and only if
∃i < n, Yi(x) ⊂ Y .

4. X is many-one-reducible to Y , X ≤m Y , if: from any x, one can compute
some φ(x) such that x ∈ X if and only if φ(x) ∈ Y .

5. X is one-one-reducible to Y , X ≤1 Y , if, X ≤m Y and the corresponding φ
is one-to-one.

One-one reducibility implies many-one reducibility, which in turns implies positive-
reducibility, which implies both Turing-reducibility and enumeration-reducibility.

Each reducibility ≤r induces a notion of equivalence ≡r: A ≡r B iff A ≤r B
and B ≤r A. And each notion of equivalence ≡r induces a notion of degree degr:
the degree of a set A is its equivalence class for ≡r.

The join A⊕B of A and B is the set C such that 2n+ 1 ∈ C iff n ∈ A and
2n ∈ C iff n ∈ B. It has the property that A ≤r A⊕B and B ≤r A⊕B for any
reducibility ≤r previously defined.

See [10] for a reference on computability-theoretical reductions.

1.2 Monoids and groups

We will deal with countable monoids M = G∗/R, where G ⊂ N, G∗ is the
free monoid generated by symbols from G and R is a monoid congruence5. The
monoid is always implicitly endowed with its generating set G (later, some prob-
lems may depend on the presentation). Each element of the monoid is represented
by a word u ∈ G∗, but the representation is not one-to-one (except for the free
monoid itself). We note i =M j if π(i) = π(j) and π : G∗ → M is the natural
quotient map.

It is also clear that the concatenation map, which from any two words i, j ∈
G∗ outputs i · j, which is one representative of the corresponding product, is
computable. We say that M is an effective group if, additionally, there is a
computable map ψ : G∗ → G∗ such that i · ψ(i) =M ψ(i) · i =M λ.

The equality problem of M, endowed with generating family G, is the set of
pairs

{
(i, j) ∈ (G∗)2

∣∣ i =M j
}
, endowed with a natural enumeration so that we

can consider it as a computability problem.

Remark 1.

1. It is clear that the word problem { i ∈ G∗| i =M λ} is one-one-reducible to
the equality problem.

2. If M is an effective group, then the word problem is actually many-one-
equivalent to the equality problem.

5 We could deal in the same way with semigroups, by prohibiting the empty word.

3. The equality problems for M endowed with two distinct finite generating
sets are one-one-equivalent.

4. If M′ is a submonoid of M endowed with a generating set which is included
in that of M, then the equality problem in M′ is one-one-reducible to that
of M.

5. In particular, the equality problem in any finitely generated submonoid is
one-one-reducible to that of M.

Nevertheless, there are countable groups whose word problem is computable
when endowed with one generating family, and uncomputable when endowed
with another one.

The word problem is known to be decidable if and only if the group is com-
putable (see [11] for a proof in the finitely generated case), that is, it can be seen
as a computable subset of N over which the composition rule is a computable
function (this implies that inversion is also a computable map).

1.3 Subshifts

Let A be a finite alphabet with at least two letters, and M a group (most
of the following should be true if M is a cancellative monoid though). In a
first reading, the reader is encouraged to think of M as being Z: the results
are not significantly simpler in that specific setting (except those that mention
1D SFT). A finite pattern w over A with support W = S(w) b G∗ is a map
w = (wi)i∈W ∈ AW . An element of AM is called a configuration. Configurations
can be seen as colorings of the Cayley graph by the letters of A and patterns
can be seen as finite configurations. Depending on the context, note that, for
g ∈ S(w), wg may either be an element of A or a subpattern with support {g}.
If g ∈ G∗ and w is a pattern, we will denote by σg(w) the pattern with support
W · g such that σg(w)i·g−1 = wi for all i ∈ S(w).

We are interested in AM, which is a Cantor set, when endowed with the
prodiscrete topology, on which M acts continuously by (left) shift: we note
σi(x)j = xi.j for i, j ∈M and x ∈ AM. AM is thus called the full shift on alpha-
bet A. A subshift is a closed σ-invariant subset X ⊂ AM. Equivalently, X can
be defined as the set XF :=

{
x ∈ AM

∣∣∀i ∈M,∀w ∈ F ,∃j ∈ S(w), xi·j 6= wj
}

avoiding a language F ⊂
⊔
WbG∗ AW , which is then called a (defining) forbid-

den language. If F can be chosen finite, the subshift is called of finite type (SFT);
if it can be chosen computably enumerable, it is called effective. Figure 1 shows
an example of forbidden language and configuration of the associated subshift.

The language with support W b G∗ of subshift X is the set LW (X) :={
(xπ(i))i∈W

∣∣x ∈ X}; the language of X is L(X) =
⊔
WbG∗ LW (X), and its

colanguage is the complement of it. The latter is a possible defining forbidden
language. If u ∈ LW (X), we define the corresponding cylinder

[u] =
{
x ∈ X

∣∣∀i ∈W,xπ(i) = ui
}
.

Remark 2. π induces a natural covering Π : AM → AG∗ by Π(x)i = xπ(i). Its
image set Π(AM) is a subshift over the free monoid. One can note the following.

a

b

b

F
a

a−1

bb−1

a−1

bb−1

a
b−1 b

a

a−1

b
a

a−1

b−1

Fig. 1. If M is the free group on two elements {a, b} and the set of forbidden patterns
is on the left, then the configuration on the right is in XF .

1. X = XL(X)C .
2. The colanguage of the full shift AM is the same as that of the subshift
Π(AM): the set

L(AM)
C
=

⊔
WbG∗

{
w ∈ AW

∣∣∃i, j ∈W, i =M j, wi 6= wj
}

of patterns that do not respect the monoid congruence.
3. Nevertheless, ∅ is a forbidden language defining AM.
4. The colanguage of every subshift XF ⊂ AM is the set of patterns w ∈
AW , W b G∗, whose all extensions to configurations x ∈ [w] involve as a
subpattern a pattern of either F , or L(AM)

C . In that case, by compactness,
there exists V ⊃W (which depends only on W) such that w ∈ AW is in the
colanguage iff every v ∈ AV such that v|W = u involves a subpattern from
F or L(AM)

C .

Remark 3. Let M be a monoid.

1. The equality problem inM is positive-equivalent (and one-one-reducible) to
the colanguage of the full shift.

2. The colanguage of any subshift X is enumeration-reducible to the join of
any defining forbidden language for X and the equality problem of M.

Proof.

1. one-one-reducibility: one can computably map each word (i, j) ∈ (G∗)2 to
a unique pattern over {i, j} involving two different symbols. By Point 2 of
Remark 2, this pattern is in the colanguage of the full shift if and only if
i =M j.
positive-reducibility (with all Yis being singletons): from each pattern w ∈
AG∗ , one can compute the set of pairs (i, j) ∈ S(w)2 such that wi 6= wj . By
Point 2 of Remark 2, w is in the colanguage if and only if one of these pairs
is an equality pair in M.

2. Consider the set Z of locally inadmissible patterns, that involve a subpattern
either from the forbidden language or from L(AM)

C . From any pattern w,
one can enumerate all of its subpatterns and all of their shifts, i.e. all patterns
v such that there exists i ∈ G∗ with S(v) · i ⊂ S(w) and wj·i = vj for every
j ∈ S(v). This shows that Z is enumeration-reducible to the join of the
forbidden language and L(AM)

C , the latter being equivalent to the equality
problem, by the previous point. It remains to show that the colanguage of
X is enumeration-reducible to Z.
From any pattern w ∈ AG∗ and any i ∈ N, one can compute some Vi b G∗
including S(w), in a way that Vi+1 ⊃ Vi and

⋃
i∈N Vi = G∗ (for example take

the union of S(w) with balls in the Cayley graph). Then, one can compute
the set Yi of extensions of w to Vi, i.e. patterns with support Vi whose
restriction over S(w) is w. By Point 4 of Remark 2, w ∈ L(X)

C if and only
if there exists V b G∗ with V ⊃ S(w) such that all extensions of w to V
are in Z; and in particular this should happen for some Vi, which precisely
means that Yi ⊂ Z. ut

It results that, in some sense, one expects most subshifts to have a colanguage
at least as complex as the equality problem in the underlying monoid.

1.4 Homomorphisms

Let X ⊂ AM and Y ⊂ BM be subshifts. Denote End(X,Y) the set of homo-
morphisms (continuous shift-commuting maps) from X to Y , and Aut(X,Y)
the set of bijective ones (conjugacies). We also note End(X) = End(X,X) the
monoid of endomorphisms of X, and Aut(X) = Aut(X,X) the group of its
automorphisms.

If M is finitely generated, then homomorphisms correspond to block maps
(and endomorphisms to cellular automata), thanks to a variant of the Curtis-
Hedlund-Lyndon theorem [12].

Theorem 1. Let M be finitely generated. A map Φ from subshift X ⊂ AM into
subshift Y ⊂ BM is a homomorphism if and only if there exist a radius r ∈ N
and a block map φ : AG≤r → B such that for every x ∈ AM and i ∈ G∗,
Φ(x)π(i) = φ(x|π(i·G≤r)) (where the latter has to be understood with the obvious
reindexing of the argument).

See Figure 2 for an example of block map and associated homomorphism. Let

X Y

φ :

Fig. 2. The block map φ takes the Z2 subshift X to the Z2 subshift Y by applying it
locally at each position.

us order the block maps φ : AG≤r → B by increasing radius r ∈ N, and
then by lexicographic order, so that we have a natural bijective enumeration
N →

⊔
r∈N BA

G≤r

(because A, B and G are finite). This gives in particular a
surjective enumeration N → End(AG∗ ,BG∗) and in general, a partial surjective
enumeration N′ ⊂ N→ End(X,Y).

Let us discuss briefly the situation of this enumeration, which is not the main
topic of the present paper, but sheds light on the difficulties for an effective rep-
resentation of homomorphisms. In general, N′ 6= N. It is a nontrivial problem
to ask whether N′ is computable (this would mean that we can decide whether
a block map sends X into Y), like for the full shift. Similarly, the domain N′
of an enumeration of Aut(X,Y) need not be computable: it is already uncom-
putable for Aut(AZ2

), because it corresponds to the reversibility problem for
two-dimensional cellular automata (over the full shift) [13].

On the other hand, obtaining a bijective enumeration for End(AG∗ ,BG∗)
would be easily achieved by representing each block map only for its smallest
possible radius. Nevertheless, trying to achieve a bijective enumeration in general
for End(X,Y), or even for End(AM,BM), is a process that would depend on the
colanguage of the subshift (we want to avoid two block maps that differ only
over the colanguage), which may be uncomputable.

For the rest of the paper, let us assume that M is an effective group. More
precisely, all results could be interpreted as reductions to a join with a problem
representing the composition map of the group, and sometimes to an additional
join with a problem representing the inversion.

2 Equality problem is not too hard

Remark 4. Two distinct block maps φ, ψ : AG≤r → A representing endomor-
phisms of X actually represent the same endomorphism if and only if for every
pattern u ∈ AG≤r

, φ(u) 6= ψ(u)⇒ u ∈ L(X)
C .

This remark allows to establish that the equality problem is at most as com-
plex as knowing whether a pattern is in the colanguage.

Theorem 2. The equality problem in End(X) is positive-reducible to L(X)
C .

Proof. One can directly apply Remark 4, by noting that it is easy to transform
each block map into an equivalent one, so that the resulting two block maps
have the same radius (the original maximal one, by ignoring extra symbols). ut

Of course, this remains true for the equality problem in Aut(X). Since positive-
reducibility implies both Turing-reducibility and enumeration-reducibility, we
get the following for the lowest classes of the arithmetic hierarchy (which was
already known; see [9]).

Corollary 1.

1. The equality problem is decidable, in the endomorphism monoid of any sub-
shift with computable language (for instance 1D sofic subshift, 1D substitu-
tive subshift, minimal effective subshift, two-way space-time diagrams of a
surjective cellular automaton. . .).

2. The equality problem is computably enumerable, in the endomorphism monoid
of any effective subshift (for instance multidimensional sofic subshift, substi-
tutive subshift, limit set of cellular automaton. . .).

3 Automorphism groups with hard equality problem

The purpose of this section is to prove a partial converse to Theorem 2: we can
build a subshift X for which the two problems involved are equivalent, however
complex they are.

Let X ⊂ AM and Y ⊂ BM be subshifts. For α : B → B and u ∈ AM, let
us define the controlled map Cu,α as the homomorphism over X × Y such that
Cu,α(x, y)0 = (x0, α(y0)) if x ∈ [u]; (x0, y0) otherwise. Informally, Cu,α(x, y) ap-
plies α somewhere in y iff it sees u at the corresponding position in x. Denote also
π1 the projection to the first component, and σg1 the shift of the first component
with respect to element g ∈M: σg1(x, y)0 = (xg, y0) for every (x, y) ∈ X × Y .

Remark 5.

1. π1Cu,α = π1.
2. If M is a group and g ∈M, then Cu,α = σg1Cσg−1 (u),ασ

−g
1 .

3. Cu,α ∈ End(X × Y,X × BM).
4. Cu,α is injective if and only if α is a permutation.
5. Cu,α ∈ End(X × Y) if Y is (locally) α-permutable, i.e. for all y ∈ Y , if we

define z by z0 = α(y0), zi = yi for i 6= 0, then z ∈ Y .
6. From Remark 4, Cu,α is the identity over X × Y if and only if u /∈ L(X), or
α is the trivial permutation over letters appearing in Y .

Example 1. Examples of α-permutable subshifts are the full shift on B or, if
B = B′ t {⊥} and α(⊥) = ⊥, the B′-sunny-side-up defined by forbidding every
pattern which involves two occurences of B′. We have seen that the colanguage
of the former is positive-equivalent to the word problem in M. The language of
the latter can be easily proven to be many-one-equivalent to the word problem
in M (as essentially noted in [14, Prop 2.11]), hence yielding a kind of jump for
the colanguage.

If a, b, c ∈ B, let us denote αabc : B → B the 3-cycle that maps a to b, b to c, c
to b, and any other symbol to itself. The following lemma corresponds essentially
to [15, Lemma 18] and shows that controlled permutations, no matter the size
of the control pattern u, can be expressed with a finite number of generators.

Lemma 1. Suppose B has at least 5 distinct elements a, b, c, d, e. Let u ∈ AS(u)
be a pattern, g ∈ S(u), and v = u|S(u)\{g} . Then Cu,αabc

= (ΨΦ)2, where Φ =

σg1Cug,αade
Cug,αbad

σg
−1

1 and Ψ = Cv,αbde
Cv,αcbd

.

Proof. If xg = ug, then Φ(x, y)0 = (x0, φ(y0)), where φ is the involution that
swaps a and b on the one hand, d and e on the other hand; otherwise Φ(x, y)0 =
(x0, y0). If x ∈ [v], then Ψ(x, y)0 = (x0, ψ(y0)), where ψ is the involution that
swaps b and c on the one hand, d and e on the other hand; otherwise Ψ(x, y)0 =
(x0, y0). Since φ2 = ψ2 = id, one can see that if x /∈ [u], then (ΨΦ)2(x, y)0 =
(x0, y0). Now if x ∈ [u], then we see that ΨΦ(x, y)0 = (x0, ψφ(y0)), and ψφ =
αacb, so that we get the stated result. ut

Theorem 3. Let X ⊂ AM be a subshift and Y ⊂ BM an αabc-permutable sub-
shift for every a, b, c ∈ B′ ⊂ B, where |B′| ≥ 5. Then L(X)

C is one-one-reducible
to the word problem in the subgroup of automorphisms of X × Y generated by
σg1 and Cu0,αabc

for g ∈ G, a, b, c ∈ B′ and u0 ∈ A.

Proof. From an induction and Lemma 1, we know that this subgroup includes
every Cu,αabc

for every a, b, c ∈ B′ and u ∈ A∗. From Point 6 of Remark 5, an
automorphism Cu,αabc

is equal to the identity if and only if u /∈ L(X). ut

Consequently, subshifts can have finitely generated automorphism subgroups
with equality problem as complex as their colanguage, as formalized by the
following corollary. In that case, the equality problem of the whole automorphism
group is as complex also.

Corollary 2.

1. If X and Y are as in Theorem 3, then L(X)
C is one-one-equivalent to the

word problem in (a finitely generated subgroup of) Aut(X × Y).
2. For every subshift X over a finitely generated groupM, there exists a countable-

to-one extension X × Y such that L(X)
C is one-one-equivalent to the word

problem in (a finitely generated subgroup of) Aut(X × Y).
3. For every subshift X over a finitely generated group M, there exists a full

extension X×BM such that L(X)
C is one-one-equivalent to the word problem

in (a finitely generated subgroup of) Aut(X × BM).
4. Every Σ0

1 Turing degree contains the word problem in (a finitely generated
subgroup of) Aut(X), for some 2D SFT X.

5. There exists a 2D SFT X for which the word problem in (a finitely generated
subgroup of) Aut(X) is undecidable.

Point 5 answers [9, Problem 5].

Proof.

1. Just use Point 5 of Remark 1. For the converse reduction in the one-one-
equivalence, simply apply Theorem 2 and Point 1 of Remark 1.

2. We use Theorem 3 with Y being the {0, 1, 2, 3, 4}-sunny-side-up.
3. We use Theorem 3 with Y = {0, 1, 2, 3, 4}M. Remark that L(X)

C and
L(X × {0, 1, 2, 3, 4}M)

C are one-one-equivalent.
4. Every Σ0

1 degree contains the colanguage of a 2D SFT, thanks to construc-
tions from [16,17]. Then its product with the full shift {0, 1, 2, 3, 4}Z2

is still
an SFT, and we conclude by the previous point.

5. Apply the previous point with any uncomputable Σ0
1 degree. ut

Note that the number of generators can be decreased if we want to reduce
only the language whose support is spanned by a subgroup. For instance 2D SFTs
are already known to have (arbitrarily Σ0

1) uncomputable 1D language. Indeed,
our automorphisms do not alter the X layer, so that their parallel applications
to all traces with respect to a subgroup is still an automorphism.

Among the open questions, we could wonder whether there is a natural class
of SFT (irreducible, with uncomputable language, at least over Z2) whose colan-
guage could be proven reducible to the word problem in the automorphism group.
This could require to encode the whole cartesian product of Theorem 3 inside
such subshifts. Another question would be to adapt our construction while con-
troling the automorphism group completely so that it is finitely generated.

Acknowledgements

This research supported by the Academy of Finland grant 296018.
We thank Ville Salo for some discussions on commutators, on the open ques-

tions, and for a careful reading of this preprint.

References

1. Nathalie Aubrun and Marie-Pierre Béal. Decidability of conjugacy of tree-shifts of
finite type. In Automata, Languages and Programming, pages 132–143. Springer
Berlin Heidelberg, 2009.

2. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

3. Wolfgang THOMAS. Chapter 4 - automata on infinite objects. In JAN VAN
LEEUWEN, editor, Formal Models and Semantics, Handbook of Theoretical Com-
puter Science, pages 133 – 191. Elsevier, Amsterdam, 1990.

4. Mike Boyle, Douglas A. Lind, and Daniel J. Rudolph. The automorphism group of a
shift of finite type. Transactions of the American Mathematical Society, 306(1):71–
114, 1988.

5. Jarkko Kari and Nicolas Ollinger. Periodicity and immortality in reversible com-
puting. In MFCS 2008, LNCS 5162, pages 419–430, apr 2008.

6. Ethan Coven and Reem Yassawi. Endomorphisms and automorphisms of minimal
symbolic systems with sublinear complexity.

7. Van Cyr and Bryna Kra. The automorphism group of a shift of linear growth:
beyond transitivity.

8. Sebastián Donoso, Fabien Durand, Alejandro Maass, and Samuel Petite. On au-
tomorphism groups of low complexity subshifts.

9. Michael Hochman. Groups of automorphisms of SFTs. Open problems ; http:
//math.huji.ac.il/~mhochman/problems/automorphisms.pdf.

10. Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability.
MIT Press, Cambridge, MA, USA, 1987.

11. Michael O. Rabin. Computable algebra, general theory and theory of computable
fields. Transactions of the American Mathematical Society, 95:341–360, 1960.

12. Gustav Arnold Hedlund. Endomorphisms and automorphisms of the shift dynam-
ical system. Mathematical Systems Theory, 3:320–375, 1969.

13. Jarkko Kari. Reversibility and surjectivity problems of cellular automata. J.
Comput. Syst. Sci., 48(1):149–182, 1994.

14. Nathalie Aubrun, Sebastián Barbieri, and Mathieu Sablik. A notion of effectiveness
for subshifts on finitely generated groups. Theoretical Computer Science, 661:35–
55, 2017.

15. Tim Boykett, Jarkko Kari, and Ville Salo. Finite generating sets for reversible
gate sets under general conservation laws. Theoretical Computer Science, 701:27–
39, November 2017.

16. Stephen G. Simpson. Medvedev degrees of 2-dimensional subshifts of finite type.
Ergodic Theory and Dynamical Systems, 34(November 2012):665–674, 2014.

17. William Hanf and Dale Myers. Non recursive tilings of the plane II. Journal of
Symbolic Logic, 39(2):286–294, 1974.

http://www.grappa.univ-lille3.fr/tata
http://math.huji.ac.il/~mhochman/problems/automorphisms.pdf
http://math.huji.ac.il/~mhochman/problems/automorphisms.pdf

	Undecidable word problem in subshift automorphism groups

