“University of Turku Technical Reports, No.10 — September 2015”

DEPTH SENSORS IN
AUGMENTED REALITY
SOLUTIONS

Literature Review

Mika Taskinen | Olli Lahdenoja | Tero Séntti | Sami Jokela | Teijo Lehtonen

Mika Taskinen
University of Turku, Technology Research Center, 20014 Turun yliopisto, Finland

mika.taskinen@utu.fi

Olli Lahdenoja
University of Turku, Technology Research Center, 20014 Turun yliopisto, Finland

olli.lahdenoja@utu.fi

Tero Sintti
University of Turku, Technology Research Center, 20014 Turun yliopisto, Finland

tero.santti@utu.fi

Sami Jokela
University of Turku, Technology Research Center, 20014 Turun yliopisto, Finland

sami.jokela@utu.fi

Teijo Lehtonen
University of Turku, Technology Research Center, 20014 Turun yliopisto, Finland

teijo.lehtonen@utu.fi

www.trc.utu.fi

ISSN 2341-8028 | ISBN: 978-951-29-6225-9

Technology Turun yliopisto
Center University of Turku



“University of Turku Technical Reports, No.10 — September 2015”

Abstract

The emergence of depth sensors has made it possible to track - not only monoc-
ular cues - but also the actual depth values of the environment. This is especially
useful in augmented reality solutions, where the position and orientation (pose) of
the observer need to be accurately determined. This allows virtual objects to be
installed to the view of the user through, for example, a screen of a tablet or aug-
mented reality glasses (e.g. Google glass, etc.). Although the early 3D sensors have
been physically quite large, the size of these sensors is decreasing, and possibly -
eventually - a 3D sensor could be embedded - for example - to augmented reality
glasses. The wider subject area considered in this review is 3D SLAM methods,
which take advantage of the 3D information available by modern RGB-D sensors,
such as Microsoft Kinect. Thus the review for SLAM (Simultaneous Localization
and Mapping) and 3D tracking in augmented reality is a timely subject. We also try
to find out the limitations and possibilities of different tracking methods, and how
they should be improved, in order to allow efficient integration of the methods to
the augmented reality solutions of the future.
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1 Introduction

Today the use of augmented reality solutions is increasing and more efficient meth-
ods for tracking are being developed for motion sensors and conventional cameras.
Using depth sensors in this manner is a fairly new area, in comparison as they have
not been accurate or mobile enough to be used in augmented reality. Over the last
few years this has changed drastically and now some algorithms and methods have
finally been researched for the depth sensors.

All sensors have their faults when tracking the pose. A conventional camera
might lose its track when the captured image lacks details. Motion sensor has to be
accurate and record data in high frequency. Even then the pose might drift unless
corrected with other methods. A depth sensor usually does not work under sunlight
conditions or when the distance to the tracked surroundings is too great. These, and
possibly other methods, need to be combined to achieve more robust tracking.

The advantage of depth sensors in tracking is the actual depth data which con-
tains real distances to target areas. These distances can be used to isolate basic
formations like planes, cubes and spheres. The data can also be used when building
up a more robust model of the surroundings.

In this review we will find out which kind of tracking solutions there are for the
depth sensors or RGB-d cameras. This information can then be used when trying to
track the pose or to model the surroundings.

1.1 Definition of depth sensor

The most basic definition of depth sensor is a device that measures distance to a
target. This target can be a dot, line or even an array of dots forming an area.
Three sensor technologies exist and they are laser, ultrasonic and infrared (usually
the RGB-d sensors). All of these types work the same way: By sending a signal and
measuring distance from the signal when it is mirrored back from an object. This
signal can contain a code for identification to remove noise from surroundings.
Every sensor type can be divided to two categories according to the type of
data in the signal. Either the depth information is purely based on intensity of the
returning signal or the sensor could use a time of flight (TOF) technology to measure
distance. TOF requires that a pattern or data is recorded to the signal so that the
specific timestamp can be recorded into it. When the signal returns, the exact time
can be measured by using the signal data and return time. The TOF technology
improves on noise filtering and thus improves the depth sensor reliability on the
whole but it is new technology and many of todays sensors are still intensity based.
Papers in this review focus mainly on infrared and intensity based sensors. These
sensors are usually the most cost effective when scanning environments and measur-
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ing distances.

1.2 Augmented Reality

The purpose of augmented reality is to enhance the world around observer. This
means additional virtual objects in an environment or enhancement of objects that
already exist. To accomplish this, there must be someway to track these objects in
real time. Until now the most popular tools for tracking have been conventional
cameras and motion sensors. The conventional cameras track the environment by
extracting stable features from image and then frame by frame track these features to
find correct poses of the observer and the observed. Multiple frames are required to
gain actual model of objects. Motion sensors rely on active data, giving the observer
information on rotation speed and orientation in relation to surroundings.

Depth sensors, like cameras, extract features from image but with additional
scope because of the actual distance data. Depth sensors do not require multiple
frames to gain three dimensional data and in such can detect simple formations
which are easier to find from the next frame than the features detected by color
cameras. At the very least, the depth sensor can be used to map the environment
for a later use with other sensors.
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2 Review Process

The review process started with selected keywords that present the question: “How
can depth sensors be used in augmented reality tracking?” The exact search se-
quence used in the systematic literature search is as follows:

((
(depth NEAR/3* sensor)

OR

(depth NEAR/3* camera)
OR

"rgb-d"

AND

"tracking"
OR

"pose estimation"
OR

"augmented reality"
OR

"localization"

))

*NEAR/#: Given words are within # words from each other in text

Several academic search engines were used and the initial result of the searches
counted up to 4861 papers. From these we filtered 111 by reading the titles. By
reading the abstracts we filtered the count to 39 and finally, by reading the papers,
we got to our result: 19 papers. In addition, two technical reports were found from
MIT archives to support our survey. The review was conducted according to the
guidelines of a systematic literature search [O2] with the exeption of elimination
process where only one person filtered the papers and consulted another person on
obscure cases.

All of the selected papers provide information on RGB-d tracking. This does
not necessarily mean that the solutions are based purely on depth sensors. A depth
sensor is usually used when a model of object or surroundings is made. The tracking
part can still be done by regular camera. Some of the papers theorized about depth
tracking while most of them only used it for modeling purposes.

Technology 3 Turun yliopisto
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Following is the table describing all the paper counts through the elimination process

per search engine.

Search Engine

Query Result  Title Filtering  Abstract Filtering

Text Filtering

ACM Digital Library! 83 6 0
CiteSeerX 548 24 2
Elsevier Science Direct? 512 0 0
IEEE Xplorer 498 62 16
Springer Link 2546 19 1
Web of Science’ 674 0 0
Total 4861 1 19

Table 1: Systematic literature review stages

1Original search result was 2461 papers. The search was later limited to abstracts instead of whole texts

because of the unrelated information found.

2Search method found only unrelated papers.

3Papers that were acceptable were duplicate findings from IEEE Xplorer engine.
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3 Analysis

3.1

Articles

The following is a list of the selected papers with brief descriptions.

Ataer-Cansizoglu et al., “Tracking an RGB-D camera using points and
planes”, 2013 [P1]

Tracking is done by extracting points and planes from depth data and an
extended prediction algorithm is used.

Biswas and Veloso, “Depth camera based indoor mobile robot localiza-
tion and navigation”, 2012 [P2]

In this paper, a method for depth tracking is introduced. This method, called
“Fast Sampling Plane Filtering” (FSPF), handles massive data amounts from
the sensor to calculate pose.

Biswas and Veloso, “Planar polygon extraction and merging from depth
images”, 2012 [P3]

Fast Sampling Plane Filtering method testing. This paper provides results
compared to ground truth and demonstrates how the method works.

Bylow et al., “Real-Time Camera Tracking and 3D Reconstruction Using
Signed Distance Functions”, 2013 [P4]

This paper presents a real-time RGB-D camera tracking using signed distance
function (SDF) instead of iterative closest point algorithm (ICP) used for in-
stance in KinectFusion. According to this paper, SDF provides more accurate
and robust data than ICP.

Ceriani et al., Single and Multi Camera Simultaneous Localization and
Mapping Using the Extended Kalman Filter, 2014 [P5]

An extended kalman filter is used for combining results of multiple tracking
sources. In this case the sources are conventional cameras or depth sensors.

Chen and Lin, “RGB-D Sensor Based Real-time 6DoF-SLAM”, 2014 [P6]
The basis of the tracking is the color information. Depth information is used
when building up model of the environment. SIFT matching and RANSAC are
used in this operation.

Dryanovski et al,, “Real-Time Pose Estimation with RGB-D Camera”,
2012 [P7]

The tracking is done by feature extraction with both color and depth informa-
tion.
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* Fallon, Johannsson, and Leonard, “Efficient scene simulation for robust
monte carlo localization using an RGB-D camera”, 2012 [P8]
Kinect Monte Carlo Localization (KMCL) calculates pose from point cloud
provided by a depth sensor. This is done by using a 3D-map of the surround-
ings and using simulated depth and color images as a comparison.

* Hu et al,, “A robust RGB-D SLAM algorithm”, 2012 [P9]
This paper presents ideas to optimize the RGB-D SLAM.

* Kerl, Sturm, and Cremers, “Robust odometry estimation for RGB-D
cameras”, 2013 [P10]
The usual visual odometry algorithms like SURF or SIFT are too slow for low
latency applications. This paper suggests a new algorithm with lower compu-
tational requirements.

* Kliissendorff et al., “Graph-based visual SLAM and visual odometry us-
ing an RGB-D camera”, 2013 [P11]
Visual SLAM is done by using color images for tracking and depth sensor for
scanning. This paper proposes to use FAST algorithm for feature extraction
and BRIEF as feature descriptor.

* Lee, Kim, and Myung, “GPU-Based Real-Time RGB-D 3D SLAM?”, 2012
[P12]
A visual SLAM can be done by GPU for optimization purposes. This paper
shows how.

 Liu et al., “A robust fusion method for RGB-D SLAM”, 2013 [P13]
RGB-D cameras can be used in environments even when there are poor 3D
geometry by combining depth and color information.

e Maier, Hornung, and Bennewitz, “Real-time navigation in 3D environ-
ments based on depth camera data”, 2012 [P14]
This paper purely tracks with depth sensor. The environment is scanned and
then rebuilt for a robot to find its path in the surroundings.

* Newcombe et al., “KinectFusion : Real-Time Dense Surface Mapping
and Tracking”, 2011 [P15]
KinectFusion can be used in either tracking or modeling and uses GPU for
performance purposes.

 Somlyai, “Mobil robot localization using RGB-D camera”, 2013 [P16]
Combination of IMU sensors and RGB-D tracking is used by combining move-
ment sensors, color and depth data.

* Strasdat et al., “Double Window Optimisation for Constant Time Visual
SLAM?”, 2011 [P17]
Double window optimization framework intends to improve on visual SLAM.
This paper is not depth sensor specific but can be applied to it.

* Su, Shen, and Cheung, “A robust RGB-D SLAM system for 3D environ-
ment with planar surfaces”, 2013 [P18]
A problem with planar surface tracking is handled by use of both color and
depth data.
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e Valenti et al., “Autonomous Quadrotor Flight Using Onboard RGB-D
Visual Odometry”, 2014 [P19]
RGB-D visual odometry is used for micro aerial vehicles for independent flight
along 4DOF (4 degrees of freedom) paths.

* Whelan et al.,, “Kintinuous: Spatially extended kinectfusion”, 2012 [P20]
KinectFusion tracks a very small volume. This volume can be extended using
a method called Kintinuous.

e Whelan et al,, “Robust Tracking for Real-Time Dense RGB-D Mapping
with Kintinuous”, 2012 [P21]
Kintinuous can be expanded with advanced coloring and more optimal graph-
ics algorithms.

3.2 Position and orientation tracking and feature ex-
traction

Position and orientation of the tracking device can be acquired by variety of meth-
ods. In this case, these methods are based on either color or depth information.
A very popular approach is to use SLAM (Simultaneous Localization and Mapping)
based methods [Ol]. SLAM is mainly used for building a model (mapping) of the
environment. It is usually done by series of stages: Feature extraction, data associa-
tion, loop closure and mapping. Feature extraction finds key elements from data like
corners or certain objects. Data association finds similarities between current and
last data. Loop closure means data refinement to reach more robust result. After the
first three stages, if successful, the pose has been found and mapping of area based
on current frame can be done.

SLAM does not require the use of depth data but it is preferred practice when
mapping environment. In some cases the depth data has even been used in feature
extraction stage [P1, P2, P3, P7, P8, P13, P14, P16, P18]. This usually means extracting
simple formations, like planes, from the data. One article suggested using depth data
in a similar way the color data is commonly used: By finding corners and edges [P7].

Not all tracking methods are purely based on SLAM and neither are all of the
methods presented in this reviews selected articles. SLAM does not exclude the use
of prebuilt maps but it is not in the definition. SLAM does the tracking comparison
to initial frame where the tracking begun. Some articles do tracking by using pre-
mapped data [P8, P12]. Methods that use point clouds directly to build formations
for comparison are usually so different from SLAM process that they are not really
part of it [P14].

3.3 3D SLAM methods

3.3.1 KinectFusion and its extensions

Most of the papers presented RGB-D SLAM algorithms for reconstruction and pose
estimation. After the milestone paper [P15] presenting the tracking with KinectFu-
sion algorithm (in 2011), several improvements and extensions have been proposed.
KinectFusion first extracts the point cloud data from the environment and maps
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the surfaces of the objects into proper locations by ICP (Iterative-Closest-Point) al-
gorithm. In the reconstruction step a TSDF (Truncated Signed Distance Functions)
method is used for fusing partial depth maps. In general, SDF (Signed Distance
Function) is a depth representation that is negative if the point is closer than the
estimated surface and otherwise positive. TSDF filters out distances that are either
too far or too near to the estimated surface. Unlike traditional RGB tracking, the
KinectFusion can operate even in complete darkness due to the use of depth data.

The original KinectFusion algorithm has been extended in many ways. In [P4]
signed distance functions were proposed directly for 3D reconstruction without tra-
ditional mapping required by the ICP algorithm. The application scenario was the
position control of an autonomous quadrocopter. With regard to pose estimation,
in [P10] RGB-D tracking method suitable for embedded devices was proposed. As 3D
SLAM methods typically require a large working memory, the approach in [P10] was
to use robust estimation to allow the mapping of IMU (e.g. gyroscope, accelerom-
eter) data for the tracking. Two successive frames of the RGB-D data were used
directly for tracking without a global reconstruction of the environment to reduce
the memory footprint.

In [P20] and [P2]] the KinectFusion algorithm was extended to larger scale en-
vironments. In [P20] the full mapping of a two story apartment was performed.
The FOVIS (Fast Odometry from Vision) system was considered in [P20] as an al-
ternative to ICP, which is prone to fail when there are not enough details in the
environment. FOVIS uses sparsely sampled feature correspondences detected by the
FAST algorithm. In [P2]] the Kintinuous, which was originally proposed in [P20]
was extended to operate with surface coloring and GPU acceleration of the visual
odometry algorithm.

3.3.2 Monte carlo localization

Sequential monte carlo localization (particle filter) was proposed for determining the
pose in [P8] with an application to large scale indoor navigation. The principle
was first to construct a model of the environment by extracting large planar regions
such as walls. To relax the requirements for the localization the dimension of the
particle filter was reduced using an assumption of horizontal motion (usage of a
ground robot). The FOVIS visual odometry algorithm was used with only data
from an RGB-D sensor. Given the previous measurements, the particle filter then
estimated the most probable next pose of the system and updated this according
to new measurements. In [P14], monte carlo localization was used for real-time
navigation and obstacle avoidance with an application to RGB-D tracking of a Nao
humanoid robot. The system was also able to correctly react to non-static obstacles.

3.3.3 Plane filtering methods

A common problem in RGB-D SLAM methods is their high computational complex-
ity, which generally requires a desktop computer equipped with a modern GPU. The
number of points generated by Kinect, for example, becomes very large in dynamic
operation and handling this may require excessive usage of the memory. Simplifying
the computation with limited hardware resources may be needed in embedded and
resource constrained applications. One way to reduce the computational load is to
make assumptions on the structure of the environment, e.g. in extracting only dom-
inant planes from it [P1, P2, P3]. The authors in [P2] used a RANSAC type method
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FSPF (Fast Sampling Plane Filtering) to extract planes and mapped these to the exist-
ing 2D maps of the environment. In general, the utilization of RANSAC allows rapid
and effective filtering of the depth data and it can efficiently operate in a resource
constrained environment. The same authors in [P3] described real-time operation of
RGB-D SLAM with full 640x480 depth images with relaxed CPU requirements. The
application environment was a real-world indoor scene. With Kinect, for example,
an increase in depth also increases the noise, and it becomes severe in the limits
of the operation range. Finding dominant planes can also be used to filter out this
noise. The authors in [P1] used RANSAC for this purpose by finding plane and point
correspondences with an application to RGB-D SLAM.

3.3.4 Loop closure and operation in large scale environments

In [P9] a switching heuristics was used to determine automatically whether to use
the RGB or the depth image for tracking. As the operation distance of low cost
3D sensors is quite restricted (e.g. <6m), it is advantageous to switch between the
operation modes of RGB (monocular) tracking and RGB-D (depth based) tracking.
As heuristics for determining which mode to use, depth association was used among
others, i.e. finding out how well the depth map aligns with the RGB image structure.
If it matches poorly, the scene is likely to be far away and monocular tracking is
selected. Also the poor operation of ICP in the case when there were not enough
details was accounted for so that the RGB cues were used in that case.

SLAM loop closure means detecting the places where the observer has visited
before based on e.g. feature correspondences from selected keyframes. The purpose
is to compensate the drift caused by noisy features of the sensors by accommodating
the tracked path to the previous - probably more correct - location. Graph-based
slam framework [P6] allows seeing the path of the observer with nodes as visited
places, and edges which model the relation between each node as a transformation
matrix. When a loop closure is detected the corresponding nodes can be updated
to eliminate the drift. It should be observed that the corrected nodes (with a loop
closure) can also be used as a base for future loop closures [P6)].

The authors in [P17] considered SLAM in large scale environments. As stated,
3D SLAM is generally computationally intensive and may suffer from linear to cubic
computation time in the number of variables. Also the memory usage may be
heavy in many cases. In [P17] a double window optimization framework was used
to allow the accurate mapping of local environment, while also taking account the
structure of the environment in larger scale. The inner window maps local BA
(Bundle Adjustment) to handle small scale tracking scenarios, while the outer window
optimized the relations between the keyframes in a global graph. In [P17] both
monocular and RGB-D applications were considered.
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4 Results and discussion

The tracking methods and their operation environments among the selected papers
are shown in Table 2. It can be observed, that loop closure has been implemented
in about half of the papers. The applications of KinectFusion (KF) algorithm are
generally limited to room (R) and small (S) to medium (M) size indoor environments.
KinectFusion algorithm was used in six of the selected papers. The methods which
take advantage of monocular cues also, can operate in larger scale environments.
Three papers used plane filtering and they can achieve very high operation frame-
rates. The other methods (denoted as “other” in Table 2), such as tracking based on
brightness change of consecutive frames and frame-to-model registration approaches
can operate with a small memory footprint.

Microsoft Kinect was used in most of the papers (as the RDB-d sensor), but due
its compact size also Asus Xtation Pro Live has been applied in application scenarios
requiring compactness. Most of the papers focused on localization (L) while eight
papers also considered the reconstruction of the environment (as both processes are
mutually linked in SLAM).

When considering the limitations of the methods, starting from the actual depth
sensors to the algorithms that handle the data, the tracking process, in general, has
room for improvements. Depth sensors today are still limited by weather conditions
and useable operation range. In addition, no depth sensor has been embedded to
mobile devices, which means that depth devices still have some mobility issues.

Because of the three dimensional nature of the depth data, the data is slow to
process and thus requires extra calculation power from the CPU or GPU. This would
require some level of filtering or simply: more powerful computers (and mobile
devices). Other limitation is the core memory of the computing device used. By
using SLAM related solutions, a lot of dynamic memory is required. For instance,
KinectFusion can only model and track a very small cube in front of the sensor. In
many cases, the SLAM derived system uses voxel (a 3D-pixel) mapping to recreate
environment in digital format. To fully understand this problem, let’s take a cube
with sides of 1 meter. Divide it to Imm sided cubes, and you get 1 billion small
voxels. Storing the state of each of these cubes takes a lot of memory (in this case, at
least 1 giga bit). What happens if you want larger space? You can expand the cube,
which makes the voxels bigger and use larger but slower memory units (HDD and
SSD) which eventually makes the algorithm slower.

Depth sensors are still used very much like conventional cameras. Tracking is
done with the color information and in some cases depth tracking is done the same
way. Problem in this is that being the newer technology, depth sensors are not very
accurate in terms of actual measured distances. A color camera can have a very
precise pixel by pixel level accuracy of colors whereas depth sensor pixels can have
much more error in value. If you detect a corner in one frame by using depth data,
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you may not find it in a logical place in next frame anymore. This causes problems
when trying to estimate correlations between frames. Plane filtering is a step in to
the right direction as it eliminates errors in individual pixels. Going further in this
kind of thinking could be the next step. The entire environment could be presented
with planes, curves and other objects.
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Paper Applicationlle sensor type Computing plat-  Env. Tracking Loop
no. form / Operation methods? closure*
speed
[P1] L+R Microsoft Kinect Intel Core i7 PC IM P (points and  Yes
/ 10Hz (3 Hz with planes) (only for
map update) planes)
[P2] L Kinect + Hokuyo  single CPU, high IL P (FSPF) N/A
URG-04LX frame rate
rangefinder
[P3] R Microsoft Kinect Single CPU, high M P (FSPF) No
frame rate (400 Hz)
[P4] R Asus Xtation Pro  laptop+Quadro ™M KF N/A
Live GPU
[P5] L Stereo camera Intel Core 2 Duo IL Extended Kalman  No
T9300 / 30Hz Filter SLAM
[P6] L Microsoft Kinect i7-2600K CPU / RS Other / Graph  Yes
OpenCV / PCL / based
19Hz
[P7] L Microsoft Kinect Desktop PC Dual RS Other / 2D mor- No
Quad Core Xeon phology + ICP
CPU / 10Hz
[P8] L Microsoft Kinect — Laptop + Quadro IM M (particle filter) N/A
+ LIDAR 1700M GPU / 10Hz
[P9] L Microsoft Kinect Robot assist plar- IM Other /RGB /RGB-  Yes (if
fotm (ACRA 2010) O D (ICP) heuristics depth
available)
[P10] L Microsoft Kinect  single CPU, small IM Other / brightness  N/A
(TUM dataset) memory footprint / change + IMU
30Hz
[P11] L Microsoft Kinect Laptop Intel i7, IL Other / graph  Yes
OpenCV+ROS+g20 based 2D to 3D
[P12] L+R Microsoft Kinect Inter Core i7 + RS Other / 3D Yes
Nvidia GT 560 / RANSAC +ICP
>20Hz
[P13] L+R Microsoft Kinect Intel i7 CPU + ROS  IM KF + Graph based  Yes
/ 5-10Hz g2o0
[P14] L Asus Xtation Pro  Quad code PC / RS M (particle filter) N/A
Live 6Hz
[P15] L+R Microsoft Kinect CPU + GPU RS KF (original) Yes
[P16] L Microsoft Kinect Laptop PC RS Other / 2D + 3D  No
combination + IMU
[P17] L PrimeSensor Desktop PC Core 2  OL Other / keyframe +  Yes
Duo monocular
[P18] L Microsoft Kinect N/A / Real time RS KF + color N/A
[P19] L+R Asus Xtation Pro  Core 2 Duo + IM Other / frame to  Yes
Live 2xARM7 + IMU / model registration
30Hz (1kHz IMU)
[P20] R Microsoft Kinect Desktop PC + IM Extended KF Yes
GeForce GTX 560
GPU
[P21] L+R Microsoft Kinect ~ Desktop PC + IM Extended FK + FO-  N/A
(Freiburg dataset) ~ GeForce 680GTX VIS+Color

GPU / 15-30Hz

Table 2: Article main points

! Localization (L), Reconstruction (R)

2Environment: Room (R), Indoor (I), Outdoor (O), Small (S), Medium (M), Large (L) scale

Technology
Research
Center

4Yes/No/ N/A

12

3Kinect Fusion (KF), Plane Filtering (P), Monte Carlo (M), Inertial Measurement (IMU)
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5 Conclusions

This paper provided a systematic literature study on the usage of 3D sensors in
augmented reality tracking solutions. The research suggests that the field of tracking
based on depth data is increasingly important, and thus many high quality works
have been proposed in the literature. Perhaps the most important individual study
has been the KinectFusion algorithm, which has been extended in several ways.
Plane and point based filtering methods - on the other hand - can provide efficient
integration to embedded hardware, which is essential if real-time performance is
needed and compact size with low power consumption are searched for. Most of the
methods in this review were implemented within a room or medium scaled indoor
environment. However, by switching between the operation modes of monocular and
depth modes (RGB<->D), some of the papers which were proposed could also operate
in larger outdoor settings. Loop closure, which means finding out the locations
which have earlier been visited to and updating the tracked pose accordingly, was
also frequently taken advantage in the papers.
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