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Abstract
Objectives The aim was to explore the fracture behavior and marginal gap within the root canal of endodontically treated (ET)
premolars restored with different fiber-reinforced post-core composites (FRCs). Further aim was to evaluate the composite curing
at different depths in the canal.
Materials and methods Eighty-seven intact upper premolars were collected and randomly divided into six groups. After end-
odontic procedure, standard MOD cavities were prepared and restored with their respective fiber-reinforced post-core materials:
group 1: prefabricated unidirectional FRC-post + conventional composite core; group 2: prefabricated unidirectional FRC-post +
short fiber composite (SFRC) core; group 3: individually formed unidirectional FRC-post + conventional composite core; group
4: randomly oriented SFRC directly layered as post and core; group 5: individually formed unidirectional FRC + randomly
oriented SFRC as post and core. After restorations were completed, teeth (n = 3/group) were sectioned and then stained.
Specimens were viewed under a stereo microscope and the percentage of microgaps within the root canal was calculated.
Fracture load was measured using universal testing machine.
Results SFRC application in the root canal (groups 4 and 5) showed significantly higher fracture load (876.7 N) compared to the
other tested groups (512–613 N) (p < 0.05). Post/core restorations made from prefabricated FRC-post (group 1) exhibited the
highest number of microgaps (35.1%) at the examined interphase in the root canal.
Conclusions The restoration of ET premolars with the use of SFRC as post-core material displayed promising performance in
matter of microgap and load-bearing capacity.
Clinical significance Fracture resistance of ET premolar restored by bilayered composite restoration that includes both SFRC as
post-core material and surface conventional resin seems to be beneficial.
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Introduction

Endodontically treated (ET) teeth are structurally different
from non-restored vital teeth and require special restorative
treatment [1]. The loss of structural integrity is themain reason

why ET teeth are vulnerable and show reduced resistance to
fracture [2, 3]. This is due to previous caries and excessive
removal of dentine during root canal treatment, rather than
low moisture content or increased brittleness [4, 5]. As a con-
sequence, root-filled teeth are at an increased risk of fracture
[4, 6]. This is especially important in the case of ET premolars,
as numerous studies report a high fracture incidence for these
teeth, mainly the maxillary ones [7–9]. Maxillary premolars
are exposed to a combination of shearing and compressive
forces, which makes them especially prone to fracture [10].
The loss of marginal ridgesmakes this evenmore pronounced.
Conservative endodontic access cavity preparation in posteri-
or teeth reduced the relative cuspal stiffness by only 5 to 20%
[11, 12]. At the same time, standardized mesial-occlusal-distal
(MOD) cavity preparation in maxillary premolars resulted in
an average loss of 63% in relative cuspal stiffness [13], which
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is related mainly to the loss of marginal ridge integrity [14].
This has been confirmed byWu et al. who observed a dramat-
ic increase in cuspal deflection as a result of the removal of
both marginal ridges in an MOD cavity preparation and in
conjunction with an endodontic access cavity [15].

Furthermore, it has been pointed out that endodontic treat-
ment and extensive restorative procedures (e.g., MOD cavity
preparation) combined with high occlusal loads and lateral
excursive contacts lead to higher susceptibility to fracture
[10, 16], which poses a threat to maxillary premolars.
Therefore, an adequate restorative approach must fulfill both
esthetics and the structural preservation and reinforcement of
these teeth, so that they are protected against fracture.

The use of fiber-reinforced composite (FRC) posts has be-
come very popular to restore ET teeth, due to their favorable
modulus of elasticity which is closer to that of dentine com-
pared to metal posts [17, 18]. Several studies showed that
inserting a post into ET premolars significantly increased their
fracture resistance [19–21]; however, other studies only man-
aged to prove the positive effect of post placement on the
fracture pattern of such premolar teeth [22, 23]. The latter
was also confirmed by Trope et al. [24] and Zicari et al. [25]
who concluded that the application of an FRC post does not
actually strengthen the given tooth. Contrary to that, in a re-
cent study of ours, we found that the application of multiple
posts instead of a single post, especially when using multiple
an individually formed FRC posts, lead to better reinforce-
ment and stress transfer [26]. In fact, many authors also
showed in their in vitro studies that endodontically treated
teeth restored with an individually formed fiber post exhibited
significantly higher fracture resistance than those restored
with a single prefabricated fiber post [27, 28].

In 2007, Garoushi and co-workers found that the restora-
tion of anterior ET teeth with short fiber-reinforced composite
(SFRC) yielded a better load-bearing capacity as opposed to
the application of an FRC post [29]. This was partly confirmed
by Forster et al. in ET premolar teeth with class I cavity. In that
study, the directly layered fiber-reinforced composite post and
core (DLFRC) group showed statistically non-significant dif-
ference compared to intact premolar teeth in terms of fracture
resistance [30].

Based on this knowledge, it is important to obtain more
detailed information on this fiber-reinforced post-core restor-
ative approach. Thus, the aim of the present investigation was
to compare the load-bearing capacity of various fiber-
reinforced post and core direct restorative methods for the
reinforcement of ET premolar teeth with MOD cavities.
Also, the curing performance at different depths and adapta-
tion of materials within the root canal for each method were
investigated. The null hypotheses were that (1) there would be
no difference in the maximal fracture load or in fracture pat-
tern between the tested groups and (2) there would be no
difference in the curing performance or the marginal microgap

within the root canal of the ET teeth restored with the study
methods.

Materials and methods

All procedures of the study were approved by the Ethics
Committee of the University of Szeged, and the study was
designed in accordance with the Declaration of Helsinki.

Eighty-seven upper premolar teeth, extracted for periodon-
tal or orthodontic reasons, were selected for this investigation.
The freshly extracted teeth were immediately placed in 5.25%
NaOCl for 5 min and stored in 0.9% saline solution at room
temperature. Teeth were used within 2 months after extraction.
During specimen preparation, the soft tissue covering the root
surface was removed with hand scalers. The inclusion criteria
were absence of caries or root cracks, the absence of previous
endodontic treatments, posts or crowns, resorptions, or evi-
dent lateral canals. Buccolingual and mesiodistal radiographs
of all teeth were taken and examined to evaluate root integrity
and the number of canals present. To standardize procedures
and materials, all teeth used in this study had one root canal
with a curvature of less than 5°, evaluated by Schneider’s
technique [31], and teeth with a root length of 15 ± 1 mm
and similar mesiodistal and buccolingual dimensions (±
10%) were selected. Ninety percent of the specimen ranged
9–10 mm in size, measured at the widest buccolingual dimen-
sion, and the rest measured were 6.5–8 mm. Regarding the
mesiodistal dimension, 90% of the specimen ranged 7–
7.5 mm, and the rest were 6.5–8 mm.

The teeth were randomly distributed over six study groups
of 15 specimens each, with one group only containing 12
specimens. The teeth in this later group were left intact to
serve as control (group 6, n = 12). MOD cavity preparation
and later on root canal treatment were performed by the same
trained operator in the rest of the groups (groups 1–5).

Specimen preparation

A standardized mesio-occlusal-distal (MOD) cavity was pre-
pared on teeth using a round-end parallel diamond
(881.31.014 FG - Brasseler USA Dental, Savannah, GA) with
water coolant so that the buccopalatal width of the occlusal
isthmus was one third of the intercuspal width, and the prox-
imal box width was half of the buccopalatal width of the
crown. The gingival floor was located 1 mm above the
cemento-enamel junction (CEJ). All internal angles were
rounded and the cavosurface margins were at 90°. After final-
izing the MOD cavity preparation, access cavity preparation
was carried out with a round-end diamond bur (850–014 M
SSWhite, Lakewood, NJ, USA) with water cooling and root
canal treatment was performed in the prepared teeth. The
working length was established with the direct method by
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subtracting 1 mm from the real root length determined by
introducing a number 10 K-file (Maillefer-Dentsply,
Ballaigues, Switzerland) until it was visible through the apical
foramen. The canals were instrumented using rotary ProTaper
Universal files (Dentsply, Maillefer, Ballaigues, Switzerland).
The ProTaper sequence (S1, S2, F1, F2) was used for the
preparation at the working length. Irrigation was performed
after every instrument with 2 ml of 2.5% NaOCl solution and
the canal space was filled with irrigant during the instrumen-
tation phase. After the shaping and cleaning of the root canal,
the roots were dried with 96% alcohol and paper points. Root
canal filling was done bymatched single-cone obturation with
a master cone (F2 gutta-percha, Maillefer-Dentsply,
Ballaigues, Switzerland) and sealer (AH plus; Dentsply De
Trey GmbH, Konstanz, Germany). The access cavity was
temporarily filled with Fuji Triage Pink (GC Europe,
Leuven, Belgium). Fuji Triage Pink was applied to the apical
part of the root in order to prevent leakage through the apex.
The teeth were stored in an incubator (mco-18aic, Sanyo,
Japan) for 1 week (at 37 °C, 100% relative humidity).

All root canal-treated teeth received a minimal invasive
post space preparation with a depth of 7–8 mm, as measured
from the CEJ on the buccal aspect of the tooth, but no post
preparation drills recommended by the manufacturer were
used in order to preserve the individual anatomy of the spec-
imen teeth. Only the root canal filling was removed with
Number 3 Gates Glidden burs and ISO standard Hedstrom
files leaving a minimum apical seal of 4–6 mm of gutta-
percha in the canal. The Number 3 Gates Glidden bur was
used on the full 7–8 mm length.

After cutting back the gutta-percha, the root canal was
rinsed with chlorhexidine and dried with paper points.

In group 3 after drying the canal, an individualized FRC
post was fabricated directly in the canal. The root canal re-
ceived as many 0.9-mm-sized uncured FRC posts (everStick
POST, GC Europe, Leuven) as possible bundled according to
the thickness of the root canal using the lateral condensation
method described by Hatta et al. [32]. These posts were gently
removed as one unit with a needle-nose plier from the root
canal and then light cured for 40 s. It was confirmed in all
cases that the individualized posts were repositioned to their
original position into the canal after light curing.

All teeth received the same adhesive treatment. Prior to the
adhesive treatment of the cavity and the root canal, a
Tofflemire (1101C 0.035, Hawe-Neos, Italy) matrix band
was applied, and the enamel was acid-etched selectively with
37% phosphoric acid for 15 s and rinsed with water. The root
canal and the coronal cavity were rinsed with 2 ml of water
and dried with paper points and air. For bonding, a dual-cure
one-step self-etch adhesive system (Gradia Core Self-Etching
Bond, GC Europe, Leuven, Belgium) was used, according to
the manufacturer’s instructions using a microbrush-X dispos-
able applicator (Pentron Clinical Technologies, LLC, USA).

Excess adhesive was removed by suction drying (Evacuation
Tip – Starryshine, Anaheim, CA, USA) within 0.5 cm from
the occlusal cavity (without contact). Excess adhesive resin at
the bottom of the canal was removed with a paper point. The
adhesive was light cured for 60 s using an Optilux 501 quartz-
tungsten-halogen light-curing unit (Kerr Corp., Orange, CA,
USA). The average power density of the light source, mea-
sured with a digital radiometer (Jetlite light tester; J. Morita
USA Inc. Irvine, CA, USA) prior to the bonding procedure,
was 840 ± 26.8 mW/cm2. After light curing the adhesive, the
interproximal walls were build up with composite (G-aenial
Posterior PJ-E, GC Europe, Leuven, Belgium) using the cen-
tripetal technique, thus transforming the MOD cavity into a
class I cavity. Each interproximal wall was light cured for 40 s.

Five different techniques were used to restore the speci-
mens in groups 1–5. (Fig. 1):

Group 1

The teeth received a prefabricated, conventional continu-
ous unidirectional glass FRC post (GC Fiber post, GC Europe,
Leuven, Belgium). Before the adhesive treatment, the conven-
tional translucent FRC posts of 0.8 mm diameter (GC Fiber
Post, GC Europe, Leuven, Belgium) were tried in and cut to a
length 1 mm below the level of the occlusal cavity margins
with a water-cooled diamond disc (Isomet 2000; Buehler Ltd.,
Lake Bluff, IL, USA) and cleaned with alcohol after try in.
The posts received silanization of the surface (Ceramic
Primer, GC Europe, Leuven, Belgium) following the manu-
facturer’s recommendation. After silanization, the post surface
was bonded with the same bonding agent used for the cavity.
Luting of the posts and the core buildup was performed with a
dual-cure resin composite core material (Gradia Core, GC
Europe, Leuven, Belgium). Gradia Core was applied using
its own automix cartridge with an Belongation tip^ for direct
root canal application. After insertion of the post, 5 min of
chemopolymerization time was provided to reduce polymeri-
zation stress, then cement was light cured for 40 s from each
side (a total of 160 s/tooth). The outlines of the restoration
were finished with dental composite (G-aenial Posterior P-
JE, GC Europe, Leuven, Belgium), which was light cured
for 40 s. This final step is the same in all restored groups.

Group 2

The teeth received a prefabricated, conventional continu-
ous unidirectional glass FRC post (GC Fiber post, GC Europe,
Leuven, Belgium). The post was adhesively treated and luted
the same way into the root canal as described in group 1. The
core buildup around the post for restoring the coronal cavity
was performed with randomly oriented short glass fiber-
reinforced composite (SFRC) (EverX Posterior, GC Europe,

Clin Oral Invest



Leuven, Belgium) packed around the post using approximate-
ly 3-mm-thick increments in a horizontal manner. Each incre-
ment was light cured from the occlusal surface for 40 s. The
last 1-mm-thick occlusal layer was conventional particulate-
filled composite (G-aenial Posterior) covering the SFRC.

Group 3

Teeth received an individualized FRC post formed from 2
to 3 pieces of FRC posts as previously described. These posts
did not receive any surface treatment in accordance with man-
ufacturer’s instructions. Luting of the individualized posts and

the core buildup was performed with a dual-cure resin com-
posite core material (Gradia Core, GC Europe, Leuven,
Belgium) the same way as in group 1. The outlines of the
restoration were finished with conventional composite
material.

Group 4

The teeth were reconstructed with the method described by
Forster et al. [30] building a direct layered FRC post and core
from SFRC. The original protocol was slightly modified as
here the FRC post and core was horizontally layered in 3–

1 2 3

4
5

Fig. 1 Schematic figure
representing the test groups.
Group 1: prefabricated FRC post
+ conventional composite core;
group 2: prefabricated FRC post +
SFRC core; group 3: individually
formed FRC post + conventional
composite core; group 4: SFRC
directly layered as post and core;
group 5: individually formed
FRC + SFRC as post and core
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4 mm segments. An increment of SFRC was packed to the
apical portion of the postspace using a microbrush-X dispos-
able applicator (Pentron Clinical Technologies, LLC, USA).
A light-transmitting FRC post (0.8 mm GC Fiber post, GC
Europe, Leuven, Belgium) was inserted into the postspace in
order to aid the transmission of the light to the apically posi-
tioned layers. The Blight-transmitting^ post was withdrawn
with 0.5–1 mm from the surface of the uncured SFRC layer
not to have direct contact with it. After each layer, 80 s of light
curing through the fiber post was carried out. After incremen-
tally filling the root canal to the level of the CEJ with repeating
the previously described procedure, SFRC was layered in the
coronal cavity until 1 mm below the margin of the occlusal
cavity in a concave shape. Each coronally placed increment
was light cured from the occlusal surface for 40 s. The last 1-
mm-thick occlusal layer was conventional composite material
covering the SFRC.

Group 5

One 0.9-mm-sized uncured post (everStick POST, GC
Europe, Leuven) was cut longitudinally with a sharp straight
scissor and applied on the buccal and lingual walls of the root
canal. Once tight contact was achieved, the posts were light
cured for 40 s. The posts were also slightly extending into the
coronal cavity. The space remaining between the posts in the
root canal and later the coronal cavity was filled upwith SFRC
described in group 4. The outlines of the restoration were
finished with conventional composite material.

Finally, for all restored teeth, glycerine gel (DeOx Gel,
Ultradent Products Inc., Orange, CA, USA) was applied and
final polymerization from each side for 40 s was performed.
The restorations were finished with a fine granular diamond
burr (FG 7406-018, Jet Diamonds, USA and FG 249-F012,
Horico, Germany) and aluminum oxide polishers (OneGloss
PS Midi, Shofu Dental GmbH, Ratingen, Germany).

Mechanical loading test

After the restorative procedures, the specimens were stored in
physiological saline solution (Isotonic Saline Solution 0.9%
B. Braun, Melsungen, Germany) in an incubator (mco-18aic,
Sanyo, Japan) for 1 week (at 37 °C, 100% humidity) before
the fracture loading test. Prior to embedding, the root surface
of each tooth was coated with a layer of liquid latex separating
material (Ruber-Sep, Kerr, Orange, CA, USA) to simulate the
periodontal ligament. Specimens were embedded in methac-
rylate resin (Technovit 4004, Heraeus-Kulzer) at 2 mm from
the CEJ to simulate the bone level. After embedding, all spec-
imens were immediately subjected to a static loading test
using a universal loading device (5848 MicroTester1,
Instron, Norwood, MA, USA). Each test was performed at a
cross-head speed of 0.5 mm/min and load was applied at 45°

using a 4.8-mm-diameter stainless steel ball-shaped stylus po-
sitioned to the central groove of the tooth providing two con-
tacts with the triangular ridges and one with the more domi-
nant marginal ridge. The maximum failure load was recorded
in newtons (N). A force vs. extension curve was dynamically
plotted for each tooth. After mechanical testing, the specimens
were examined for fracture patterns. According to Scotti and
co-workers, distinction was made between restorable or
nonrestorable fractures under optical microscope with a two-
examiner agreement. A restorable fracture is above the CEJ,
meaning that in case of fracture, the tooth can be restored,
while a nonrestorable fracture extends below the CEJ and
the tooth is likely to be extracted [33].

Microgap determination test

Five groups, each consisting of 3 endodontically treated
and restored teeth, were investigated in the microgap de-
termination test. The teeth (n = 15) were restored in the
same way as mentioned earlier. Teeth were sectioned
mid-sagitally in the mesiodistal plane using a ceramic cut-
ting disc operating at a speed of 100 rpm (Struers,
Glasgow, Scotland) under water cooling. In each group,
one of the sectioned restoration that contains the post was
further ground and polished using #4000-grit silicon car-
bide papers at 300 rpm under water cooling using an auto-
matic grinding machine (Rotopol-1; Struers, Copenhagen,
Denmark). Then, sectioned teeth were painted with perma-
nent marker and polished gently for few seconds. The dye
penetration along post/core margins of each section was
evaluated independently using a stereo microscope
(Heerbrugg M3Z, Heerbrugg, Switzerland) at a magnifica-
tion of × 6.5 and the extent of dye penetration was recorded
in mm as a percentage of the total margin length [34].

Microhardness test

Microhardness of luting composite inside the canal was mea-
sured using a Struers Duramin hardness microscope (Struers,
Copenhagen, Denmark) with a 40 objective lens and a load of
1.96 N applied for 10 s. Each sectioned restoration was sub-
jected to 5 indentations on the top (coronal part) and the bot-
tom (apical part) of the canal. The diagonal length impressions
were measured and Vickers values were converted into micro-
hardness values by the machine. Microhardness was obtained
using the following equation:

H ¼ 1854:4� P

d2

where H is Vickers hardness in kg/mm2, P is the load in
grams, and d is the length of the diagonals in μm.
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Statistical analysis

The data were statistically analyzed with SPSS version 23
(SPSS, IBM Corp.) using analysis of variance (ANOVA) at
the p < 0.05 significance level followed by a Tukey HSD post
hoc test to determine the differences between the groups.

Results

Figure 2 summarizes the fracture load for the different study
groups. The control group (intact teeth) showed the highest
fracture load (1183.9 N) and was significantly better com-
pared to all restored groups (p < 0.05). The application of
SFRC in the root canal (groups 4 and 5) showed significantly
higher fracture resistance (876.7 N) compared to the other
tested groups (groups 1, 2, and 3) (p < 0.05). There was no
statistically significant difference (p > 0.05) between the
groups using SFRC inside the canal (groups 4 and 5).
Therefore, the null hypothesis regarding fracture load was
rejected.

Regarding fracture pattern, all restored groups using either
SFRC or individually formed FRC posts, just as the control
group, showed dominantly repairable fractures, whereas the
group using conventional FRC post for reinforcement (group
1) showed dominantly unrepairable fractures (Table 1).
Therefore, the null hypothesis regarding fracture patterns
was also rejected.

The mean values and standard deviations of microgap per-
centage at post/core-tooth interface of the five groups are

presented in Fig. 3. Data showed that post/core restorations
made from directly layered SFRC (group 4) had a lower
microgap (16.8%) than other groups, whereas group 1 exhib-
ited the highest number of microgap (35.1%) at the examined
interphase in the root canal (Fig. 3).

In terms of the luting composite’s microhardness within the
apical part of the canal, group 4 produced the highest micro-
hardness values (59.5 VH) and also the smallest difference
between the microhardness measured at the apical and at the
coronal part of the root canal (Fig. 4).

Discussion

The quality and longevity of restorations in ET teeth play an
important role in the outcome and must be considered as a
critical final step for successful endodontic therapy [35]. The
ideal rehabilitation of ET posterior teeth would improve their
mechanical resistance and prevent unfavorable fractures,
thereby restoring anatomy and function [36]. In this study,
maxillary ET premolars with MOD cavities were used as they
present an unfavorable anatomy in crown volume and crown-
to-root proportion, which makes them more susceptible to
cusp fractures than other posterior teeth when exposed to oc-
clusal load [37]. The presence of an MOD cavity configura-
tion might lead to a further major biomechanical problem.
According to Hood’s hypothesis, cusps of teeth with MOD
cavity preparations function as a cantilever beam, with the
extent of deflection under load influenced by both beam thick-
ness and length [38], meaning the prepared cavity floor serves
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Fig. 2 The mean values for the fracture loads (N) and standard deviation of the restored teeth (SD). Horizontal lines above the columns indicate groups
that do not differ statistically from each other
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as a fulcrum for cusp bending and the cantilever length in-
creases with the cavity depth [39].

In everyday clinical practice, direct tooth-colored restora-
tions are often used for ET teeth as a relatively low cost,
esthetic alternative to cuspal coverage restorations [4].
However, insufficient material properties limit the success of
direct composite restorations in high stress-bearing areas [40,
41]. Forster et al. demonstrated that once the depth of anMOD
cavity reaches 5 mm, a direct filling using conventional com-
posite material on its own cannot reinforce the damaged tooth
anymore [42]. This is in accordance with Eapen et al. [43] and
Kemaloglu et al. laboratory findings [44].

As a consequence, the majority of dental practitioners rou-
tinely restore root-filled maxillary premolars with fiber posts
to reinforce them [7]. Yet, the results are controversial. Some
studies claim fiber posts increase the resistance of ET premo-
lar teeth, whereas others showed that fiber posts do not
strengthen the teeth but reduce the incidence of catastrophic
fractures [23, 24, 45]. In our study, the groups restored with
conventional FRC post (groups 1 and 2) showed significantly
lower fracture resistance than the groups with SFRC inside the

root canal (groups 4 and 5), and conventional FRC reinforce-
ment failed to restore close-to-control fracture resistance.
Several authors have pointed out that the diminished reinforc-
ing effect of FRC posts might be attributed to the removal of
more tooth material during post placement, which possibly
weakens the root [7, 26, 36, 46–48]. In our study, as previous-
ly described [30], minimally invasive method of post site
preparation was applied in all restored groups to avoid this
effect. Because of this, the smaller conventional FRC post
could not fill out the root canal entirely, possibly leading to
greater amount of luting composite in the available space. The
mismatch between the diameter of the fiber post and that of
the post site remains a well-known clinical challenge [49, 50].
If the post does not fit well, especially at the coronal level, the
resin cement layer would be excessively thick, and bubbles
are likely to form in it, which can lead to de-bonding [49, 51].
This might be one of the reasons behind the inferior perfor-
mance of the conventional FRC posts. In group 1, the missing
coronal dentine was replaced with the FRC post and the same
composite core buildup material used to lute the post, which
represents one of the easiest and most popular restorative

Table 1 The distribution of
fracture pattern among the study
group

Fracture pattern Group 1 Group 2 Group 3 Group 4 Group 5 Intact teeth

Restorable 3 7 7 8 9 10

Nonrestorable 9 5 5 4 3 2

Restorable % 25 58 58 67 75 83

Non-restorable % 75 42 42 33 25 17
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Fig. 3 Mean percentage of microgap observed in different groups from total post/core-tooth interface length after staining. Vertical lines represent
standard deviation
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solutions among the practitioners—and the primary recom-
mendation of manufacturers of dual-cure core buildup mate-
rials. One of the main drawbacks of particulate-filled conven-
tional composite and dual-cure core buildup materials when
used to substitute the missing dentine is the significantly lower
fracture toughness of these composite materials compared to
that of the dentine [40]. In group 2, the missing coronal den-
tine was substituted with SFRC, beside the conventional FRC
post. SFRC is a dental restorative composite intended to be
used in high stress-bearing areas as a dentine replacing mate-
rial [52–55]. Mechanical testing has shown major improve-
ments in the load-bearing capacity, the flexural strength, and
also the fracture toughness of SFRC in comparison with
particulate-filled conventional composite materials. In our
study, SFRC together with a conventional FRC post (group
2) did not yield significantly better results compared to the
dual-cure core buildup material together with FRC post
(group 1). This may be attributed to the poor adhesion be-
tween the conventional FRC post and any composite material.
All FRC posts are made of two main components: the rein-
forcing fibers and the polymer matrix. Matrix polymers are
generally epoxy resins or other thermosetting polymers with a
high degree of conversion and a highly cross-linked structure
[56, 57], which makes it very difficult to bond the
prefabricated conventional FRC posts to any composite resin
or to the tooth structure [58].

One possible solution to overcome the irregular root canal
anatomy left by the minimal invasive post space preparation
and intentional dentine preservation is to apply multiple posts

in the same canal (multi-post technique) or to use an individ-
ual formed post. In group 3, an individualized FRC post
formed from 2 to 3 pieces was used, as previously described
by Hatta et al. [32]. Individually formed posts consist of con-
tinuous unidirectional E-glass fibers and a multiphase poly-
mer matrix forming the semi-interpenetrating polymer net-
work (semi-IPN). In the semi-IPN structure, there are both
linear and cross-linked polymer phases. Due to the presence
of the linear polymer phase, this material has shown good
bonding between the post, the cement, and the dentine com-
pared to the bonding of conventional FRC posts with a high
cross-linked polymer matrix [28, 59, 60]. Although theoreti-
cally this individualized post should produce a better fit in the
root canal, thus less cement could be used, group 3 was not
superior to the single conventional FRC post groups (groups 1
and 2). This is in contrast with our previous findings [26],
where any multi-post technique was significantly better than
the single conventional FRC post buildup in terms of the
achieved fracture resistance. It is obvious that this difference
can be attributed to major differences in the study design: in
our previous study, the teeth were decoronated, without any
ferrule and without any definite coronal restoration.

Of the techniques tested in the present study, the Bioblock
technique (group 4) was characterized by significantly higher
fracture resistance than any of the other techniques utilizing
FRC posts (groups 1, 2, and 3). This could be explained by
examining the tooth from a biomechanical point of view. As
pointed out by Le Bell-Rönnlöf et al., since the conventional
FRC post is placed in the most central part of the post site
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(neutral axis of the tooth), the post is not optimally placed in
terms of biomechanics if reinforcement is the desired outcome
[28]. In fact, the surface of the post canal dentinal wall is a
more appropriate choice for post placement for reinforcement,
as this is where the highest tensile stresses occur [61].With the
Bioblock technique, SFRC is directly and closely adapted to
the root canal wall, eliminating the drawbacks of the usage of
luting cement or the Bbiomechanically incorrect^ positioning
of the FRC post, thus potentially eliminating all the damaging
tensile stresses produced when the restoration is loaded. This
is supported by other studies, suggesting that the survival rate
of restorations might be increased if the fibers are placed at the
interface [62, 63].

This concept is in accordance with the monoblock theory,
which states that it is always beneficial to reduce the number
of interphases as they do not only concentrate, but also in-
crease the amount of stress inside a restoration [64].
According to the protocol of the present study, the thickness
of each SFRC layer inside the tooth was increased from 2 mm
[30] to 3–4 mm, as it has been proven that SFRC can be
adequately light cured to 4–5 mm safely [65]. This is due to
both the translucent nature of the material and the fact that the
randomly oriented fibers within it may conduct and scatter the
light over longer distances [66].

Still the question arises whether the SFRC material could
have adequate curing also inside the root canal. Therefore,
microhardness test was performed on the restorative tech-
niques used within the root canal. The results showed that
all restorative materials used in the coronal portion of the canal
had higher microhardness compared to the apical portion of
the same canal, indicating better curing due to higher intensity
of light polymerization. In the critical apical portion, there was
no difference in the microhardness of the used materials. This
is interesting since in groups 4 and 5, SFRC was used inside
the root canal, which needs light curing to set, while in the rest
of the restored groups, a dual-cure core buildup material was
used. This shows the efficiency of the curing protocol pro-
posed by Forster et al. with the Bioblock technique using a
conventional FRC post inside the canal just for light transmit-
ting purposes [30]. The highest microhardness grades in the
apical portion of the canal were achieved with group 5 using 2
pieces of individually formed posts together with SFRC inside
the canal for reinforcement. In this hybrid technique, the indi-
vidually formed posts were directly luted to the opposing root
canal wall in order to act as a potential stress-absorbing layer
as suggested by Vallittu et al. [67] and Le Bell Rönnlöf et al.
[28]. Also the mean difference between the coronal and apical
microhardness values was the lowest in group 5. This could be
attributed to the potential light-transmitting capacity of the
individually formed FRC posts inside the canal.

Since the adaptation of the used materials within the canal
seems to be of key importance, gap formation was also eval-
uated with a microgap determining test for each technique.

Microgap scores were the highest in group 1 and lowest in
group 5. This is in accordance with the findings of Patel et al.
[68]. The shrinkage stress and consequent gap formation
when using dual-cure core buildup materials for luting in the
root canal is a well-known problem due to the extremely high
C-factor in this specific area [69, 70].With the SFRCmaterial,
the control of the polymerization shrinkage stress is achieved
by fiber orientation [54]. Therefore, during polymerization,
the material is not able to shrink along the length of the fibers.
It retains its original dimensions horizontally, but the polymer
matrix between the fibers can shrink, leading to a better adap-
tation to the root canal walls (groups 4 and 5).

Regarding the fracture patterns, the restored groups pro-
duced predominantly favorable fracture patterns, except for
group 1. Shifting the fracture pattern towards repairable frac-
tures is a well-known phenomenon when using SFRC [44, 71,
72] as it acts as a stress-absorbing and crack-stopping layer,
which can be explained by the size of the incorporated fibers.
In order for a fiber to act as an effective reinforcement for
polymers, stress transfer from the polymer matrix to the fibers
is essential [73, 74]. This is achieved by having the fiber
length equal or greater than the critical fiber length [54]. It
has been measured that the critical fiber lengths of E-glass
with bis-GMA polymer matrix vary between 0.5 and
1.6 mm [75]. SFRC fulfills this requirement with fiber lengths
of 1 to 2 mm. Interestingly, in our study, it was not possible to
reinforce the teeth to a satisfactory extent with the multi-post
technique (group 3), but the fracture patterns were still mostly
favorable. This might be caused by the number and unique
features of these uncured posts, as described above. Group 1,
with the conventional FRC post and dual-cure core buildup
material, was characterized predominantly by unfavorable
fractures. This is in line with the latest findings of Lazari
et al. [76].

Although the application of SFRC (groups 4 and 5) yielded
significantly better fracture resistance than any type or number
of FRC posts (groups 1, 2, and 3), the achieved fracture resis-
tance was still significantly lower than the fracture resistance
of the control group (intact teeth). This might indicate the
necessity of cuspal coverage in premolar ET teeth with
MOD cavities when reinforcement is the primary aim.

The tested specimens received an oblique load (45° to the
long axis of the tooth) which appears to be the worst-case
scenario in terms of the fracture resistance of ET teeth as
described by Wandscher et al. [77]. The limitation of this
investigation is that static load to fracture test was used to
determine maximal fracture resistance instead of applying cy-
clic loading. Stress applied to the teeth and dental restorations
is generally low and repetitive rather than being isolated and
impactive in nature. However, because of a linear relationship
between fatigue and static loading, the compressive static test
also gives valuable information concerning the fracture behav-
ior and load-bearing capacity [78]. According to Taha et al.,

Clin Oral Invest



BIn experimental studies, fracture resistance to static loading
has been used as a measure of the effect of cavity preparation
and/or restoration on tooth strength. Although the fracture
load is typically much higher than functional occlusal loads,
it is still a valid method for comparing restorative materials
and different cavity designs.^ [4]. Also, as stated by Le Bell-
Rönnlöf et al., static loading is usually the first step in the
evaluation process of a novel dental material and related tech-
nique and is commonly used in order to obtain basic knowl-
edge regarding the fracture behavior and load capacity of a
post restored tooth [28]. Given the mentioned shortcomings,
the proposed techniques should require future testing with
dynamic loading.

Conclusions

The restoration of endodontically treated premolars with the
use of SFRC as post-core material displayed promising per-
formance in matter of microgap and load-bearing capacity.
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