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Abstract—Excessive stress during pregnancy could cause ad-
verse effects for the mother and her unborn baby, disrupting
the normal maternal adaptation throughout pregnancy. Such
conditions could be tackled to some degree via traditional clinical
techniques, although an automated healthcare system is required
for providing a continuous stress management system. Internet
of Things (IoT) systems are promising alternatives for such
real-time stress monitoring. In conventional IoT-based stress
monitoring, stress-related data is collected, and the stress level
is determined using a pre-defined model. However, these systems
are insufficient for pregnant women whose physiological data
are changing over the course of their pregnancy. Therefore, an
adaptive monitoring system is needed to estimate stress levels,
considering the maternal adaptation such as heart rate elevation
in pregnancy. In this paper, we propose a stress-level estimation
algorithm based on heart rate and heart rate variations during
pregnancy. The algorithm is distributed in an edge-enabled
IoT system. We test the performance of our algorithm using
supervised and unsupervised learning via an unlabelled set of
data from a 7-month monitoring. The monitoring was fulfilled
for 20 pregnant women using wearable smart wristbands. Our
results show a 97.9% accuracy with 10-fold cross validation using
Random Forests.

Index Terms—Internet of Things, Online Clustering, Edge
Computing, Stress Monitoring, Maternal Monitoring

I. INTRODUCTION

There is a major concern about pregnancy-associated stress
and anxiety, which are key risk factors for various pregnancy
complications involving the health of mother and fetus [13],
[32], [24], [14]. Maternal adaptations to decrease the stress
level are important to enable a successful pregnancy although
various maternal difficulties and environmental stressors can
disrupt these adaptations. Several studies have tackled this
subject, managing stress level during pregnancy with dif-
ferent medications and techniques [22], [12]. However, to
support the conventional clinical methods, a personalized and
automated healthcare system is highly required, providing
stress monitoring for not only in-hospital environment but also
everyday settings. Fortunately, recent advancements in Internet
of Things (IoT) technologies have enabled the deployment of
remote health monitoring systems in real-time applications, of

which patient’s health-associated parameters are continuously
collected and analyzed to deliver health services.

Internet of Things is an advanced network of physical
devices including embedded systems, sensors and actuators,
leveraging shared pools of data, communication and com-
puting resources to provide advanced services [4], [19]. In
healthcare applications, IoT is conventionally decomposed
into three main tiers [2]. In the first tier, data acquisition is
implemented 24/7 using a sensor network consisting of a group
of lightweight and wearable sensors. At the second tier, the
gateways, located at the vicinity of the user, enable the con-
nection between the sensor network and the remote computing
resources (i.e., cloud servers). In addition, leveraging smart
gateways for health monitoring has been recently proposed,
allowing local data processing at the edge of the network [36],
[35]. Third, the cloud server enables data storage and a wide
range of health data analytics.

Continuous stress monitoring has been proposed, leveraging
user’s vital signs such as heart rate and heart rate variability to
deliver the level of stress [3]. In the literature, such monitoring
systems have been addressed from different perspectives. For
example, Yoon et al. [42] tackled stress-related data collec-
tion designing a lightweight bio-patch. In addition, different
models have been introduced to enable stress measurement
particularly at work, detecting excessive stress and providing
personalized coaching [6], [5], [28]. Moreover, other studies
have introduced stress monitoring systems using the user’s
context information and physical activity collected via mobile
sensors [34], [18].

These methods mostly detect the stress level using fixed
rule-based methods or models generated from user’s medical
history. Therefore, they are inappropriate for long-term mon-
itoring in particular for individuals such as pregnant women
who experience physiological changes during the course of
pregnancy. In consequence, an IoT-based stress monitoring
system is required to determine the maternal stress level,
considering the maternal adaptation such as elevation in heart
rate during pregnancy. The changes in the cardiovascular
system in a normal pregnancy could increase the average heart



rate by 10 bpm to 20 bpm [10], [29], [20].
In this paper, we propose an IoT-based health monitoring

system to continuously evaluate maternal stress throughout
pregnancy. This system is empowered by an online k-means
algorithm to determine the stress level leveraging real-time
heart rate. Moreover, we provide a proof of concept and
evaluate the accuracy of the proposed system using a case
study on maternal health, in which 20 pregnant women have
been remotely monitored for 6 months of pregnancy and 1
month postpartum.

Rest of the paper is organized as follows. Section II outlines
the background and related work. The proposed method is
presented in Section III. We indicate the implementation and
results in Section IV. Finally, Section V concludes the paper.

II. RELATED WORK

A. Maternal monitoring

Several studies have carried out maternal monitoring, how-
ever only a few have performed long-term monitoring. Chen et.
al.[8] monitored pulse rate during nightly sleep, their goal was
to measure individual changes in heart rate during pregnancy.
Therefore, they had only two subjects; a pregnant woman
and a nulligravida woman who was used as a baseline. The
pregnant woman was studied from week 30 of her pregnancy
to week 63 postpartum. The monitoring system consisted of a
sensor board which was attached to patient’s pillow to measure
occipital pressure signals that occur as a result of heartbeats
and movement, it also contained a bedside box that performed
signal processing and thereafter sends the data to a database
server via the internet. Moreira et. al. [31] explored the use of
IoT in high risk pregnancies for long term monitoring of phys-
iological data. They propose a system that uses body sensors to
capture blood pressure and/or proteinuria levels in real time to
predict the probability of having a hypertensive disorder. Their
system also facilitates communication to health professionals
when the prediction model (Naive Bayes Classifier) detects a
change in the patient’s condition. Carpenter et. al. [7] study the
effect of exercise on Heart Rate Variability during pregnancy,
51 women participated in this study which was carried out
from week 20 of their pregnancy to 12 weeks post partum.
During this monitoring period, they had an exercise group
and a control group, the exercise group attended weekly sport
classes. Their heart rates were monitored using Heart monitors
from Polar, Finland. In weeks 12− 16, 26− 28, 34− 36, both
groups had an electrocardiogram (ECG) test during rest and
exercise. They found that there was an increase in heart rate
and a corresponding decrease in Heart Rate Variability (HRV)
as the gestation progressed.

B. Monitoring stress in real-time

There is continuing research on how to make stress level
classification available through real-time monitoring. A chest
device called Zephyr in combination with Amulet (a wrist-
worn device) to collect continuous heart rate data was de-
scribed in [6], in addition, they collect ground truth labels
through an app on the Amulet by asking the user questions

about their stress levels at least 32 times a day. They proceed
by generating stress level classifications - high, medium and
low, using an offline Support Vector Machine (SVM).

C. Online machine learning with streaming data

There is a growing demand for online machine learning
algorithms, particularly in systems that generate big data (e.g.
IoT systems )[37], [15]. Seo et. al.[38] applied online machine
learning in transportation research to reduce the amount of
surveys required to estimate trip purposes. A naive Bayes
classifier was implemented using GPS data from a mobile
device and periodic surveys (dependent on confidence level of
the algorithm). The algorithm was able to reduce the amount
of surveys needed, they also found that the performance of the
algorithm improved as more data was available.

III. PROPOSED METHOD

Based on the need to continuously monitor stress levels in
pregnant women we developed a k-means algorithm that works
in an online setting using streaming data from a wearable IoT
device. This algorithm is designed to adapt to changes in heart
rate that occur during pregnancy[7], [11], [21]. We focus on
using k-means clustering because of its speed, accuracy, low
memory requirement which makes it a candidate for an edge-
based architecture, also, compared to other algorithms like
Neural Networks, it does not require large amounts of data
to perform well.

A. Measuring stress level

Traditionally, Heart Rate Variability (HRV) analysis is used
to indicate stress levels [33], [26], however, some studies have
shown an inverse relation between Heart Rate (HR) and HRV
[25], [23], [30]. Other studies have investigated the impact
of stress on the heart rate and found that stress is indicative
of an increase in heart rate [40], [41]. In these studies, the
HR and HRV measurements are usually performed either at
rest, during exercise or during sleep, this is because the heart
rate changes during these periods. In this work, we focus on
measuring heart rate at rest.

B. Online k-means clustering algorithm

K-means clustering is one of the most commonly used ap-
proach for cluster analysis. Its popularity is due to its execution
speed, simplicity and ability to produce good results. k-means
is a numerical, unsupervised, fast and iterative method of
finding patterns that may exist in raw data[39]. The k-means
clustering algorithm is divided into two phases; the first phase
is the initialization of the k cluster centers (k is fixed), in
the second phase, each data point is assigned to its nearest
cluster center using a distance measure (Euclidean distance),
after adding the new point to a cluster ki, the cluster center
for ki is recalculated. For a finite set P with n points in Rd,
the k-means objective is to select k cluster centers, C, that
minimizes[9]:

φx(C) =
∑
x∈P

minc∈C ‖x− c‖2 (1)



In batch k-means, the algorithm terminates, when the cluster
centers stop changing, whereas in online k-means clustering,
the algorithm continues as long as the data points continue in
the stream. Another difference between online k-means and
batch k-means is that the former uses an online learning model
such that the algorithm sees each data point only once[9]. We
implement an online k-means clustering algorithm based on
Lloyd’s online k-means clustering with a modification made
to the update for the centroids[27]. In addition to this, we
modify the method of initializing the centroids, by using a
batch k-means algorithm on a small subset of the data. The
following is the pseudocode for the online k-means clustering
algorithm[27]:

Result: Stress level classification - high stress, medium
stress and low stress

Initialize clusters with all patient data from previous
week[from cloud servers] using batch k-means;

while true do
get new data point x;
determine the closest center zi to x;
update the cluster center zi ← zi + α(x− zi) for
α ∈ (0, 1);

end
Algorithm 1: Online k-means algorithm

Algorithm 1 is designed to be personalized to each patient,
this is necessary because their baseline heart rates may differ.
The algorithm is divided into two phases; the daily phase and
weekly phase. The daily phase accounts for changes that may
begin occurring during a day. As the algorithm receives new
heart rate readings, it updates the model. However, the impact
of the update is based on how consistent the ”new” values
are, this is how the model accounts for concept drift. In the
weekly phase (beginning of the week), the model is updated, in
order to account for all changes that occurred in the previous
pregnancy week, thereafter, it continues to the daily phase.

C. Edge-based IoT architecture

The proposed edge-based architecture is divided into 3
layers: sensors, edge devices, and cloud server. In the sensor
layer, we use Garmin vı́vosmart 2 smart bands which are able
to measure user’s heart rate and activities. The edge devices
are Android phones that receive data from a sensor device and
transfer it to the cloud server which is a virtual private server
(VPS). Since we are implementing our edge-based solution
based on the previously recorded data, we store our data on
the phone storage and we emulate the sensor-side incoming
data by reading the phone storage, one vector of samples every
15 minutes. The cloud server stores all incoming data from all
users eventually. The cloud server separates heart rate values
into several categories based on the user’s activity level and
performs the k-means clustering algorithm to calculate the
centroids of heart rates for each stress level when the user is at
rest. It sends the centroids to the gateway for local processing
and notification. The user’s Android phone performs the test

Figure 1. Edge-based system architecture

Figure 2. Qpython web application running on Android phone

algorithm implemented by Python language via Qpython tool.
Qpython creates a local web server and displays the results
of local processing via a web application. Figure 2 shows the
web application user interface.

In the proposed architecture (Figure 1) the cloud server
collects data from all users and since every gateway device
updates the centroids from the same source, then every user
gets the stress level label comparing to all other users. Every
15 minutes, the edge device sends a new vector of samples to
the cloud server and the server adds that vector to a database
and computes a new set of centroids out of all vectors from the
last week and returns them to edge device. The edge device is
able to perform the test algorithm for a while using the latest
set of centroids, therefore local processing in this architecture
enables local notification even when the user’s phone loses
internet connection to the cloud server.



IV. IMPLEMENTATION

A. Study Design

1) Data Extraction I: We obtained data from a feasibility
study on the use of an IoT-based system for pregnant women.
The participants wore a Garmin vı́vosmart 2 device over a
period of 7 months. We extracted the heart rate, activity and
sleep information from the data, due to the fact that we only
want to measure stress when the subject is at rest. This dataset
contained about 60000 data points.

2) Data Extraction II: We obtained the second data set
from a Garmin vı́vosmart 3 device which has a stress level
classification of values ranging from 0 − 100. We extracted
the heart rate, sleep, activity and stress classification from the
data, we used this data to test the performance of our algorithm
in a supervised setting. This dataset contained about 600 data
points.

B. Results

Evaluating the performance of online k-means in the ab-
sence of labels remains an open research problem[9], [1].
The most common method of evaluation is to calculate the
accuracy of the algorithm on a labelled dataset. In the absence
of true labels for the dataset, there are several options, one is to
attempt to reclassify the dataset with the labels generated from
k-means using a classification algorithm[17], another method
is to calculate the Sum of Squared Error (SSE) on each cluster,
lower SSE values are associated with better clusters[1], [27]
recommended a weighted squared distance from each point
to its cluster, such that, the weights decrease exponentially in
the age of the point at time t. In this paper, we employed
three methods of evaluation, majority of our data did not have
true labels, therefore, upon clustering the data points, we used
Random Forests to evaluate the performance of the algorithm.
For the other dataset, we used the true labels of stress levels
generated from a recently released Garmin vı́vosmart device.
And for both datasets, we obtain the weighted squared distance
over time.

1) Data with true labels: The data from the male subject
was from a Garmin vı́vosmart device that has a stress level
classification of values ranging from 0-100. They indicate that
values from 0 to 25 is a resting state, 26 to 50 is low stress,
51 to 75 is medium stress, and 76 to 100 is a high stress
state[16]. Since we do not have a resting state classification in
our paper, we combine the resting state and low stress, thereby,
considering both as low stress states. To test the performance
of the algorithm on this data, we begin by normalizing the
ranges to our classification labels as described above and
running the algorithm on this data set. We obtain an accuracy
of 71.75%, we consider this to be a good performance, the
algorithm was designed to have the ability to adapt to changes
in heart rate in each pregnancy week, despite the fact that
this data is on a non-pregnant subject, it is able to adapt
accordingly. To study the performance of the algorithm in
more detail, we look at the confusion matrix, it shows the
mistakes the algorithm makes in classifying each class. From

Table I
CONFUSION MATRIX FOR DATA WITH TRUE LABELS

Actual stress level

Low stress Medium stress High stress

E
st

im
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ed
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ss

le
ve

l Low stress 315 87 0
Medium stress 56 152 0

High stress 7 35 3

Figure 3. Cost of online k-means algorithm

Table I, the algorithm is able to predict low and medium stress
more correctly that high stress, this is most likely a result of
having limited samples for this class. We also note that low
and medium stress have the most overlap. Further, high stress
is often confused with medium stress states.

Asides, from the accuracy, we also calculated the weighted
squared distance in the interest of visualizing how the algo-
rithm adapts over time. As can be seen Figure 3, the weighted
square distance errors shows that the online k-means algorithm
is able to recover from changes in the data as seen in variation
of high to low cost.

2) Data without labels: The focus of this paper is on
predicting stress levels in pregnant women (in real time).
We have obtained data from a Garmin vı́vosmart 2 device
from 20 women over a period of 7 months, this data does
not include a stress level classification. For this data, we use
Random Forest to reclassify the labels derived from the online
k-means algorithm. The performance was averaged using 10-
fold validation across all weeks of pregnancy and summed
over all patients, the accuracy is 97.9%. Figure 4, shows an
example of the clustering output for patient 1 throughout week
8. In addition to the accuracy, we also calculate the weighted
distance error on a daily and weekly basis, the reason for
this is that we expect changes to occur during the weeks of
pregnancy, the algorithm should be able to adapt to such a
change, for instance, if the algorithm has a rough start at the
beginning of the week, it is able to see this as a concept drift
and make changes accordingly.



Figure 4. Output of online k-means clustering

Figure 5. Cost of online k-means algorithm for patient 2

As shown in Figure 5, the algorithm performs as we expect,
when there are consistent changes in the input (as seen in
Figure 6), it is able to adjust to such changes hereby improving
the cost.

C. Future directions

In this study, we have been able to implement a real
time stress level estimation algorithm that works in an online
setting. Our results show that our model is able to adapt to
expected changes in heart rate during pregnancy. However, one
limitation of this work, is that we do not have true labels for
the majority of our data, in the future, we would like to obtain
true labels from a wearable device and/or subjective feedback
from the patients. We have also proposed an edge-based IoT
architecture for this algorithm, in the future, we would like
to test the feasibility of implementing this architecture in our
system.

Figure 6. Gestational progression of heart rate for patient 2

V. CONCLUSION

In this work, we presented a real time stress level estimation
approach for pregnant women with a possibility of imple-
menting the proposed model in an edge-based architecture.
We obtained an accuracy of 71.75% on a validation dataset.
Moreover, we examined the performance of the model on the
main data (20 pregnant women) using a 10-fold validation
Random Forest. We achieved an accuracy of 97.9%. Lastly,
upon visualizing the progression of the cost over time, we
indicated that the proposed algorithm is capable of consider-
ing the elevation of user’s heart rates throughout pregnancy.
We find these results promising, and believe that it has the
potential to be used for stress monitoring during pregnancy.
Upon integration into an edge-based architecture, it could be
used by health professionals and pregnant women to improve
stress management in pregnancy.
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