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Variational quantum algorithms stand as the most promising approaches towards practical ap-
plications of near-term quantum computers. However, these methodologies usually require a large
number of measurements, which represents an important roadblock for future real-world use cases.
We introduce a novel approach to tackle this problem: a variational measurement scheme. We
present an algorithm that optimises informationally complete POVMs on the fly in order to min-
imise the statistical fluctuations in the estimation of relevant cost functions. We use it in combination
with the Variational Quantum Eigensolver to calculate ground-state energies of molecular Hamilto-
nians in numerical simulations and show that it is competitive with state-of-the-art measurement
reduction approaches. We also highlight the potential of the informational completeness of the
measurement outcomes by reusing the ground-state energy estimation data to perform high-fidelity
reduced state tomography.

I. INTRODUCTION

Quantum computing is a rapidly growing multidisci-
plinary field with a very clear objective: understanding
if, and to what extent, it is possible to build computing
machines able to perform tasks that are impossible for
conventional (classical) computers. Theoretically, mile-
stone discoveries such as Shor’s and Grover’s quantum
algorithms hint towards a positive answer to this ques-
tion. These algorithms, exploiting quantum properties of
the processor, can in principle outperform all currently
existing classical methods. In practice, however, the im-
plementation of such protocols in the regimes of interest
will most probably require the use of ideal fault-tolerant
universal quantum computers. At the same time, because
of the extreme fragility of quantum information storage
and processing in presence of environmental noise, error-
correction techniques required to achieve fault-tolerance
are still experimentally in their infancy.

Universal fault-tolerant quantum computers, however,
are not the only type of quantum machines able to tackle
computationally hard problems. In fact, we can refor-
mulate the main quantum computing research question
and ask ourselves: what are the useful problems that
quantum computers can solve more efficiently than their
classical counterparts and, specifically, which subclass of
such problems are less demanding in terms of experi-
mental requirements, given the current state-of-the-art
quantum hardware? Notice that this question has a dif-
ferent starting point, namely it focuses on our current
—or near-future— technologies and devices, and aims at

identifying, based on the current understanding, useful
applications that may benefit from them.

There are at least two classes of problems that satisfy
the requirements above. The first class has a longstand-
ing history, dating back to Feynman (1982) [1] and Manin
(1980) [2], who pointed out that simulating quantum sys-
tems is hard on classical computers, while, under certain
conditions, they can be efficiently investigated by means
of other quantum systems [3]. In fact, this can be done
using either digital quantum simulators, namely specific-
purpose quantum computers [4–6], or by employing ana-
logue quantum simulators [7–10], namely other equiva-
lent but easier-to-control quantum systems. The second
class of problems emerges when we lift the requirement
of finding “exact” solutions to a given problem. Approx-
imate near-term quantum devices might be able, e.g., to
find better solutions to certain worst-case instances of
NP-hard problems, or find such approximate solutions
faster.

A final ingredient to move towards the existing ap-
proximate noisy quantum devices [11, 12] is the com-
bination of quantum and classical techniques to max-
imise performance. In this paper, we focus on variational
quantum algorithms, which have emerged recently as the
most suited paradigm to tackle the classes of problems
identified above [13, 14] with approximate quantum com-
puting. Specifically, these protocols are implemented by
preparing a parametrised N -qubit trial state on a quan-
tum device, extracting some observable quantities with
suitable measurements and processing such measurement
outcomes using a classical optimiser. The latter then re-
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turns the small changes that need to be implemented to
prepare, in the next step, an updated trial wavefunction.
This cycle is repeated many times until it converges to a
quantum state from which the desired approximate solu-
tion can be extracted.

This procedure can be used to solve problems in chem-
istry [15–18], for the design of new materials [19], and
generally in every field of physics where one needs to ex-
tract the properties of many-body quantum correlated
systems, e.g., interacting fermionic systems, typically
hard to simulate on classical devices [20, 21]. In this case,
these algorithms go by the name of Variational Quantum
Eigensolvers (VQE) [15, 22, 23]. In essence, the quan-
tum processor is used to explore the exponentially-large
Hilbert space of the fermionic particles in order to find
iteratively the ground state of the Hamiltonian, with-
out solving the full diagonalisation problem. As an ex-
ample, the knowledge of the ground state of a chemical
compound as a function, e.g., of the nuclear coordinates
allows one to extract crucial information such as the equi-
librium bond length, bond angle, and dissociation energy.
Notice that, at least in principle, a quantum computer
with a few hundreds of qubits could already have the po-
tential to solve useful quantum chemistry problems which
are intractable on classical computers.

The application of VQE has already been demon-
strated in many proof-of-principle experiments [15, 22,
24–26]. However, a few major challenges still need to
be overcome along the path to useful quantum advan-
tage. On one hand, the classical optimisation step which
is associated with variational quantum algorithms can
in general incur into high computational costs because
of the existence of many local minima or due to the
problem of vanishing gradients [27]. Some possible so-
lutions have been proposed, combining techniques bor-
rowed from classical optimisation theory with a careful
design of the variational ansatz, such as the recently pro-
posed ADAPT-VQE [28] and oo-VQE [29], and of the
associated cost function [30]. On the other hand, the
so-called measurement problem arises from the very high
cost in terms of the number of observations that are typi-
cally needed to reconstruct the properties of interest, and
specifically the expectation value of the Hamiltonian, on
the quantum states constructed by variational means. In
fact, as the size of the problem approaches the regime
in which the VQE could compete with classical methods,
the current approaches would lead to prohibitive require-
ments to reach the desired degree of accuracy [21, 31–33].

In this work, we tackle the second problem, by present-
ing a novel adaptive method that sensibly alleviates the
demands on the number of measurements, thus paving
the way for an increase of the affordable problem sizes in
experimental realisations. On a fundamental level, our
approach introduces a new perspective on how to im-
prove the overall observables reconstruction strategy in
VQE, and possibly in variational algorithms in general,
by leveraging informationally complete quantum mea-
surements. Before introducing our protocol, however, we

describe in more detail the measurement problem and
briefly mention the main approaches that have been pro-
posed in the literature to tackle it in the next section.

II. THE MEASUREMENT PROBLEM IN VQE

One of the most prominent differences between clas-
sical and quantum methods concerns the way in which
information is extracted at the end of the algorithm’s ex-
ecution. In a typical situation, the quantum circuit pre-
pares a N -qubit quantum state |ψ〉 which is used to com-
pute the expectation value of an operator 〈O〉 = 〈ψ|O|ψ〉.
Generally, it is not possible to measure O directly in its
eigenbasis. For instance if we are interested in finding
the ground state of the Hamiltonian H, measuring in its
eigenbasis requires solving the problem itself in advance.

The standard measurement protocol, henceforth
named Pauli method, consists in writing the operator
O as a sum of K Pauli strings, O =

∑
k ckPk, where

Pk =
⊗N

i=1 σ
(i)
ki

and σ
(i)
0 = I(i), σ(i)

1 = σ
(i)
x , . . . are Pauli

operators. The expectation value of the operator is there-
fore obtained in terms of the weighted sum of K expec-
tation values.

Unfortunately, this method leads to a sub-optimal
measurement scheme, as the variance of O is the sum
of the weighted variances of the individual operators Pk.
More precisely, the error in the estimation is given by

ε =

√∑
k

|ck|2Var(Pk)/Sk, (1)

where Var(Pk) = 〈P 2
k〉 − 〈Pk〉2 is the variance of Pk and

Sk is the number of measurements, i.e. wavefunction col-
lapses, used to estimate term k [32]. Interestingly, under
such measurement scheme, even exactly prepared ground
states do not enjoy the zero-variance property, such that
statistical energy fluctuations always remain finite and
large.

This constitutes a major source of problems for
variational-based state preparation, where circuit param-
eters are optimised to minimise the expectation value of
the energy. Given its significance, several efforts have
been put forward to mitigate this problem. One sim-
ple strategy, henceforth named Grouped Pauli method,
aims at identifying all the Pauli strings that can be mea-
sured simultaneously from the same dataset [15]. While
this is not solving the issue, it reduces the computational
overhead of the procedure. Promising approaches also in-
volve the usage of a classical machine learning engine to
perform an approximate reconstruction of the quantum
state [34] using only the basis state defined by Pk [35],
or classical shadows of a quantum state [36–38]. Other
approaches based on grouping of commuting terms, ef-
fective measurement scheduling and optimised qubit to-
mography have been described in Refs. [39–47].

In this work, we present an algorithm for efficient ob-
servable estimation that exploits generalised quantum
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measurements integrating three important components:
a hybrid quantum-classical Monte Carlo, a method to
navigate generalised measurement space towards efficient
measurements, and a recipe to combine different estima-
tions of the observable of interest. The result is a proce-
dure in which the optimal measurement of an operator
average is learnt in an adaptive fashion with no measure-
ment overhead.

III. ADAPTIVE MEASUREMENT SCHEME

In this section, we explain our adaptive measurement
scheme. In a nutshell, the idea is to use parametric infor-
mationally complete positive operator-valued measures
(IC-POVMs), which can in principle be used to estimate
any expectation value of our choice. We first introduce a
hybrid Monte Carlo approach, which bypasses the need
to use tomographic reconstructions of quantum states
from the IC data. We then describe how, by using para-
metric families of POVMs, the measurement settings can
be optimised to yield low statistical errors in the estima-
tion of the target expectation values.

With respect to the second point, special attention
must be devoted to achieving the desired POVM optimi-
sation without incurring in additional overheads in terms
of, e.g., the number of repetitions (also named shots in
the following) of the state preparation and measurement
routine. As we will explain in the following, an adaptive
method, that is, an on-the-fly optimisation will serve this
scope. In brief, the key is to use the IC data obtained
with one given POVM twice: first, we use them to pro-
duce an estimation of the mean of the observable. Sec-
ond, the same set of results can also be employed to find
a better POVM for the next experiment. The collection
of intermediate estimators of the target observable, each
constructed along the process with a different POVM,
is finally integrated together as to minimise the overall
statistical uncertainty. As a result of this strategy, the
measurement learning procedure improves over the initial
POVM (which turns out to be already quite efficient, as
shown in Sec. IV) with no additional measurement costs.
The scheme is illustrated and summarised in Fig. 1.

It is important to stress that the method does not re-
quire any approximations whatsoever. In fact, it is com-
pletely agnostic to the nature of the operator O to be
measured, as long as it is given in terms of a linear combi-
nation of products of single-qubit observables (e.g., Pauli
strings). While the algorithm is rather general, its perfor-
mance is strongly dependent on the weight of such prod-
ucts (the number of non-identity single-qubit operators
in every term), as we explain later, which makes quan-
tum chemistry with low-weight fermion-to-qubit map-
pings, such as Bravyi-Kitaev [48] and the one recently
introduced in Ref. [49], ideal use cases.

To ease the explanation of the algorithm, we present
its three main components separately. We first intro-
duce the hybrid quantum-classical Monte Carlo sampling
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FIG. 1. Adaptive measurement scheme. The sketch rep-
resents a typical measurement step of a variational algorithm.

The ansatz prepares a state |ψ(~θ)〉 (green box) for which the
mean of some observable O must be evaluated. Our algorithm
is an efficient measurement subroutine in this process. It re-
lies on parametric informationally complete POVMs (purple
box) implemented with ancillary qubits (red box). These are
explained in detail in App. A. Initially, we start by performing
S1 measurements using the POVM corresponding to parame-
ters ~x1, and obtain S1 outcomes m1, . . . ,mS1 . The measure-
ment data are post-processed efficiently on a classical device
(blue box) twice, with two different goals. First, we estimate
the mean of the observable, Ō1, and the corresponding error
of the estimation, V̄1, as explained in Sec. III A. Second, we
calculate the gradient of the estimation variance, ∇~xVar(ωm),
in POVM parameter space, and thus find a better POVM for
iteration 2 (see Sec. III B and App. B). At every step t, the

variables ¯̄O and ¯̄V integrate all the estimations for t′ ≤ t
while minimising the overall statistical error (see Sec. III C

and App. D). The process is repeated iteratively until ¯̄V is
below some desired threshold.

for the estimation of expectation values of operators in
Sec. III A. We then show in Sec. III B how to estimate the
gradient in the space of POVMs without additional mea-
surements, using only efficient classical post-processing
and, lastly, in Sec. III C, we illustrate how to integrate
all the data obtained from different POVMs to estimate
mean values while minimising statistical fluctuations.

A. Hybrid quantum-classical Monte Carlo
sampling

Our proposed algorithm relies on single-qubit (mini-
mal) informationally complete (IC) POVMs, which can
be realised by applying a two-qubit gate between a sys-
tem qubit and an ancillary one, the latter in a known
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state, and then measuring both qubits in the computa-
tional basis. The implementation of these POVMs on
current quantum computers has been recently demon-
strated experimentally on IBM Quantum devices [50, 51].

By definition, one such POVM is represented by four
linearly independent positive operators {Πi > 0, i =
0, . . . , 3} adding up to identity,

∑
i Πi = I, and span-

ning the space of linear operators in the Hilbert space
of the system qubit. Each of these operators, usually
called effects, is associated with one of the four possible
outcomes of the two-qubit measurement, with Tr[ρΠi]
being the probability of outcome i on the quantum state
ρ of the target qubit. It is important to notice that dif-
ferent qubit-ancilla unitaries generally lead to different
POVMs. Hence, by parametrising these unitaries, we
can parametrise the corresponding family of POVMs (see
App. A).

Let us consider the N -qubit case, with local and not
necessarily identical POVMs associated to each qubit.
The four effects associated with qubit i are denoted by

Π
(i)
m , with m running from 0 to 3. The outcome of an

experiment in which all qubits are measured via these
local POVMs is a string m = (m1, . . . ,mN ), where mi ∈
{0, . . . , 3}. The probability of such outcome given an N -

qubit state ρ is Tr[ρΠm], with Πm =
⊗N

i=1 Π
(i)
mi . The set

of these 4N effects Πm is IC in H⊗N .
As explained in previous sections, in VQE realisations

one typically needs to measure an operator O that can be
decomposed in terms of K Pauli strings, O =

∑
k ckPk

(we assume ck ∈ R, as is customary, although our results
can be easily generalised to complex-valued coefficients).
Given that each of the local POVMs is IC, we can express
the Pauli operators acting on each qubit i in terms of the

effects Π
(i)
m as σ

(i)
k =

∑
m b

(i)
kmΠ

(i)
m , with which we can

write

O =
∑
k

ck

N⊗
i=1

σ
(i)
ki

=
∑
k

ck

N⊗
i=1

(
3∑

mi=0

b
(i)
kimi

Π(i)
mi

)

=
∑
m

∑
k

ck

N∏
i=1

b
(i)
kimi

Πm ≡
∑
m

ωmΠm.

(2)

The above expression seems useless at first sight: we
transformed a representation of O in terms of K terms
ckPk into one with possibly 4N terms ωmΠm. However,
the expectation value of the operator now reads

〈O〉 = Tr[ρO] =
∑
m

ωmTr[ρΠm] =
∑
m

ωmpm, (3)

where pm is the probability to obtain outcome m. In
other words, the mean value of the operator is the
average of ωm over the probability distribution {pm},
〈O〉 = 〈ωm〉{pm}, so we can transform the original prob-
lem of measuring a linear combination of a large number
of operators Pk into a Monte Carlo integral.

The strategy is now to repeat the measurement S times
using the local POVMs to sample from the probability

distribution {pm}, resulting in a sequence of outcomes
m1, . . . ,mS , and compute

Ō =
1

S

S∑
s=1

ωms . (4)

Each term ωms
=
∑

k ck
∏N
i=1 b

(i)
kimi

can be calculated
in a polynomial time on a classical computer. This
estimator converges to 〈O〉 as

√
Var(ωm)/S, where

Var(ωm) is the variance of ωm over the probability dis-
tribution {pm}. Crucially, this method estimates the
weighted average of all the Pauli strings Pk simulta-
neously, regardless of whether they commute or not,
by exploiting IC data, yet circumventing any costly to-
mographic reconstruction of quantum states. In addi-
tion, in this Monte Carlo approach, the variance natu-
rally takes into account the covariance between all these
parallel measurements. In other words, the quantity√

(〈ω2
m〉{pm} − 〈ωm〉2{pm})/S, which can be estimated ef-

ficiently from the data, accounts for the total statistical
error. As we explain next, our strategy is to iteratively
search for POVMs that minimise this error.

Importantly, the previous result holds for any operator
O, that is, the same sequence of outcomes m1, . . . ,mS

can be used to estimate, using only classical post-
processing, any expectation value. However, not all ex-
pectation values can be estimated with the same preci-

sion. In particular, notice that the products
∏N
i=1 b

(i)
kimi

can potentially result in variances scaling exponentially
in N . This limitation can be overcome for fermionic
problems by using fermion-to-qubit mappings such as the
Bravyi-Kitaev (BK) [48] and especially the one recently
proposed in Ref. [49] by Jiang et al. (to which we will re-
fer to as JKMN mapping), which lead to Pauli strings
with logarithmic weight (that is, such that fermionic
creation/annihilation operators are mapped onto Pauli
strings with at most a logarithmic number of non-identity

Pauli operators). Since the terms b
(i)
0mi

, corresponding to
the decomposition of identity, are always equal to one

(recall that
∑
m Π

(i)
m = I(i)), these mappings ensure that

the products
∏N
i=1 b

(i)
kimi

scale polynomially in N .

Regarding the method proposed in Ref. [49], it should
be mentioned that our Monte Carlo approach, Eq. (4), of-
fers some advantages over the latter. On the one hand, it
bypasses the classical overhead needed for tomographic
reconstructions. On the other hand, and more impor-
tantly, our approach does not disregard the covariance-
induced statistical errors in the estimation of the average
resulting from parallel measurements. These points are
discussed in more details in App. C.

B. Classical gradient estimation for POVM
optimisation

Modifying the POVM results in a different probability
distribution {pm}, as well as different weights ωm, hence
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1FIG. 2. Adaptive measurement for energy estimation. (a-c) solid lines indicate the error in the estimation of the ground
energy for selected Hamiltonians as a function of the total number of shots, with a VQE state, for various methods: Pauli,
Grouped Pauli, as well as the hybrid Monte Carlo without optimisation (SIC-POVM 1 and 2) and the gradient-optimised
method (Grad. POVM 1 and 2) with two different initial conditions (see App. C). The dashed lines correspond to the estimated

statistical error ( ¯̄V 1/2 in the case of the POVM methods). The curves show the average error over 100 realisations of the
numerical experiments and the shaded areas the 95% confidence interval obtained with bootstrapping. The horizontal dashed
line indicates chemical accuracy, while the tilted one illustrates the S−1/2 scaling. The three examples are (a) 8-qubit H2

with JKMN mapping, (b) 8-qubit LiH with BK, and (c) 14-qubit H2O with JKMN. (d-f) final POVM effects in the gradient
optimisation process, when starting from the SIC-POVM 2, for a sample of 20 realisations from the data set of (a). Every
POVM effect is mapped onto the three-dimensional unit-radius ball in a similar way as how single-qubit states are mapped
onto the Bloch ball. In particular, the point ~r = (rx, ry, rz), |~r| ≤ 1, is associated with the effect Π(~r) = (|~r|I + ~r · ~σ)/2 (notice
the difference with the Bloch ball representation of quantum states; see App. A). In the figure, the colour indicates the qubit
to which an effect corresponds, while the symbol identifies the effect itself among the possible four. The black symbols locate
the initial effects, common to all realisations and qubits. Each panel presents the projection of the ball onto a different plane.
The clustering of the points with equal colour and symbol reveal that all realisations reach approximately the same optimal
measurement. However, the result of the optimisation is different for every qubit. Moreover, starting with SIC-POVM 1 instead
leads to a very different measurement (see [52]).

potentially different Var(ωm). This can be exploited to
devise an adaptive algorithm in which the measurement
of 〈O〉 is optimised over the space of POVMs, that is,
by finding one that minimises the variance Var(ωm). We
now propose a classical post-processing routine to navi-
gate the space of POVMs towards low-variance ones. Es-
sentially, besides using the outcomes obtained with the
current POVM to construct an estimation of the target
observable, the same set of data is also employed in a
classical routine to assess the variance of other POVMs
that were not previously implemented on the quantum

processor. Such procedure is explained in detail in the
following.

Suppose that we want to evaluate the Monte Carlo
variance Var(ω′r) for a new POVM defined in terms of

local POVMs with effects {Γ(i)
r }, that is,

Var(ω′r) =
∑
r

ω′r
2
Tr[ρΓr]−

(∑
r

ω′r
2
Tr[ρΓr]

)2

, (5)

where the ω′r are given by the b
(i)
kr matrices correspond-

ing to these local POVMs, and Γr =
⊗N

i=1 Γ
(i)
ri . The
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second term in Eq. (5) is the squared mean 〈O〉2, which
does not depend on the POVM. The first term, i.e. the
second moment of ωr over the probability distribution

{qr ≡ Tr[ρΓr]},
〈
ω′r

2
〉
{qr}

, is the one that we must min-

imise. Suppose further that we have already run some
experiments on the quantum computer with another IC-

POVM given by the effects {Π(i)
m }. Since this POVM is

IC, we can write Γ
(i)
r =

∑
m d

(i)
rmΠ

(i)
m , where the d

(i)
rm are

real numbers. Inserting these decompositions into the
expression for the second moment, we obtain

〈
ω′r

2
〉
{qr}

=
∑
r

ω′r
2
Tr

[
ρ

N⊗
i=1

(
3∑

mi=0

d(i)rimi
Π(i)
mi

)]

=
∑
m

pm
∑
r

N∏
i=1

d(i)rimi
ω′r

2
.

(6)

This last expression is also calculated in a hybrid
Monte Carlo manner. More precisely, we can reuse the
strings m1, . . . ,mS obtained from the measurements on
the quantum computer (sampled from the probability
distribution {pm}) to estimate the variances of other
POVMs by calculating, for each ms, the corresponding∑

r

∏N
i=1 d

(i)
rimiω

′
r
2

classically. Notice, however, that this
last sum cannot always be computed efficiently, since it
generally contains 4N terms (both positive and negative),

and involves products
∏N
i=1 d

(i)
rimi that can scale exponen-

tially in N . To ensure the feasibility of the procedure,
we use a gradient descent approach for the optimisation
of the POVMs; in such case, only one of the terms in the
product is different from one.

For concreteness, suppose that we used the effects

{Π(i)
m } corresponding to the point ~x in the POVM pa-

rameter space (see App. A) on the quantum computer
and obtained S samples with which we can estimate the
second moment 〈ω2

m〉. We can approximate the partial
derivative of the second moment with respect to one of
the parameters (for instance, the k-th), as ∂xk

〈ω2
m〉 ≈

(〈ω′r
2〉 − 〈ω2

m〉)/h, where 〈ω′r
2〉 is the estimated second

moment corresponding to the POVM whose coordinates
in parameter space ~x′ fulfil x′j = xj + hδkj (let us denote

the corresponding effects by {Γ(i)
r }), and h� 1.

Since all single-qubit POVM are parametrised inde-
pendently, N−1 of them are identical to the ones already

used on the device, that is, d
(i)
rm = δrm, ∀i 6= l, where l is

the qubit whose POVM depends on the k-th parameter.
Introducing this expression into Eq. (6), we obtain

〈
ω′r

2
〉

=
∑
m

pm

3∑
rl=0

d(l)rlml
ω′

2
(m1,...,ml−1,rl,ml+1,...,mN ).

(7)
Using this method, all the partial derivatives can be
calculated using classical post-processing, in polynomial
time, of the same samples m1, . . . ,mS obtained from the
quantum computer. Once the gradient has been esti-

mated, we can identify a new POVM with smaller ex-
pected variance than the previous one. We detail the
gradient-based optimisation used in this work in App. B.

C. On-the-fly optimisation

An important aspect of the algorithm is that we do not
need to first optimise the POVM (until it reaches a small-
enough variance) before starting estimating the expected
value of the observable. The intermediate POVMs used
in the process are also IC, so they can be used for the
estimation of 〈O〉 as well. The strategy is to use the in-
termediate mean values obtained with every fixed choice
of the POVM to calculate a weighted average. As we
will show below, the latter is designed in a way that min-
imises the resulting variance in the overall estimation.
The whole procedure can be carried out iteratively as
the algorithm progresses, thus effectively making use of
all measurement results obtained during the intermediate
POVM optimisation steps for the reconstruction of 〈O〉.

For the sake of clarity, let us first consider the situ-
ation in which we have used T different POVMs, each
with St, t ∈ [1, T ] shots (i.e., statistical samples or repe-
titions of the measurement protocol), and we have pro-
duced T different estimations Ōt using Eq. (4) for each
of the individual POVM choices. These estimations are,
in fact, random variables with the same mean 〈O〉 but

different variance, Var(Ōt) = Var(ω
(t)
m )/St. Let us now

define a new random variable, ¯̄O2(α) = αŌ2 +(1−α)Ō1,
where α ∈ (0, 1) is a parameter of our choice, whose

mean is 〈 ¯̄O2(α)〉 = α〈Ō2〉 + (1 − α)〈Ō1〉 = 〈O〉 for
any value of α. Its variance is, however, a function of
α. Since the Ōt are all independent random variables,

we have Var( ¯̄O2(α)) = α2Var(Ō2) + (1 − α)2Var(Ō1).
While we do not know the actual values of the variances
{Var(Ōt)}, we can estimate them from the data; let us re-
fer to the corresponding estimation of Var(Ōt) with the
symbol V̄t. This allows us to estimate the variance of
¯̄O2(α) as Var( ¯̄O2(α)) ≈ α2V̄2 +(1−α)2V̄1. This quantity
is minimised for αopt = V̄1/(V̄1 + V̄2), yielding an esti-

mated variance Var( ¯̄O2(αopt)) ≈ ¯̄V2 ≡ V̄1V̄2/(V̄1 + V̄2),
which is smaller than V̄1 and V̄2. Thus, we have com-
bined two different estimators of 〈O〉 to produce a new
one with smaller statistical error. Next, define the ran-

dom variable ¯̄O3(α′) = α′Ō3 + (1 − α′) ¯̄O2(αopt). Using
the same arguments as before, the value of α′ minimis-

ing the variance of ¯̄O3 is α′opt = ¯̄V2/(
¯̄V2 + V̄3), giving

Var( ¯̄O3(αopt)) ≈ ¯̄V3 ≡ ¯̄V2V̄3/(
¯̄V2 + V̄3). The process can

be iterated for the T estimators.

The above procedure can be recast in terms of an iter-
ative algorithm as follows:

1. Initialize two variables, ¯̄O and ¯̄V , such that Ō1 →
¯̄O and V̄1 → ¯̄V .
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FIG. 3. Performance of the adaptive measurement scheme. Error in the estimation of the ground energy of the three
molecules with the BK fermion-to-qubit mapping. Every plot compares the results for one molecule (H2 (a), LiH (b), and H2O
(c)) with different measurement methods, with a total of S = 106 shots (for the Pauli and Grouped Pauli methods, we use the
same number of shots b106/Kc on every Pauli string, so the total number of shots is in fact S = Kb106/Kc; this represents
a deficit of at most 0.1% in the total number of shots in the examples considered). The ground state is approximated by
optimising a VQE ansatz. The estimation error is the absolute difference between the simulation results and the exact value for
the optimised ansatz. Points represent the average error over 100 realisations and the error bars show a 95% confidence interval
obtained using bootstrapping. For H2, our algorithm offers little improvement, but the difference in performance becomes
clearer with the other two molecules. Notice that the two initial POVMs yield slightly different results, with SIC-POVM 1
generally outperforming SIC-POVM 2. The results with other fermion-to-qubit mappings are available in App. E.

2. At the end of each iteration t ∈ (2, . . . , T ) of

the POVM optimisation, update them as (Ōt ¯̄V +
¯̄OV̄t)/( ¯̄V + V̄t)→ ¯̄O and ¯̄V V̄t/(

¯̄V + V̄t)→ ¯̄V .

At any point along the process, we have an estimated

mean ¯̄O with estimated standard error ¯̄V 1/2 that min-
imises the overall error of the input data and can be
easily updated with new ones. It is important to stress
that this iterative mixing of the outcomes is unbiased, as
we prove in App. D.

IV. NUMERICAL SIMULATIONS

In this section, we present the results of the numeri-
cal experiments the were run to test the feasibility and
performance of our algorithm. Section IV A is aimed at
illustrating the effect of the adaptive measurement. Sec-
tion IV B presents a more in-depth analysis of the perfor-
mance. Finally, in Sec. IV C we demonstrate an impor-
tant feature of our approach: the IC data used for the
estimation of the energy can be reused for other purposes.

A. Energy measurement learning

We start by measuring the ground-state energy of the
H2, LiH and H2O molecules. For the characterisation of
each system, we use different number of molecular or-
bitals. The basis set used for H2 is 6-31G [54–57] leading
to 8 spin orbitals, while for the case of LiH and H2O we
used STO3G [58, 59] basis set leading to 12 and 14 spin

Mapping

Method Parity BK JKMN

Pauli 6.0± 0.4 6.8± 0.5 6.2± 0.2

Grouped Pauli 5.5± 0.4 6.4± 0.5 5.7± 0.4

SIC-POVM 1 5.8± 0.7 5.7± 0.6 4.9± 0.5

SIC-POVM 2 5.4± 0.5 4.4± 0.4 4.7± 0.2

Grad. POVM 1 4.3± 0.6 4.6± 0.5 3.2± 0.3

Grad. POVM 2 4.0± 0.6 4.4± 0.5 3.4± 0.3

TABLE I. Scaling exponents of the adaptive measure-
ment scheme. The points in Fig. 4, as well as their counter-
parts using other fermion-to-qubit mappings, are fitted to a
function of the form Star = aNb. The table contains the corre-
sponding exponents. The exponent b = 6 of the Pauli method,
as well as the mild reduction b ≈ 5.6 offered by Grouped
Pauli, are consistent with the values reported in Ref. [53] for
other molecules. The POVM-based method without optimi-
sation already outperforms these results, with b ≈ 4.8 using
the JKMN mapping [49]. The adaptive strategy results in a
considerably smaller exponent b ≈ 3.3.

orbitals, respectively. We use the Bravyi-Kitaev [48], the
Jiang et al. [49], and the parity [60] mapping transfor-
mations. The latter has an intrinsic property, deriving
from spin up and spin down electron conservation, that
reduces the number of qubits required by two [60]. We
also leverage different symmetries present in each system
to reduce further the qubit count [60]. For the case of
LiH and H2O we also freeze the core orbitals allowing
us to exclude another two spin orbitals from our calcula-
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FIG. 4. Scaling of the adaptive measurement scheme.
Number of shots Star required to achieve a target error of
εtar = 0.5 mHa for H chains as a function of the number
of qubits N . The qubit Hamiltonian is obtained using the
JKMN mapping. For each method and molecule, we use up
to Slim ≈ 106 runs, as in Fig. 3. If the average error with
Slim shots, εlim, is still larger than εtar, we estimate the re-
quired number of shots needed to reach it by assuming a scal-
ing ε ∼ S−1/2, that is, we use Star = Slimε

2
lim/ε

2
tar. While

this procedure saves us considerable computing time, it also
overestimates the number of measurements needed by our al-
gorithm: indeed, our method’s convergence to εtar is faster
than ε ∼ S−1/2 unless it has already converged to the optimal
POVM (see Fig. 2). Thus, these results are to be regarded as
an upper bound to the total measurement cost of the learning
POVM method. The curves depict least squares fits to the
data with functions of the form Star = aNb. The correspond-
ing values of a and b for each method are reported in Table I.
Notice that the values found for the Pauli and Grouped Pauli
methods are consistent with the ones reported in Ref. [41].
Moreover, the performance of our algorithm is similar to that
of the state-of-the-art method proposed in Ref. [41], especially
for the lower values of N , for which the overestimation of Star

is less significant.

tion (refer to the table in Fig. 6 for more details on the
Hamiltonians and qubit reductions considered). Each of
these molecular Hamiltonians is mapped into qubits us-
ing one or more of the aforementioned techniques, hence
producing several qubit Hamiltonians with varied num-
ber of qubits, which are then used to simulate the energy
measurement process in a VQE experiment near conver-
gence.

We proceed as follows. First, for each qubit Hamilto-
nian H, we numerically approximate the ground state

with a hardware-efficient ansatz |ψ(~θ)〉 introduced in
Ref. [15]. This generates a trial wavefunction by combin-
ing repetitive layers of single qubit Ry gates and entan-
gling blocks composed of two-qubit operations (CNOT
gates). The single qubit rotations are parametrised with
a set of angles (aka variational parameters) that are it-
eratively updated, with the help of a classical optimisa-
tion routine, in order to minimise the energy expectation

value. Once we have the optimal parameters for which

the variational form |ψ(~θopt)〉 approximates the ground-
state wavefunction, we calculate the corresponding exact

expected energy 〈E〉 = 〈ψ(~θopt)|H|ψ(~θopt)〉. We then
simulate different energy evaluation methods as a func-
tion of the number of state preparations (shots) Ē(S),
and compute the corresponding errors |Ē(S)− 〈E〉|. We
also calculate the estimated statistical error for each ap-
proach, that is, the estimated error when the exact value
〈E〉 is not available (for the gradient-descent algorithm,

this error is given by ¯̄V 1/2 as defined in Sec. III C). These
quantities are depicted in Fig. 2 (a-c) for three selected
examples.

The effect of the measurement learning results in the
error decreasing faster than S−1/2, especially for small S.
This is a consequence of the fact that, after each batch of
runs, the next POVM used in the sequence is in principle
more efficient (i.e. leads to a smaller variance) than the
previous one. Importantly, even if the starting efficiency
is lower than that of other methods, our algorithm even-
tually takes over and reaches better accuracy at lower
costs. Moreover, as we discuss in detail in the next sub-
section, even the use of Eq. (4) with the initial POVM
without optimisation tends to give better performances
than with the Pauli and the Grouped Pauli methods, as
the size of the problem increases. The results also reveal

that ¯̄V 1/2, as introduced in Sec. III C, gives the correct
estimation of the statistical error in the evaluation of the
energy [61].

The learning process is also illustrated in Fig. 2 (d-f),
where we depict graphically the result of the optimisation
in terms of a geometric representation of the effects akin
to the Bloch sphere for single-qubit states (see App. A for
details). We only include the results for one example in
the paper, but the results for all the Hamiltonians anal-
ysed in this work, as well as their animated version, can
be found here [52]. Interestingly, while the optimisation
eventually converges and different realisations with the
same initial condition lead to the same minimum (mod-
ulo small fluctuations), the two initial conditions consid-
ered here (see App. C) result in different optimal POVMs
with slightly different performance. This suggests the po-
tential existence of better initial conditions than the ones
explored here. This subject will be considered in future
work.

B. Performance and scaling

While the previous results illustrate the working prin-
ciples of the algorithm with three molecular Hamiltoni-
ans, we now turn our attention towards the analysis of
its performance. In Fig. 3 and in App. E, we collect the
errors of similar estimations for several other Hamilto-
nians corresponding to the same molecules (under dif-
ferenct qubit-reduction schemes) for a total number of
measurements S ≈ 106, from which it can be seen that
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our algorithm is advantageous in almost all cases, and
particularly for LiH and H2O.

In order to study the performance of the algorithm
for larger Hamiltonians, we analyse the number of mea-
surements required to reach an accuracy of 0.5 mHa as
a function of the number of qubits for hydrogen chains
with increasing number of atoms. Due to limitations in
computational power, we run our simulations for a lim-
ited number of measurements and extrapolate the total
number required for such precision (see Fig. 4 for results
using the JKMN mapping and caption for a detailed ex-
planation). Even though this method overestimates the
actual number of shots needed by our algorithm, we see a
considerable improvement with respect to the Pauli and
Grouped Pauli methods. Interestingly, the bare hybrid
quantum-classical Monte Carlo method without optimi-
sation, despite yielding higher errors for the small sizes
considered here, also shows a more favourable scaling
than the former methods.

To provide a more quantitative evaluation, we further
fit each set of results into a function of the form aN b. We
report the corresponding values of the exponent b, also
including those for other fermion-to-qubit mappings, in
Table I. Notice that, while other mappings are added
for completeness, the optimal performance of our algo-
rithm is expected with the mapping from Ref. [49] (see
Sec. III A), as confirmed by the results. Importantly, we
can see that our method thus benefits from two improve-
ments: the Monte Carlo approach results in a consid-
erable reduction in the exponent, followed by a second
scaling improvement stemming from the learning strat-
egy. The result is an overall efficiency comparable to
state-of-the-art methods [41, 49].

C. Exploiting informationally complete data

Further numerical experiments demonstrate that the
IC data collected for the estimation of the energy can
indeed be reused for other purposes. As explained in
Sec. III A, the same IC outputs can be post-processed to
calculate any expectation value of our choice, the only
limitation being that, as it is reasonable to expect, the
optimisation procedure targeting a particular observable
may worsen the estimation of other specific quantities.
In what follows, rather than focusing on particular addi-
tional observables, we consider an arguably more costly
task: state tomography. More precisely, we address the
reconstruction of all the k-qubit density operators in the
system for all k ≤ K. Reduced tomography has recently
attracted some interest in the quantum information lit-
erature for diverse purposes [39–47, 51, 62].

We thus proceed in a similar manner as in the previous
subsections. We approximate the ground states by train-
ing VQE ansätze and then estimate the energy using the
adaptive algorithm. The resulting data is then used to re-
construct all the k-qubit reduced density matrices using
likelihood maximisation. In particular, for every subset

2 3 4 5
k
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Method
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Grad. POVM 1
Grad. POVM 2

Hamiltonian
6-qubit LiH BK
8-qubit H2 JKMN

FIG. 5. Reduced tomography from energy estimation
data. Average k-wise state fidelity F , as a function of k, of
the tomographic reconstructions obtained from the same data
used for the estimation of the ground energy with four differ-
ent methods. The green lines represent the results for the
SIC-POVM 1 (lighter) and 2 (darker) (see App. C) without
optimisation, while the red lines show the results for the gradi-
ent descent-optimised POVM 1 (lighter) and 2 (darker) data
starting with the same initial condition. The style identifies
the molecular Hamiltonian used. The solid lines are obtained
for 6-qubit LiH with BK mapping; the dashed lines, 8-qubit
H2 with JKMN mapping. Every realisation involves a total of
S = 105 measurements. The points indicate the average over
20 realisations, while the error bars the standard deviations.

of k qubits in the system, we marginalise the outcomes
over the subset and then use the algorithm introduced in
Ref. [63] to reconstruct the density operator. Since we
must integrate IC data from T different POVMs in the
likelihood maximisation procedure, we define a collec-

tive POVM with T × 4N effects {Ξ(t,m) = Π
(t)
m St/S, t ∈

[1, T ]}, where the index t indicates the POVM optimi-
sation step, St represents the number of measurements
carried out in iteration t, and S =

∑
t St [64]. Once a k-

qubit density matrix ρtomo is reconstructed, we compute
its fidelity F(ρtomo, ρexact) = Tr[

√√
ρtomoρexact

√
ρtomo]

2.
with respect to the exact one ρexact (obtained by trac-
ing out all other qubits in the trained VQE ansatz).

In Fig. 5, we show the resulting average k-wise fidelity
for the ground states of two molecules, H2 and LiH, as
a function of k, with and without gradient-based POVM
optimisation. The comparison between these two meth-
ods reveals an interesting effect of the optimisation. On
one hand, the data resulting from the measurement learn-
ing strategy yields better reconstructions. On the other
hand, the relative results of each method on the two prob-
lems are reversed: the non-optimised data give better or
nearly equal k-wise fidelity for H2 than for LiH, while the
opposite is true for the gradient descent-based data. In
all cases, however, fidelity decreases with k, as expected.
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V. CONCLUSIONS

We have introduced an algorithm for efficient observ-
able estimation that exploits informationally complete
generalised quantum measurements integrating three im-
portant components: a hybrid quantum-classical Monte
Carlo, an efficient method to navigate POVM space to-
wards low-variance measurements, and a recipe to com-
bine different estimations of the observable of interest.
The result is a procedure in which an optimised mea-
surement of an operator average is learnt in an adaptive
fashion with no measurement overhead. Consequently,
the overall measurement cost is drastically reduced with
respect to the initial POVM considered. This is partic-
ularly interesting for real applications, considering that
the initial SIC-POVMs used already offer a significant
improvement over other widely used methods, such as
Grouped Pauli. Importantly, the method does not re-
quire any exponentially scaling classical computations,
although it involves a modest polynomial classical over-
head.

We have illustrated the potential of the approach with
several proof-of-principle numerical experiments by re-
constructing the ground-state energies of several molec-
ular Hamiltonians. Importantly, our simulations suggest
that this adaptive method exhibits scaling performances
comparable to the most efficient measurement reduction
techniques in the current literature. While confirming
this calls for a more thorough analysis and simulations,
possibly including more general operators than molecu-
lar Hamiltonians, it is also important to point out that
there is still substantial room for improvement in our al-
gorithm, specially in the parametrisation of the POVMs
and in the gradient descent-based update schedule.

Our algorithm also offers some other intrinsic advan-
tages. Being completely agnostic to the nature of the
qubit Hamiltonian, and not inspired by quantum chem-
istry but by quantum information alone, the proposed
procedure may find interesting applications beyond VQE
calculations. The method is also formally exact, as no ap-
proximations are made at any point, except for using the
estimated variances as proxies of the actual ones. More-
over, the informationally complete data produced during
the measurement process for a particular observable can
in principle be reused to calculate many other proper-
ties of the underlying quantum state, including its to-
mographic reconstruction. We have provided evidence of
the feasibility of this prospect by performing high-fidelity
reduced state tomography with no additional measure-
ments.

In this paper, we have only considered the task of esti-
mating a given observable on a fixed quantum state. This
typically represents a single step of, e.g., a VQE calcula-
tion. In perspective, one could however easily integrate
our proposed method as a subroutine of the whole ansatz
optimisation method. In such case, it might actually
be helpful to use the optimal POVM from the previous
VQE step, or a slight modification of it, as the starting

point of the measurement optimisation on the updated
ansatz, given that the trial wavefunction should undergo
relatively small changes between consecutive iterations.
While this stands as a hypothesis for now, it might re-
duce the average number of steps required to adjust the
POVM settings, hence leading to an even larger reduc-
tion in the measurement costs associated to the overall
ansatz optimisation process.

Admittedly, our contribution presents a drawback: it
requires twice as many qubits. However, it is important
to discuss what this entails in practice. The ancillary
qubits used for the implementation of the POVM remain
in the ground state until the very end of the circuit ex-
ecution. Hence, the algorithm introduced here does not
require preparing 2N -qubit states behaving coherently
during the whole computation, which would amplify the
detrimental effect of decoherence. Instead, the additional
N qubits should be regarded as nothing more than part
of the measurement apparatus.
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Appendix A: POVM parametrisation and circuit
implementation

As stated in the main text, the algorithm relies on
parametrised, informationally complete POVMs imple-
mented through the application of two-qubit unitaries
with ancillary qubits, followed by projective measure-
ments on the computational basis. To explain the
parametrisation used in this work, it is easier to start
by identifying the POVM characterising one such mea-
surement when applying an arbitrary unitary gate U
between some system qubit q in state ρ and an an-
cilla a in state |0〉 〈0|. Since the two qubits are even-
tually measured projectively in the computational basis,
there are four possible outcomes (bq, ba) with bq ∈ {0, 1}
(and similarly for ba). Each outcome occurs with prob-
ability p(bq,ba) = 〈bqba|Uρ ⊗ |0〉 〈0|U† |bqba〉. Writing

U =
∑
ijkl u

ij
kl |ij〉 〈kl|, this expression becomes p(bq,ba) =

https://www.ibm.com/legal/copytrade
https://www.ibm.com/legal/copytrade
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∑
kk′ u

bqba
k0 (u

bqba
k′0 )∗ 〈k| ρ |k′〉 = Tr

[∣∣π(bq,ba)〉 〈π(bq,ba)∣∣ ρ],
where we have defined

∣∣π(bq,ba)〉 =
∑
k(u

bqba
k0 )∗ |k〉.

Hence, the corresponding POVM is given by the set of ef-
fects {Πi = |πi〉 〈πi| , i ∈ [0, 3]}, where we have relabelled
the outcomes using i = 2bq + ba.

The previous calculation suggests our strategy for the
POVM parametrisation: parametrise the unitary U , and
compute the resulting POVM. The following observa-
tions are important. Firstly, not all the components

u
bqba
kl are relevant for the measurement, as the initial

state of the ancilla deems those with l = 1 irrelevant
(provided that U is unitary). Secondly, global phases
on |πi〉 have no effect on the resulting operator Πi, so

we are free to set u
bqba
00 ∈ R. Thirdly, U†U = I im-

plies
∑
bqba

(u
bqba
k0 )∗u

bqba
k′0 = δkk′ , that is, u

bqba
00 and u

bqba
10

are the components of two orthonormal vectors, which
we may call u0 and u1 in what follows, in C4. Before
we proceed any further, let us count the total number
of available degrees of freedom. On the one hand, we
have four real numbers whose squares add up to one for
u0, which amounts to 3 degrees of freedom. For u1, we
have four complex numbers with three constraints (one
for normalisation and two for the orthogonality with u0),
which results in 5 degrees of freedom. In total, we need
8 parameters per system qubit.

Our parametrisation for single-qubit POVMs thus con-
sists of 8 real numbers ~x = (x0, . . . , x7), with xi ∈
(0, 1), ∀i (in practice, we constrain the values further,
see App. B). We start by using the first three of these to
produce the set of angles (πx0, πx1, 2πx2), which iden-
tify (uniquely) a point on a 3-sphere S3 with unit radius
embedded in R4. The corresponding Euclidean coordi-
nates in the embedding space are four real numbers whose

squares add up to one, hence generating u
bqba
00 . Defining

u
bqba
10 from the other five parameters is slightly more in-

volved. To guarantee that the vector u1 is orthogonal to
u0, we construct it as a linear combination of orthonor-
mal vectors orthogonal to u0, that is, u1 =

∑
i ziu

⊥
i ;

the orthonormal basis {u⊥i } can be found by means of
the Gram-Schmidt orthonormalisation. The components
zi, which must also be normalised, are determined by
the remaining parameters: once again, we define a list of
angles (πx3, . . . , πx6, 2πx7) and calculate the Euclidean
coordinates of the corresponding point in S5. These six
real numbers {ri, i ∈ [0, 5]} are then used to define three
components {zk = r2k + ir2k+1}. The result of this pro-
cedure is a vector u1 ∈ C4 whose components can be

identified with u
bqba
10 .

Finally, we must find two more vectors u2,u3 ∈ C4 to

complete the missing terms u
bqba
k1 in the definition of the

unitary. This can be done by using the Gram-Schmidt
orthonormalisation once more. Once the unitary U is de-
fined, we can not only calculate the corresponding set of
effects {Πi}, but also implement it in a given circuit.
Indeed, the algorithms to find the circuit decomposi-
tion of unitary U are known and readily implemented

in Qiskit [65] (also, notice that any two-qubit gate can
be decomposed in up to three CNOT gates).

Admittedly, this methodology is more complicated
than simply parametrising arbitrary two-qubit gates U
and then calculating the corresponding POVM. However,
as discussed above, our procedure avoids the use of un-
necessary or redundant parameters, which could make
the POVM optimisation harder. Nevertheless, it is likely
that other parametrisations, more suitable for the adap-
tive optimisation algorithm, exist. These refinements,
as well as improving the gradient descent protocol (see
App. B), will be the subject of future work.

To conclude this section, let us also explain the ge-
ometric representation of the POVMs in Fig. 2. No-
tice that the effects introduced above are rank-1, so
they can be written as Πi = γΠ̃i, where γ = Tr[Πi]

and Π̃i are single-qubit pure states (also, γ ≤ 1).
As a result, we can exploit the Bloch sphere repre-
sentation and write Πi(~r) = γ(I + ~q · ~σ)/2 with ~q =

(Tr[Π̃iσx],Tr[Π̃iσy],Tr[Π̃iσz]) and |~q| = 1. Thus, defin-
ing ~r = (Tr[Πiσx],Tr[Πiσy],Tr[Πiσz]) = γ~q, we have
Πi(~r) = (|~r|I + ~r · ~σ)/2.

Appendix B: Gradient descent protocol

Along the measurement process, we iteratively update
the POVM parameters as well as the number of shots
per experiment. In particular, we gradually increase the
number of shots in order to have more precise estimations
of the second moment as the POVM parameters approach
a minimum and, consequently, the gradient decreases in
magnitude. In this section, we briefly outline the protocol
used in our numerical experiments.

As explained in the main text, the POVM-based mea-
surements allow us to estimate the gradient ∇~x〈ω2

m〉 clas-
sically from the outcomes of an experiment run with
the POVM corresponding to parameters ~xt, where t la-
bels the iteration (for the finite-difference partial deriva-

tives ∂xk
〈ω2

m〉 ≈ (〈ω′2r〉 − 〈ω2
m〉)/h, we use h = 10−3).

With these elements, we determine the POVM to be
used in the (t + 1)-th iteration through ~xt+1 = ~xi −
ν∇~x〈ω2

m〉/max(|∇~x〈ω2
m〉|), where |∇~x〈ω2

m〉| is to be un-
derstood as the set of absolute values of the components
of ∇~x〈ω2

m〉. Hence, ν is the magnitude of the largest
change, in absolute value, of the POVM parameters. It
should also be mentioned that, to avoid numerical insta-
bilities, we further constrain every parameter to be be-
tween [δ, 1− δ], with δ = 0.05. We start our simulations
with S1 = 1000 shots, and we use ν = 0.05. Every three
iterations, we update St + 1000 → St+1 and ν/1.2 → ν.
Hence, as the algorithm approaches the minimum, we ob-
tain more precise estimations of the gradient (larger St)
and we make smaller changes to the parameters (smaller
ν).

This parameter updating schedule is rather heuristic
and still leaves room for improvement. Designing a more
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theory-driven approach, or using more sophisticated op-
timisation techniques, will be the subject of future work.

Appendix C: Symmetric IC-POVMs as initial
measurements and correlated estimators

In the absence of prior knowledge about the state of
the qubit register, it is desirable to use a so-called sym-
metric informationally complete POVM (SIC-POVM) on
every system qubit. Symmetric here means that its
single-qubit effects, when rescaled as Π̃i = 2Πi yield a
set of projectors {Π̃i : Π̃2

i = Π̃i} fulfilling Tr[Π̃iΠ̃j ] =

(2δij + 1)/3), ∀i, j. Hence, the projectors {Π̃i} form a
regular tetrahedron in the Bloch sphere.

In this work, we have considered two different SIC-
POVMs as initial conditions for the adaptive algo-
rithm. The first one is the classic example of single-
qubit SIC-POVM, defined in terms of the projec-
tors {Π̃i = |π̃i〉 〈π̃i| : |π̃0〉 = |0〉 , |π̃k〉 = (|0〉 +√

2ei2π(k−1)/3 |1〉)/
√

3, k ∈ [1, 3]}. The second SIC-
POVM used in this paper is the one introduced by Jiang
et al. [49]. In order to use them in our algorithm, we must
first find the parameters ~x of each of them in the POVM
space (see App. A). This can be done numerically; the
resulting parameters are reported in the computer code
accompanying this paper [66].

It is worth discussing some properties of this second
SIC-POVM when used in our hybrid quantum-classical

Monte Carlo algorithm, Eq. (4). In this case, all the b
(i)
km

exhibit the nice feature b
(i)
km ∈ {−

√
3,
√

3}, ∀k > 0 (for
k = 0, these are equal to one, since the effects add up to
identity). This, in turn, has interesting implications. Let
us consider the statistical error in the estimation of the
expectation value of an observable given by a single Pauli
string Pk with weight l, that is, only l Pauli operators in
Pk are different from identity. In this case, the variance of
the Monte Carlo is given by Var(ωm) = 3l − 〈Pk〉2 ≤ 3l.
Hence, if S measurements are performed, the variance
of the estimator P̄k is Var(P̄k) ≤ 3l/S. This is indeed
consistent with Ref. [49].

While we can reuse the IC data from the quantum
computer to calculate the expectation value of other
Pauli strings Pk′ with similar statistical error (assum-
ing they have the same weight l), we must take into ac-
count that the resulting estimators P̄k and P̄k′ can be
correlated. In practice, this means that, if we are to
use them to calculate the expectation value of an oper-
ator defined in terms of a linear combination of Pauli
strings, O =

∑
k ckPk, the variance of the estimator

Ō =
∑

k ckP̄k depends on the potentially non-zero co-
variance between distinct terms, so we cannot assume
that Var(Ō) =

∑
k |ck|2Var(P̄m).

The estimation based on the Monte Carlo method,
Eq. (4), naturally takes into account these correlations
when accounting for the statistical error of the approach,
hence yielding the correct estimation. This is important

for two reasons. On the one hand, it provides a meaning-
ful assessment of how far the algorithm is from reaching
the required accuracy at any given point of its execu-
tion. On the other hand, since the Monte Carlo variance
is the quantity that our adaptive strategy seeks to min-
imise, the algorithm presented here can potentially find
POVMs for which the negative impact of these correla-
tions on the estimated mean is reduced.

Appendix D: Sequential and one-step mixing
equivalence

In this section we prove that the sequential estimation
mixing presented in the main text is unbiased. To show
this, let us first compute the unbiased one-step mixing
estimation. Suppose that, after the different experiments
have been run, we are left with a set of T estimated means
{Ōt} and variances {V̄t}. We would like to find a set of
weights {αt > 0}, with

∑
t αt = 1, that minimises the

variance ¯̄VT =
∑
t α

2
t V̄t of ¯̄OT =

∑
t αtŌt. To do so, we

can introduce a Lagrange multiplier λ and define

L =

T∑
t=1

α2
t V̄t − λ

(∑
t

αt − 1

)
, (D1)

so that ∂λL = 0 imposes the constraint
∑
t αt = 1. From

∂αtL = 0 we obtain αt = λρ̄t/2, where we have defined
ρ̄t ≡ 1/V̄t to ease the presentation, as inverse variances
will appear throughout. Using now

∑
t αt = 1 yields

λ = 2/
∑
i ρ̄i and αt = ρ̄t/

∑
i ρ̄i. Hence, we arrive at

¯̄OT =

T∑
t=1
Ōtρ̄t

T∑
t=1

ρ̄t

and ¯̄VT =
1

T∑
t=1

ρ̄t

. (D2)

To assess the result of the sequential algorithm, notice

that the recurrence ¯̄Vt = ¯̄Vt−1V̄t/(
¯̄Vt−1 + V̄t) in the sec-

ond step is equivalent to ¯̄ρt = ¯̄ρt−1 + ρ̄t, with ¯̄ρt ≡ 1/ ¯̄Vt.

Iterating, we obtain ¯̄ρT =
∑T
t=1 ρ̄t, which is the right-

most term in Eq. (D2). Similarly, the recurrence for

the mean, ¯̄Ot = (Ōt ¯̄Vt−1 + ¯̄Ot−1V̄t)/( ¯̄Vt−1 + V̄t), reads
¯̄Ot =

[
Ōtρ̄t + ¯̄Ot−1 ¯̄ρt−1

]
/ ¯̄ρt. Iterating once again, we

obtain the expression for ¯̄OT in Eq. (D2). Hence, both
estimations are equivalent.

Appendix E: Other experiments

In the main text we presented a selection of the numer-
ical results obtained in this work allowing us to showcase
the main features of our method. For completeness, in
this Appendix we report all the results of the simula-
tions obtained with the H2, LiH and H2O molecules, us-
ing different combinations of fermion-to-qubit mappings
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4 6 8
N

10 3

10 2

10 1

Molecule = H2 | Mapping = Parity
Pauli
Grouped Pauli
SIC-POVM 1
SIC-POVM 2
Grad. POVM 1
Grad. POVM 2

4 8
N

Molecule = H2 | Mapping = BK

4 8
N

Molecule = H2 | Mapping = JKMN

6 8 10 12
N

10 3

10 2

10 1

Molecule = LiH | Mapping = Parity

6 8 12
N

Molecule = LiH | Mapping = BK

12
N

Molecule = LiH | Mapping = JKMN

8 10 12 14
N

10 3

10 2

10 1

Molecule = H2O | Mapping = Parity

8 10 12 14
N

Molecule = H2O | Mapping = BK

12 14
N

Molecule = H2O | Mapping = JKMN

Mol. Mapping N Basis TQR Z2 CF

H2 BK 4 STO3G

BK 8 631G

JKMN 4 STO3G

JKMN 8 631G

Parity 4 STO3G

Parity 6 631G X

Parity 8 631G

LiH BK 6 STO3G X X

BK 8 STO3G X

BK 12 STO3G

JKMN 12 STO3G

Parity 6 STO3G X X X

Parity 8 STO3G X X

Parity 10 STO3G X

Parity 12 STO3G

H2O BK 8 STO3G X X

BK 10 STO3G X

BK 12 STO3G X

BK 14 STO3G

JKMN 12 STO3G X

JKMN 14 STO3G

Parity 8 STO3G X X

Parity 10 STO3G X

Parity 12 STO3G X

Parity 14 STO3G

FIG. 6. (Left) Error in the estimation of the energy of an optimal VQE circuit for all the Hamiltonians reported in the table on
the right. Every row compares the results for one molecule (H2, LiH, and H2O) with different measurement methods, with a
total of S = 106 shots. Each column corresponds to a different mapping. Points represent the average error over 100 realisations
and the error bars show a 95% confidence interval obtained using bootstrapping. (Right) A table of the various combinations
of molecule, mapping, basis and qubit-reduction techniques considered, with the corresponding number of qubits N . TQR is
the two-qubit reduction for the parity mapping, Z2 refers to qubit reductions due to discrete symmetries [60] and CF stands
for core freeze.

(namely parity, BK and JKMN) and qubit reduction
techniques (namely two-qubit parity reduction, Z2 sym-
metry and core freeze), where applicable. Figure 6 shows
the average absolute error ε on the estimation of the en-

ergy with 106 shots, for the Hamiltonians reported in the
table. The plots are in line with the figures in the main
text, as our algorithm generally reaches smaller errors
with the same total number of measurements.
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