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Objective: Identification and validation of blood-based biomarkers for the diagnosis and

prognosis of mild traumatic brain injury (mTBI) is of critical importance. There have been

calls for more research on mTBI in older adults. We compared blood-based protein

marker glial fibrillary acidic protein (GFAP) concentrations in serum and in plasma within

the same cohort of older adults and assessed their ability to discriminate between

individuals based on intracranial abnormalities and functional outcome following mTBI.

Methods: A sample of 121 older adults [≥50 years old with head computed tomography

(CT), n = 92] seeking medical care for a head injury [Glasgow Coma Scale scores

of 14 (n = 6; 5.0%) or 15 (n = 115; 95.0%)] were enrolled from the emergency

department (ED). Themean time between injury and blood sampling was 3.4 h (SD = 2.1;

range = 0.5–11.7). Serum GFAP concentration was measured first using the Human

Neurology 4-Plex Assay, while plasma GFAP concentration was later measured using

the GFAP Discovery Kit, both on an HD-1 Single molecule array (Simoa) instrument.

Glasgow Outcome Scale-Extended was assessed 1 week after injury.

Results: Both serum and plasma GFAP levels were significantly higher in those with

abnormal CT scans compared to those with normal head CT scans (plasma: U = 1,198,

p < 0.001; serum: U = 1,253, p < 0.001). The ability to discriminate those with and

without intracranial abnormalities was comparable between serum (AUC = 0.814) and
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plasma (AUC = 0.778). In the total sample, GFAP concentrations were considerably

higher in plasma than in serum (Wilcoxon signed-rank test z= 0.42, p< 0.001, r = 0.42).

Serum and plasma GFAP levels were highly correlated in the total sample and within all

subgroups (Spearman’s rho range: 0.826–0.907). Both serum and plasma GFAP levels

were significantly higher in those with poor compared to good functional outcome (serum:

U = 1,625, p = 0.002; plasma: U = 1,539, p = 0.013). Neither plasma (AUC = 0.653)

nor serum (AUC= 0.690) GFAP were adequate predictors of functional outcome 1 week

after injury.

Conclusions: Despite differences in concentration, serum and plasma GFAP levels

were highly correlated and had similar discriminability between those with and

without intracranial abnormalities on head CT following an mTBI. Neither serum nor

plasma GFAP had adequate discriminability to identify patients who would have poor

functional outcome.

Keywords: traumatic brain injuries, glial fibrillary acidic protein, plasma, serum, computed tomography

INTRODUCTION

Glial fibrillary acidic protein (GFAP) concentration is increased
following a traumatic brain injury (TBI), in studies of patients
with predominantly mild to moderate injuries (1–6). There is
some evidence that GFAP is associated with, and may be able to
predict, unfavorable outcome following TBI (7–10). GFAP is a 50
k-Da intermediate filament protein that is highly abundant in the
cytoskeleton of astrocytes (11, 12). Following plasma membrane
damage secondary to neurotrauma, GFAP is released into the
interstitial fluid, and enters the bloodstream by crossing the
blood-brain barrier, which is compromised following TBI (13–
15) or via the glymphatic system (14, 16). GFAP has been shown
to be detectable within 1 h of injury (3, 17, 18), continues to rise
and appears to peak within 20–24 h (3, 18), and then declines
over 72 h (3), with a biological half-life of 24–48 h (19). Many
studies have examined the utility of GFAP for identifying patients
with intracranial abnormalities following TBI (20). GFAP is
considered useful for this purpose given that it is specific to brain
injury (7, 21–23) and has a relatively long half-life compared
to other biomarkers (19). The Food and Drug Administration
(FDA) recently approved GFAP and ubiquitin carboxyl-terminal
hydrolase L1 (UCH-L1) for use in the emergency department
(ED) to screen for traumatic intracranial abnormalities and aid
clinical decisions regarding acute head CT scanning (24).

A large body of evidence from samples obtained from patients
with mild to moderate TBIs suggests that GFAP in both serum
(1–3, 18, 25, 26) and plasma (4–6, 27) can discriminate between
those with and without acute traumatic abnormalities on head
CT, outperforming both UCHL-1 (4) and S100B (2). Despite
extensive research examining GFAP, a comprehensive, direct
comparison of serum and plasma GFAP levels from the same
patient sample is lacking. The purpose of the present study is to
compare serum and plasma GFAP levels following mTBI within
the same sample of subjects using two different and widely used
assays. We chose to examine a convenience sample of older
adults with mild TBIs (mTBI) because (i) there have been calls

for more research focused on mTBI in older adults (28, 29), (ii)
they have pre-existing neurological conditions that can influence
biomarker results (30), and (iii) there is evidence that they have
higher levels of GFAP following injury than younger adults,
as well as generally have more prolonged recoveries (31, 32).
We hypothesized that plasma and serum GFAP levels would
(i) be highly correlated, (ii) have similar ability to discriminate
between those with and without acute traumatic intracranial
abnormalities on head CT, and (iii) have similar associations with
functional outcome in older adults with a mTBI.

MATERIALS AND METHODS

Participants
The data used for secondary analyses in the present study were
part of a larger prospective study that aimed to clinically validate
the Scandinavian Guidelines for Initial Management of Minimal,
Mild, and Moderate Head Injuries in Adults in the Emergency
Department (ED) of the Tampere University Hospital (33).
Tampere University Hospital is the only neurosurgical referral
hospital in the district, and the ED provides health services for
approximately 470,000 residents from 22 municipalities, both
urban and rural. All adult patients aged 18 or older, with an acute
traumatic head injury, seen within 24 h of injury, were eligible for
inclusion. The minimum criteria for TBI were as follows: either
blunt injury to the head or acceleration/deceleration type injury
resulting in witnessed loss of consciousness, disorientation, or
amnesia and an initial Glasgow Coma Scale (GCS) score of 13–
15. Over a 1-year period from November 2015 to November
2016, 325 patients provided written consent to be included in the
study and 225 had both serum and plasma analyzed for GFAP.
From these 225, we selected a sample of 121 older adults (≥50
years; 51.2% men) with a suspected mTBI, based on a Glasgow
Coma Scale (GCS) of 14–15 upon presentation to the ED, who
had blood drawn within 12 h of injury for the present study.
The sample for the present study was limited to older adults in
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part because (i) nearly all patients who presented to the ED who
had abnormal head CT scans in the cohort were, coincidentally,
older adults; (ii) GFAP has been shown to increase with age
(32, 34); and (iii) GFAP was recently approved to screen for
intracranial abnormalities (24), making this a convenience study
of older adults.

Functional Outcome Assessment
Participants were administered the Finnish-language Glasgow
Outcome Scale-Extended (GOS-E) (35) at 1 week post-injury by
a trained research nurse. The 1-week time point was selected
for the original S100B validation study to assess if the patients
developed early complications that could have been avoided with
initial head CT scanning in the ED. The GOS-E ranges from 1 to
8, with higher ratings corresponding to better functional outcome
following injury during this subacute time period. The GOS-
E was dichotomized with GOS-E of 7 and 8 considered Good
Outcome and a GOS-E of 6 or lower considered Poor Outcome.

Computed Tomography
Non-contrast head CT was performed with a 64-row CT scanner
(GE, Lightspeed VCT, WI, USA). Clinical judgment was used
to decide whether to perform head CT, but decisions mainly
adhered to the Scandinavian Guidelines (36). We did not rely
on the interpretation from the on-call radiologist at the time
of injury. A neuroradiologist, for research purposes, reviewed
and systematically coded all CT findings based on the Common
Data Elements (37). To verify the reliability of the head CT
findings, an independent neuroradiologist re-interpreted 10%
of the CT-scanned patients from the original prospective cohort
(33) with the same common data elements. The interrater
intraclass correlation for a normal vs. abnormal head CT
was 0.879 (95% CI = 0.719–0.948, p < 0.001), indicating
excellent agreement. Pre-existing and acute traumatic lesions
were coded. The following traumatic lesions were considered
as intracranial abnormalities on head CT: skull fracture,
epidural hematoma, extraaxial hematoma, subdural hematoma,
traumatic subarachnoid hemorrhage, vascular dissection,
traumatic aneurysm, venous sinus injury, midline shift, cisternal
compression, fourth ventricle shift/effacement, contusion,
intracerebral hemorrhage, intraventricular hemorrhage, diffuse
axonal injury, traumatic axonal injury, penetrating injuries,
craniocervical junction/brainstem injury, edema, brain swelling,
ischemia/infarction/hypoxic-ischemic injury. Based on head CT,
participants were divided into those who did not undergo head
CT, those with intracranial abnormalities on head CT, and those
without intracranial abnormalities on head CT.

Blood Sampling and Analytics
Venous blood samples were collected within 12 h of injury. The
blood samples were collected in Tampere between November
2015 and November 2016. Serum GFAP levels were measured
first on March 12, 2018 in a research laboratory in Mölndal,
Sweden using the Human Neurology 4-Plex Assay (Quanterix,
Billerica, MA) on an HD-1 Single molecule array (Simoa)
instrument according to instructions from the manufacturer
(Quanterix, Billerica, MA). The lower limit of detection for GFAP

was 0.221 pg/mL and the lower limit of quantification was 0.467
pg/mL. Calibrators were run in duplicates while samples were run
in singlicates. Two quality control samples were run in duplicates
in the beginning and the end of each run, showing a repeatability
of 5.8% and intermediate precision of 5.8% at 79.8 pg/mL, and
a repeatability of 4.9% and intermediate precision of 6.2% at
87.5 pg/mL.

Plasma GFAP levels were analyzed on September 14–15,
2019, again in Mölndal, Sweden using the GFAP Discovery
Kit (Quanterix, Billerica, MA) on an HD-1 Simoa instrument
according to instructions from the manufacturer (Quanterix,
Billerica, MA). The lower limit of detection for GFAP was
0.211 pg/mL and the lower limit of quantification was 0.686
pg/mL. Calibrators were run in duplicates while samples were
run in singlicates. Samples were run with a 4-fold dilution
and results have been compensated for this dilution. Two
internal quality control samples were run in duplicates in the
beginning and end of each run. For a quality control sample
with a concentration of 76.3 pg/mL, repeatability was 7.6% and
intermediate precision was 11.3%, whereas for a quality control
sample with a concentration of 204.2 pg/mL, repeatability was
6.8% and intermediate precision was 12.8%.

Ethical Approval
Ethics approval was obtained from the Ethics Committee of
Pirkanmaa Hospital District, Tampere, Finland (ethical code:
R15045). Written informed consent was obtained from all
included study participants after participants were provided
with necessary information about the study in both oral and
written form.

Statistical Analyses
All analyses were conducted for the total sample (N = 121) and
designated subgroups based on head CT findings and functional
outcome. Non-parametric tests were used given that both serum
and plasma GFAP levels were non-normally distributed. Within-
person comparisons of serum and plasma GFAP levels were
conducted using Wilcoxon signed-rank tests, with effect size r
calculated for each analysis by dividing the z-statistic by the
square root of the sample size (38). This effect size can be
interpreted as small (r = 0.10), medium (r = 0.30), and large
(r = 0.50) (39). Cohen’s d has also been reported and can be
interpreted as small (d = 0.20), medium (d = 0.50), and large (d
= 0.80) (39), but this effect size assumes normality and may not
accurately reflect the magnitude of difference between groups.
Non-parametric correlations (i.e., Spearman’s rho) were also
calculated to examine the relationship between age and GFAP
levels, time to blood sampling and GFAP levels, and GFAP levels
across serum and plasma.Mann-WhitneyU tests were conducted
to compare participants based on head CT findings (i.e., positive
vs. negative) and outcome (i.e., poor vs. good), with effect size r
again calculated to quantify the magnitude of the effect. Receiver
Operator Characteristic (ROC) curve analyses were conducted to
determine the sensitivity and specificity of the serum and plasma
GFAP levels at discriminating between participants with and
without intracranial abnormalities on head CT and participants
with good and poor outcome based on GOS-E. The Area Under
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TABLE 1 | Injury characteristics of the sample and imaging findings.

Yes No Unknown

n, % n, % n, %

Loss of consciousness-

witnessed/suspected

45, 37.2% 58, 47.9% 18, 14.9%

Post-traumatic seizure 0, 0% 105, 86.6% 16, 13.2%

Post-traumatic amnesia 41, 33.9% 71, 58.7% 9, 7.4%

Focal neurological deficit 11, 9.1% 108, 89.3% 2, 1.7%

Vomited 2 times or more 2, 1.7% 109, 90.1% 10, 8.3%

Headache 50, 41.3% 62, 51.2% 9, 7.4%

Alcohol intoxication at time of injury 39, 32.2% 75, 62.0% 7, 5.8%

Neurosurgery (craniotomy) 2, 1.7% 119, 98.3% –

Other surgery 0, 0% 121, 100% –

Acute traumatic lesion on head

computed tomography

22, 18.2% 78, 64.5% 29, 24.0%

No patient had an isolated skull fracture.

the Curve (AUC) was calculated for each ROC analysis, under
a non-parametric assumption, with an accompanying standard
error (SE) and 95% confidence interval (CI). AUC values were
interpreted as acceptable (AUC = 0.70–0.79), excellent (AUC
= 0.80–0.89), and outstanding (AUC ≥ 0.90) at discriminating
between groups (40). Statistical analyses were conducted using
SPSS version 24 and the MedCalc Statistical Software version
19.17 (Bland-Altman Plot, ROC analyses, and Passing Bablock
regression). Bland-Altman analyses were used to illustrate the
agreement between the two quantitative measurements. Passing
Bablock regression is a non-parametric method for estimating a
linear regression line and testing whether the intercept is zero and
the slope is one, which would illustrate that two measurement
systems were yielding the same values.

RESULTS

Patient Characteristics, Blood Sampling,
and Imaging Findings
The total sample (n = 121; 51.2% men) had a mean age of
75.1 years old (SD = 11.9) and a median age of 76.0 with an
interquartile range (IQR) of 68.0 to 84.5 (full age range = 50.0–
100.0). All participants had GCS scores of 14 (n = 6; 5.0%) or 15
(n = 115; 95.0%) in the ED. The mean time to blood sampling
was 3.4 h (SD = 2.1; Md = 2.9, IQR = 1.9–4.5, range = 0.5–
11.7). The injury characteristics of the total sample and imaging
findings are presented inTable 1. Intracranial abnormalities were
identified in 18.2% (n = 22) of the total sample and 23.9% of
those who underwent head CT (n= 92). The imaging findings for
those who underwent head CT were as follows: skull fracture (n
= 2; 2.2%), extra-axial hematoma (n= 18; 19.6%), acute subdural
hematoma (n= 10; 10.9%), traumatic subarachnoid hemorrhage
(n= 9; 9.8%), intraventricular hemorrhage (n= 1; 1.1%), midline
shift (supratentorial) (n= 2; 2.2%), contusion (n= 4; 4.3%), and
traumatic axonal injury (n= 3; 3.3%). No patient had an isolated
skull fracture.

Participants were divided into subgroups based on head CT
findings, including positive head CT (n = 22; 40.9% men; M
= 81.1 years old, SD = 9.4, IQR = 72.8–89.0, range = 61.0–
96.0), negative head CT (n = 70; 47.1% men; M = 75.1 years
old, SD = 12.2, IQR = 66.8–84.3, range = 50.0–100.0), and head
CT not conducted (n = 29; 69.0% men; M = 70.4 years old, SD
= 11.1, IQR = 61.0–79.0, range = 50.0–91.0). Participants were
also divided into subgroups based on GOS-E into good outcome
(n = 31; 58.1% men; M = 71.3 years old, SD = 11.0, IQR =

66.0–78.0, range = 50.0–91.0) and poor outcome (n = 76; 46.1%
men; M = 76.5 years old, SD = 11.7, IQR = 70.3–85.8, range
= 50.0–96.0). The distribution of GOS-E scores for the entire
sample was as follows: 1: n = 0, 0%; 2: n = 1, 0.8%; 3: n = 17,
14.3%; 4: n = 28, 23.5%; 5: n = 2, 1.7%; 6: n = 6, 5.0%; 7: n =

22, 18.5%; 8: n = 31, 26.1%; and missing: n = 12, 10.1%. Two
participants sustained repeat head injuries within 1 week of their
initial presentation to the ED and were excluded from the 1-week
functional outcome analyses.

Findings in the Total Sample
Descriptive statistics for serum and plasma GFAP concentrations
in the total sample are presented in Table 2. GFAP concentration
values were considerably greater in plasma than in serum for the
total sample (z = 0.42, p < 0.001, r = 0.42, medium to large
effect size). Serum and plasma GFAP concentrations in the total
sample were highly correlated, but the values were not redundant
(rho= 0.886).

A Bland-Altman plot is presented in Figure 1, with the
circles illustrating the differences between the plasma minus
serum values of GFAP (N = 121; M = 138.9, 95% CI = 47.3–
230.6; p < 0.004; lower limit = −859.1, 95% CI = −1,016.2
to −702.0; upper limit = 1,137.0, 95% CI = 979.9–1,294.0;
Coefficient of Repeatability = 1,030.5, 95% CI = 915.4–1,179.0).
The horizontal dotted lines represent the limits of agreement,
in this case defined as the mean difference between plasma
and serum GFAP values plus and minus 1.96 times the SD of
the differences. The line of equality is the dotted horizontal
line at 0.0. The mean difference between the two methods is
the solid black line (138.9), and the error bars for that line
represent the 95% confidence interval for the mean difference.
Because the 95% confidence interval does not overlap the line of
equality (0.0), there is a systematic difference between plasma and
serum GFAP.

A scatter diagram with the regression line and confidence
bands is presented in the upper part (part A) of Figure 2. The
Passing and Bablock regression equation is y = −31.72 + 1.30x;
the 95% confidence interval for the intercept value (−31.72) is
−50.89 to 7.63 and for the slope (1.30) is 1.10–1.44, revealing a
proportional difference between plasma and serum GFAP. The
Cusum test, used to evaluate how well a linear model fits the data,
revealed no significant deviation from linearity (p = 0.49). The
residual plot in the lower part (part B) of Figure 2 presents the
distribution of differences between predicted values and observed
values about the fitted regression line.

In the total sample, 64.5% of patients had higher plasma than
serum concentrations. We calculated a difference score between
plasma and serum GFAP concentrations by subtracting serum
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TABLE 2 | Comparison of GFAP concentrations in serum and plasma in the total sample and head CT subgroups.

Total sample No head CT Normal head CT Abnormal head CT

(N = 121) (n = 29) (n = 70) (n = 22)

Plasma Serum Plasma Serum Plasma Serum Plasma Serum

Descriptive statistics (pg/mL)

Mean 635.9 497.0 400.3 401.4 459.1 344.5 1509.2 1108.2

Median 326.8 272.1 207.3 217.1 315.9 263.0 928.6 787.8

Standard deviation 972.6 700.5 790.1 867.2 535.7 412.4 1627.8 872.3

Interquartile range 189.9–595.1 157.2–503.3 137.1–337.0 122.3–302.1 176.3–564.9 147.8–433.5 411.0–2035.6 353.5–2096.6

Range 52.2–6838.6 32.6–4813.8 52.2–4420.0 32.6–4813.8 63.4–4027.7 48.7–3382.4 139.6–6838.6 114.4–2640.7

Difference score (plasma – serum)

Mean 138.9 −1.1 114.6 401.0

Median 28.0 0.65 37.7 230.1

Standard deviation 509.2 90.7 237.9 1088.0

Interquartile range −15.5 to 140.4 −21.6 to 39.6 −9.0 to 144.4 −54.7 to 612.0

Range −1612.0 to 4197.8 −393.8 to 129.4 −118.6 to 1328.7 −1612.0 to 4197.83

Percentage with plasma > serum 64.5% 55.2% 68.6% 63.6%

Group comparisons

Wilcoxson signed ranks test (z) 4.62 (p < 0.001) 0.75 (p = 0.456) 4.46 (p < 0.001) 2.09 (p = 0.036)

Effect sizes (r) 0.42 0.14 0.53 0.45

Effect sizes (Cohen’s d) 0.16 0.001 0.24 0.31

Spearman correlations

Age and GFAP level 0.495** 0.540** 0.489** 0.540** 0.508** 0.631** −0.028 −0.061

Time to blood sampling 0.243** 0.206* 0.315 0.308 0.158 0.074 0.455* 0.387

Values from two assays 0.886** 0.907** 0.862** 0.826**

*p < 0.05 and **p < 0.01; CT, computed tomography; GFAP, glial fibrillary acidic protein.

FIGURE 1 | Bland-Altman plot comparing plasma and serum values in the total sample. GFAP, glial fibrillary acidic protein.
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FIGURE 2 | Passing and Bablock regression for plasma and serum GFAP in the total sample. GFAP, glial fibrillary acidic protein. (A) Scatter diagram with regression

line, confidence intervals, and diagonal line is in the upper figure. (B) This residuals plot, in the lower figure, presents the distribution of difference around the fitted

regression line, allowing a visual evaluation of the goodness of fit of the linear model. The residuals are the differences between the predicted values and the observed

values for the dependent variable. The black triangles represent two extreme values.

concentration from plasma concentration. Themedian difference
score in the total sample was 28.0 pg/mL. Among difference
scores, 17 outliers were identified, defined as GFAP difference
scores that were >1.5 times the IQR. The characteristics of these
participants are presented in Table 3. Twelve had abnormal head
CT scans, 4 had normal head CT scans, and 1 did not undergo a
head CT scan.

Findings by Head CT Group
Comparing Normal and Abnormal Head CT Groups
Serum and plasma GFAP concentrations were first compared
between the subgroups with normal and abnormal head CT scans
(see Table 2 and Figure 3). Both serum and plasma GFAP levels
were significantly higher in those with abnormal head CT scans
compared to those with normal head CT scans (serum: U =
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TABLE 3 | Characteristics of subjects who were outliers on their GFAP difference scores.

Age Gender Mechanism

of injury

Injury to blood

sampling (hours)

CT

result

GOS-E

outcome

Plasma GFAP

(pg/mL)

Serum GFAP

(pg/mL)

GFAP difference

(plasma – serum)

80 Male GLF 1.3 Abnormal Poor 1,001.8 2,613.8 −1,612.0*

89 Female GLF 2.9 Abnormal Poor 243.5 1,064.1 −820.6*

75 Male Sport 7.2 Not

Done

Poor 4,420.0 4,813.8 −393.8

88 Female GLF 4.5 Abnormal Poor 886.4 492.6 393.8

92 Female GLF 1.4 Abnormal Poor 630.2 188.6 441.6

89 Female GLF 4.8 Abnormal Poor 1,863.0 1,372.2 490.7

81 Female GLF 3.8 Normal Poor 1,288.3 788.3 500.0

83 Female Fall 5.3 Abnormal Poor 1,941.2 1,382.7 558.5

77 Male GLF 2.9 Abnormal Poor 1,792.7 1,191.1 601.5

61 Male GLF 5.1 Abnormal Poor 1,490.1 846.6 643.4

89 Female GLF 3.6 Normal Poor 4,027.7 3,382.4 645.3

68 Female Fall 3.3 Abnormal Poor 2,857.2 2,057.9 799.3*

95 Male GLF 5.9 Abnormal Poor 3,152.8 2,341.0 811.8*

69 Male GLF 3.1 Normal Good 1,283.3 218.4 1,064.8*

78 Female GLF 5.4 Normal Poor 1,651.9 323.2 1,328.7*

72 Male GLF 3.8 Abnormal Poor 4,296.4 2,212.9 2,083.5*

89 Female GLF 8.3 Abnormal Poor 6,838.6 2,640.7 4,197.8*

M = 2,333.2 M = 1,643.0 M = 690.3

Md = 1,792.7 Md = 1,372.2 Md = 601.5

Outliers were defined as GFAP difference values that were >1.5 times the IQR. Extreme outliers (GFAP difference values >3 times the IQR) are denoted with an asterisk. CT, computed

tomography; GFAP, glial fibrillary acidic protein; GLF, ground-level fall; GOS-E, Glasgow Outcome Scale-Extended.

FIGURE 3 | Comparing plasma and serum GFAP levels among subgroups. The mean values are displayed, and the error bars represent one standard deviation. CT,

Computed Tomography; GFAP, Glial Fibrillary Acidic Protein.

1,253, p < 0.001; plasma: U = 1,198, p < 0.001). ROC curves
were computed for serum and plasma GFAP. GFAP levels in
serum had slightly greater discriminability than GFAP levels in

plasma for detecting intracranial lesions on head CT. The AUC
for serum GFAP was 0.814 (SE= 0.057, 95% CI= 0.719–0.887, p
< 0.001) and for plasma GFAP was 0.778 (SE = 0.059, 95% CI=
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0.679–0.858, p < 0.001). The AUC for each fluid was within the
95% CI of the AUC for the other fluid, and a pairwise comparison
of the ROC curves revealed no statistically significant difference
(z = 0.772, p= 0.440).

Comparing Concentrations Within Subgroups
Serum and plasma GFAP concentrations were then compared
within head CT subgroups. Stated differently, the concentrations
from the two assays were compared for each subgroup. GFAP
concentration values were considerably greater in plasma than
in serum for the subgroups that had normal (z = 4.46, p <

0.001, r = 0.53, large effect size) and abnormal head CT scans
(z = 2.09, p = 0.036, r = 0.45, medium to large effect size).
There was no significant difference between GFAP concentration
values in plasma and serum for the subgroup that did not
undergo head CT (z = 0.75, p = 0.456, r = 0.14, small effect
size). Descriptive statistics for GFAP concentration values and
difference scores for the CT subgroups are presented in Table 2.
GFAP concentration values for these subgroups are presented
visually in Figure 3. The correlations (rho) between plasma and
serum GFAP concentrations within all head CT subgroups were
high, but not redundant, and ranged from 0.826 to 0.907. There
were similar significant medium positive correlations between
both serum and plasma GFAP and age in the subgroup that had
normal head CT scans and the subgroup that did not undergo
a head CT scan. However, there was no significant correlation
between either serum or plasma GFAP and age in the subgroup
with abnormal head CT scans (see Table 2).

Findings by Functional Outcome Group
Comparing Good and Poor Functional Outcome

Groups
Serum and plasma GFAP concentrations were first compared
between the subgroups with good and poor outcome (see
Table 4 and Figure 3). Both serum and plasma GFAP levels
were significantly higher in those with poor compared to good
outcome (serum: U = 1,625, p = 0.002; plasma: U = 1,539, p
= 0.013). ROC curves were computed for serum and plasma
GFAP. GFAP levels in serum yielded a slightly higher AUC than
in plasma for differentiating between those with good vs. poor
outcome; however, neither serum (AUC= 0.690, SE= 0.054, 95%
CI = 0.584–0.796, p = 0.002) nor plasma GFAP (AUC = 0.653,
SE = 0.060, 95% CI = 0.537–0.770, p = 0.013) met AUC cutoffs
for acceptable discrimination between good and poor outcome
groups. The AUC for each fluid was within the 95% CI of the
AUC for the other fluid, and a pairwise comparison of the ROC
curves revealed no statistically significant difference (z = 1.02, p
= 0.308).

Comparing Concentrations Within Subgroups
Serum and plasma GFAP concentrations were then compared
within functional outcome subgroups. Stated differently, the
concentrations from the two assays were compared for
each outcome subgroup. GFAP concentration values were
considerably greater in plasma than in serum for subgroups with
good (z = 2.62, p = 0.009, r = 0.47, medium to large effect size)
and poor outcome (z= 3.50, p< 0.001, r= 0.40, medium to large

TABLE 4 | Comparison of GFAP concentrations in plasma vs. serum in outcome

subgroups.

Good outcome Poor outcome

(n = 31) (n = 76)

Plasma Serum Plasma Serum

Descriptive statistics (pg/mL)

Mean 369.8 283.1 665.6 551.6

Median 253.9 210.6 337.3 300.5

Standard deviation 441.9 397.5 887.0 761.6

Interquartile range 117.1–417.9 119.2–314.5 221.9–621.1 192.4–551.1

Range 63.4–2318.7 48.7–2331.8 52.2–4420.0 32.6–4813.8

Difference score (plasma – serum)

Mean 86.7 113.9

Median 25.5 38.5

Standard deviation 205.4 408.7

Interquartile range −13.2 to 125.8 −26.0 to 168.2

Range −94.4 to 1,064.8 −1,612.0 to 2,083.5

Percentage with

plasma > serum

61.3% 67.1%

Group comparisons

Wilcoxson signed

ranks test (z)

2.63 (p = 0.009) 3.50 (p < 0.001)

Effect sizes (r) 0.47 0.40

Effect sizes (Cohen’s d) 0.21 0.14

Spearman correlations

Age and GFAP level 0.559** 0.756** 0.435** 0.406**

Time to blood

sampling

0.095 0.196 0.222 0.128

Values from two

assays

0.846** 0.865**

**p< 0.01; outcome was defined based on the GlasgowOutcome Scale-Extended (GOS-

E), which ranges from 1 to 8, with higher scores indicating better functional outcome.

Good outcome was defined as a GOS-E score of 7 (lower good recovery) or 8 (upper

good recovery). Poor outcome was defined as a GOS-E score of 6 or lower.

effect size). Descriptive statistics for GFAP concentration values
and difference scores for the outcome subgroups are presented
in Table 4, and GFAP concentration values for these subgroups
are presented visually in Figure 3. The correlations (rho) between
serum and plasma GFAP concentrations in both the good (rho=
0.846) and poor (rho= 0.865) outcome subgroups were high, but
not redundant. There were similar, significant, medium positive
correlations between both serum and plasma GFAP and age in
both outcome subgroups (see Table 4).

DISCUSSION

Four Main Findings
This is the first study, to our knowledge, to compare serum and
plasma levels of GFAP in a sample of older adults who sustained
mTBIs. There were four main findings. First, plasma GFAP levels
were significantly higher than serum GFAP levels in the total
sample and nearly all subgroups. Second, serum and plasma
GFAP levels were highly correlated, but not redundant, in the
total sample and all subgroups. Third, GFAP levels measured in
both serum and plasma were significantly higher in the subgroup
with abnormal head CT scans compared to the subgroup without
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findings on a head CT scan—with similar ability to discriminate
between patients with and without intracranial abnormalities.
Finally, GFAP levels in both serum and plasma were significantly
higher in the subgroup with poor functional outcome compared
to the subgroup with good functional outcome, but both had
comparably poor ability to discriminate between those with good
and poor functional outcome, warranting larger studies in the
future to better determine if these biomarkers combined with
others may be of greater value for predicting functional outcome
in this population.

GFAP and Abnormal Head CTs
There is strong evidence that GFAP can be used as a biomarker
for identifying people with abnormalities on head CT (1–6, 18,
25–27), and the FDA recently approved GFAP and UCH-L1 for
this purpose in the ED setting (24). GFAP outperforms both
UCHL-1 (4) and S100B (2) for discriminating between those
with normal vs. abnormal head CT scans. In the present study,
serum and plasma GFAP had a similar ability to discriminate
between those with and without intracranial abnormalities (AUC
serum = 0.814; AUC plasma = 0.778). The AUC values in the
present study are fairly similar to those reported in other studies
(1–6, 18, 25–27, 41) (range = 0.74–0.94) that have examined
how effectively GFAP discriminates between patients with and
without intracranial abnormalities following TBI (in samples of
patients with predominantly mild injuries).

GFAP and Age
There is evidence that GFAP is elevated differentially in older
adults following TBI (31, 32). In the present study, there were
positive correlations between GFAP and age, in both serum and
plasma, in the total sample and in nearly all subgroups. Thus,
GFAP levels are greater with greater age. In most subgroups,
the correlations between GFAP and age were modestly larger
in serum than in plasma. One possible explanation is that
fibrinogen and other clotting factors in plasma influence the
correlation between GFAP and age (42). Interestingly, there was
no correlation between GFAP levels and age in the subgroup
with abnormal head CT scans. Past researchers examining GFAP
levels following TBI (93.3% mild in severity) found that among
those with intracranial abnormalities (i.e., CT positive), GFAP
concentrations did not significantly differ between younger (<65
years old) and older (≥65 years old) adults (32). However,
among the total sample and those with normal head CT scans,
older adults had significantly higher median GFAP levels than
younger adults (32). Therefore, it is possible that neurotrauma
resulting in macroscopic intracranial abnormalities reduces or
even obliterates the association between GFAP levels and age,
although this is speculative and cannot be evaluated in the
present study.

GFAP and Functional Outcome
There is modest evidence that GFAP is associated with
functional outcomes following TBI (7–10). Prior studies have
reported adequate ability (i.e., AUC ≥ 0.70) of GFAP for
discriminating between those with favorable and unfavorable
outcomes following TBI (4, 8, 27, 43). However, inclusion of
patients exclusively with moderate-to-severe TBI (8) and less

stringent definitions of good vs. poor outcome (e.g., GOS-E>4=
good outcome) (4, 27, 43)may have contributed to those findings.
In the present study, we found that those with worse outcome
had greater levels of GFAP in both serum and plasma. However,
our AUC values were not significant, illustrating that GFAP could
not adequately discriminate between these groups. Our study,
however, had a very limited outcome assessment—we examined
global outcome at 1-week post-injury. It remains unclear whether
GFAP, in isolation, is clinically useful for predicting prognosis
or functional outcome following mTBI. In a study of adults
with mostly mild injuries, although GFAP was associated with
functional outcome, GFAP did not predict unfavorable outcome
in a multivariate regression model in which age, GCS score, and
Marshall score were significant predictors (10). Biomarkers with
differing cellular origins and temporal dynamics likely contribute
differently to predicting recovery, and panels of several different
biomarkers have been shown to improve outcome prediction
following severe TBI compared to single biomarkers alone (44).

Plasma vs. Serum GFAP
The findings in this study for serum and plasma levels of GFAP
were similar, but not identical. The levels were highly correlated,
but not redundant, with most correlations ranging from 0.83
to 0.91 (Table 2). The reason for higher GFAP levels in plasma
compared to serum is unclear. One possible explanation is
that GFAP may become trapped in the fibrin-platelet matrix
during clotting, which could account for lower levels of GFAP
in serum compared to plasma (45, 46). GFAP levels in plasma
and serum did not significantly differ for the subgroup that did
not undergo head CT. It can be speculated that the trauma-
induced coagulopathy was more severe in the patients who
underwent CT scanning. Fibrin-platelet trapping is less likely
in very mildly injured individuals, which could account for the
lack of difference between serum and plasma GFAP levels in
those who did not undergo head CT. In addition, the levels were
measured using different assays, which could result in systematic
bias of measurement, because the assays were not standardized to
a common calibrator or a certified reference material. Different
assays might also have different sensitivity to interferants that
might be present in samples. The plasma samples in the present
study were frozen and analyzed 1.5 years after the serum samples
were analyzed, but the possible effect of this greater time in the
freezer is thought to be negligible—especially because there was
only one freeze-thaw cycle. There may also be matrix-related
differences between plasma and serum of relevance to GFAP
as a biomarker. Researchers examining a sample of adults with
intracranial abnormalities following TBI (90% mild in severity)
reported higher median GFAP levels in plasma than serum over
72 h after blood being drawn; however, the researchers did not
statistically compare GFAP levels between fluids and the plasma
and serum concentrations were nearly perfectly correlated (r =
0.994) (47).

Limitations
We ran the biomarker analyses in singlicates. This method does
not allow us to account for variation within the assays. However,
for both plasma and serum GFAP, two quality control samples
were run in duplicates in the beginning and end of each run.
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These quality control samples revealed low analytical variation
for both assays and gave us reasonable confidence that running
the samples in singlicates was appropriate.

Our study had small sample sizes in the abnormal head CT
group and the group who did not undergo a head CT. When
examining the two CT subgroups comparing plasma and serum
levels, we had small sample sizes which reduces power. For the no
head CT group (n = 29, d = 0.001), we had very low power (just
0.05 based on a post-hoc power analysis), but the low power is due
to an extremely small effect size. As such, it is reasonable to accept
the null hypothesis for this particular analysis. Considering the
small effect, it is not likely that serum and plasma differ in this
group. For the abnormal CT group (n = 22, d = 0.31), we
observed a significant group difference, indicating that low power
did not interfere with finding a significant effect for this analysis,
despite a small sample size.

Given our small sample size of those with abnormal head CT
scans, we were not able to further investigate why there was no
significant correlation between GFAP and age in this subgroup.
With a substantially larger sample of people with abnormal head
CT scans, it would be possible to do a more careful analysis of the
association between the specific types of abnormalities and lesion
loads in relation to GFAP and age.

Conclusions
In conclusion, in a cohort of older adults following mTBI, GFAP
levels were highly correlated in serum and plasma, and GFAP
had similar ability to discriminate between individuals with
and without intracranial abnormalities. Both plasma and serum
GFAP levels had inadequate ability to discriminate between
individuals with good and poor global functional outcome at
1-week following injury. Taken together, these findings suggest
that the clinical impact of testing GFAP levels in plasma vs.
serum is small. However, it is possible that the differences in
fluid concentrations may have clinical significance in differential
diagnosis between some patient groups in different clinical
settings and are worthy of additional study. Plasma and serum
GFAP were correlated with age in the total sample and all
subgroups except the group with abnormal head CT scans.
Additional research is needed to determine if neurotrauma
resulting in intracranial lesions reduces or eliminates the
correlation between GFAP and age.
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