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Abstract: In this work, we construct the fractional order model for chemical kinetics issues utilizing novel 
fractal operators such as fractal fractional by using generalized Mittag-Leffler Kernel. To overcome the 
constraints of the traditional Riemann-Liouville and Caputo fractional derivatives, a novel notion of 
fractional differentiation with non-local and non-singular kernels was recently presented. Many scientific 
conclusions are presented in the study, and these results are supported by effective numerical results. These 
findings are critical for solving the nonlinear models in chemical kinetics. These concepts are very 
important to use for real life problems like brine tank cascade, recycled brine tank cascade, pond pollution, 
home heating and biomass transfer problem. Many scientific results are presented in the paper also prove 
these results by effective numerical results. These results are very important for solving the nonlinear model 
in chemistry kinetics which will be helpful to understand the chemical reactions and its actual behavior; 
also the observation can be developed for future kinematic chemical reactions with the help of these results. 
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1. Introduction 

Chemical kinetics deals with chemistry experiments and interprets them in terms of a 
mathematical model. The experiments are done on chemical reactions with the passage of time. The 
models are differential equations for the rates at which reactants are consumed and products are 
produced. Chemists are able to understand how chemical reactions take place at the molecular level 
by combining models with investigation. Molecules react in steps to lead to the overall 
stoichiometric reaction which is reaction mechanism for collection of reactions. The set of reactions 
specifies the path (or paths) that reactant molecules take to finally arrive at the product molecules. 
All species in the reaction appear in at least one step and the sum of the steps gives the overall 
reaction. The govern the rate of the reaction which leads directly to the mechanism of differential 
equations [1]. Many processes and phenomena in chemistry generally in sciences can be designated 
by first-order differential equations. These equations are the most important and most frequently 
used to describe natural laws. The following examples are discussed: the Bouguer-Lambert-Beer law 
in spectroscopy, time constants of sensors, chemical reaction kinetics, radioactive decay, relaxation 
in nuclear magnetic resonance, and the RC constant of an electrode [2]. The induced kinetic 
differential equations of a reaction network endowed with mass action type kinetics are a system of 
polynomial differential equations [3]. We review the basic ideas of fractional differential equations 
and their applications on non-linear biochemical reaction models. We apply this idea to a non-linear 
model of enzyme inhibitor reactions [4]. 

The fractional-order, which involves integration and transect differentiation using fractional 
calculus is helping to better understand the explanation of real-world problems than ordinary integer 
order, as well as in the modeling of real phenomena due to a characterization of memory and 
hereditary properties in [5,6]. Riemann Liouville developed the concept of fractional derivative, 
which is based on power law, [7,8] offers a novel fractional derivative that makes use of the 
exponential kernel. Several issues include the non-singular kernel fractional derivative, which covers 
the trigonometric and exponential functions, and [9-12] illustrates some relevant techniques for 
epidemic models. This virus's suggested outbreak efficiently catches the timeline for the COVID-19 
disease conceptual model [13]. In the literature, many fractional operators are employed to solve 
real-world issues [14,15]. 

In this paper, section 1 is introduction and section 2 consists of some basic fractional order 
derivative which are helpful to solve the epidemiological model. Section 3 and 4 consists of 
generalized from of the model, uniqueness and stability of the model. Fractal Fractional techniques 
with exponential decay kernel and Mittag-Leffler kernel respectively in section 5. Results and 
conclusion are discussed in section 6, and 7 respectively. 

2. Basic definitions 

Following are the basic definitions [7,8,14,15] used for analysis and solution of the problem. 
Definition 1: Sumudu transform for any function 𝜙 𝑡  over a set is given as, 

𝐴 𝜙 𝑡 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 Λ, 𝜏 , 𝜏 0, |𝜙 𝑡 | Λ𝑒𝑥𝑝
|𝑡|

𝜏
, 𝑖𝑓 𝑡 ∈ 1 0, ∞  
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is defined by 

𝐹 𝑢 𝑆𝑇 𝜙 𝑡 𝑒𝑥𝑝 𝑡 𝜙 𝑢𝑡 𝑑𝑡, 𝑢 ∈ 𝜏 , 𝜏 . 

Definition 2: For a function 𝑔 𝑡 ∈ 𝑊 0,1 , 𝑏 𝑎 𝑎𝑛𝑑 𝜎 ∈ 0,1 , the definition of Atangana–
Baleanu derivative in the Caputo sense is given by 

𝐷 𝑔 𝑡
𝐴𝐵 𝜎
1 𝜎

𝑑
𝑑𝜏

𝑔 𝜏 𝑀
𝜎

1 𝜎
𝑡 𝜏 𝑑𝜏, 𝑛 1 𝜎 𝑛 

where 

𝐴𝐵 𝜎 1 𝜎
𝜎

Γ 𝜎
. 

By using Sumudu transform (ST) for (1), we obtain 

𝑆𝑇 𝐷 𝑔 𝑡 𝑠
𝑞 𝜎
1 𝜎

𝜎Γ 𝜎 1 𝑀
1

1 𝜎
𝑉 𝑆𝑇 𝑔 𝑡 𝑔 0 . 

Definition 3: For a function 𝑔 𝑡 ∈ 𝑊 0,1 , 𝑏 𝑎 𝑎𝑛𝑑 𝛼 ∈ 0,1 , the definition of Atangana–
Baleanu derivative in the Caputo sense is given by 

𝐷 𝑔 𝑡
𝐴𝐵 𝛼
1 𝛼

𝑑
𝑑𝜏

𝑔 𝜏 𝐸
𝛼

1 𝛼
𝑡 𝜏 𝑑𝜏, 

where 

𝐴𝐵 𝛼 1 𝛼
𝛼

Γ 𝛼
. 

Definition 4: Suppose that 𝑔 𝑡  is continuous on an open interval 𝑎, 𝑏 , then the fractal-fractional 
integral of 𝑔 𝑡  of order 𝛼  having Mittag-Leffler type kernel and given by 

𝐽 ,
, 𝑔 𝑡

𝛼 𝛼
AB 𝛼 Γ 𝛼

𝑠 𝑔 𝑠 𝑡 𝑠 𝑑𝑠
𝛼 1 𝛼 𝑡 𝑔 𝑡

AB 𝛼
 

3. Hires problem with fractional operator 

Robertson introduces this chemical process in [19,20]. Schafer pioneered the following 
chemical reactions method in 1975 [19,20]. It represents the high irradiance response (HIRES) of 
photomorphogenesis based on phytochrome. A stiff system of eight non-linear ordinary differential 
equations is used to create the following mathematical model. 

𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 , 

𝑦 𝑀 𝑦 𝑀 𝑦 , 

𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 , 
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𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,                (1) 

𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 , 

𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 , 

𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 , 

𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 . 

Here 𝑀 1.7, 𝑀 0.43, 𝑀 8.32, 𝑀 0.0007, 𝑀 8.75, 𝑀 10.03, 𝑀 0.035,  𝑀
1.71, 𝑀 1.12, 𝑀 1.745, 𝑀 280, 𝑀 0.69, 𝑀 1.81.  The initial values can be 
represented by 𝑦 1,0,0,0,0,0,0,0.0057 . By using Atangana-Baleanu in Caputo sense for system (1), 
we get 

𝐷 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 ,  

𝐷 𝑦 𝑀 𝑦 𝑀 𝑦 , 

𝐷 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 , 

𝐷 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,              (2) 

𝐷 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 , 

𝐷 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 , 

𝐷 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 , 

𝐷 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 . 

Here 𝐷  is the Atanagana-Baleanue Caputo sense fractional derivative with 0  α  1. 
With given initial conditions 

𝑦 0 0, 𝑖 1,2,3, … , 8         (3) 

Theorem 3.1: The solution of the proposed fractional-order model (1) along initial conditions is 
unique and bounded in R8

+. 
Proof: In (1), we can get its existence and uniqueness on the time interval (0, ∞). Afterwards, we 
need to show that the non-negative region R8

+ is a positively invariant region. For this  

𝐷 𝑦 |𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 0, 

𝐷 𝑦 |𝑦 𝑀 𝑦 0, 

𝐷 𝑦 |𝑦 𝑀 𝑦 𝑀 𝑦 0, 

𝐷 𝑦 |𝑦 𝑀 𝑦 𝑀 𝑦 0, 

𝐷 𝑦 |𝑦 𝑀 𝑦 𝑀 𝑦 0, 

𝐷 𝑦 |𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 0, 

𝐷 𝑦 |𝑦 𝑀 𝑦 𝑦 0, 

𝐷 𝑦 |𝑦 𝑀 𝑦 0 

If (𝑦 (0)), (𝑦 (0)), (𝑦 (0)), (𝑦 (0)), (𝑦 (0)), (𝑦 (0)), (𝑦 (0)), (𝑦 (0)) 𝜖 𝑅 , then from above 
expression, the solution cannot escape from the hyperplane. Also on each hyperplane bounding the 
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non-negative orthant, the vector field points into 𝑅 , i.e., the domain 𝑅  is a positively invariant set. 
Now, with the help of Sumudu transform definition, we get 

𝑄𝐸 𝑃 𝑆𝑇 𝑦 𝑡 𝑦 0 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 ,  

𝑄𝐸 𝑃 𝑆𝑇 𝑦 𝑡 𝑦 0 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 ,  

𝑄𝐸 𝑃 𝑆𝑇 𝑦 𝑡 𝑦 0 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,  

𝑄𝐸 𝑃 𝑆𝑇 𝑦 𝑡 𝑦 0 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,        (4) 

𝑄𝐸 𝑃 𝑆𝑇 𝑦 𝑡 𝑦 0 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,  

𝑄𝐸 𝑃 𝑆𝑇 𝑦 𝑡 𝑦 0 𝑆𝑇 𝑀 𝑦 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,  

𝑄𝐸 𝑃 𝑆𝑇 𝑦 𝑡 𝑦 0 𝑆𝑇 𝑀 𝑦 𝑦 𝑀 𝑦 ,  

𝑄𝐸 𝑃 𝑆𝑇 𝑦 𝑡 𝑦 0 𝑆𝑇 𝑀 𝑦 𝑦 𝑀 𝑦 .  

Where 𝑄  

Rearranging, we get 

𝑆𝑇 𝑦 𝑡 𝑦 0 𝐻 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 ,  

𝑆𝑇 𝑦 𝑡 𝑦 0 𝐻 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 ,  

𝑆𝑇 𝑦 𝑡 𝑦 0 𝐻 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,  

𝑆𝑇 𝑦 𝑡 𝑦 0 𝐻 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,          (5) 

𝑆𝑇 𝑦 𝑡 𝑦 0 𝐻 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,  

𝑆𝑇 𝑦 𝑡 𝑦 0 𝐻 𝑆𝑇 𝑀 𝑦 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,  

𝑆𝑇 𝑦 𝑡 𝑦 0 𝐻 𝑆𝑇 𝑀 𝑦 𝑦 𝑀 𝑦 ,  
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𝑆𝑇 𝑦 𝑡 𝑦 0 𝐻 𝑆𝑇 𝑀 𝑦 𝑦 𝑀 𝑦 .   

Using the inverse Sumudu transform on both sides of the system (5), we obtain 

𝑦 𝑡 𝑦 0 𝑆𝑇 𝐻 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 ,  

𝑦 𝑡 𝑦 0 𝑆𝑇 𝐻 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 ,  

𝑦 𝑡 𝑦 0 𝑆𝑇 𝐻 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,  

𝑦 𝑡 𝑦 0 𝑆𝑇 𝐻 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,         (6) 

𝑦 𝑡 𝑦 0 𝑆𝑇 𝐻 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,  

𝑦 𝑡 𝑦 0 𝑆𝑇 𝐻 𝑆𝑇 𝑀 𝑦 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,  

𝑦 𝑡 𝑦 0 𝑆𝑇 𝐻 𝑆𝑇 𝑀 𝑦 𝑦 𝑀 𝑦 ,  

𝑦 𝑡 𝑦 0 𝑆𝑇 𝐻 𝑆𝑇 𝑀 𝑦 𝑦 𝑀 𝑦 .  

We next obtain the following recursive formula. 

𝑦 𝑡 𝑦 0 𝑆𝑇 𝐻 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 ,  

𝑦 𝑡 𝑦 0 𝑆𝑇 𝐻 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 ,   

𝑦 𝑡 𝑦 0 𝑆𝑇 𝐻 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,  

𝑦 𝑡 𝑦 0 𝑆𝑇 𝐻 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,      (7) 

𝑦 𝑡 𝑦 0 𝑆𝑇 𝐻 𝑆𝑇 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,  

𝑦 𝑡 𝑦 0 𝑆𝑇 𝐻 𝑆𝑇 𝑀 𝑦 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦

𝑀 𝑦 ,  

𝑦 𝑡 𝑦 0 𝑆𝑇 𝐻 𝑆𝑇 𝑀 𝑦 𝑦 𝑀 𝑦 ,  
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𝑦 𝑡 𝑦 0 𝑆𝑇 𝐻 𝑆𝑇 𝑀 𝑦 𝑦 𝑀 𝑦 .  

Where 𝐻  

And the solution of system is provided by 

𝑦 𝑡 lim
→

𝑦 𝑡 , 𝑦 𝑡 lim
→

𝑦 𝑡 , 𝑦 𝑡 lim
→

𝑦 𝑡 , 

𝑦 𝑡 lim
→

𝑦 𝑡 , 𝑦 𝑡 lim
→

𝑦 𝑡 , 𝑦 𝑡 lim
→

𝑦 𝑡 , 

𝑦 𝑡 lim
→

𝑦 𝑡 , 𝑦 𝑡 lim
→

𝑦 𝑡 . 

4. Fixed-point theorem for stability analysis of iteration method 

Theorem 4.1: Define K be a self-map is given by 

𝐾 𝑦 𝑡 𝑦 𝑡 𝑦 0 𝑆𝑇 𝑆𝑇 𝑀 𝑦

𝑀 𝑦 𝑀 𝑦 𝑀 ,  

𝐾 𝑦 𝑡 𝑦 𝑡 𝑦 0 𝑆𝑇 𝑆𝑇 𝑀 𝑦

𝑀 𝑦 ,  

𝐾 𝑦 𝑡 𝑦 𝑡 𝑦 0 𝑆𝑇 𝑆𝑇 𝑀 𝑦

𝑀 𝑦 𝑀 𝑦 ,  

 

𝐾 𝑦 𝑡 𝑦 𝑡 𝑦 0 𝑆𝑇 𝑆𝑇 𝑀 𝑦 𝑀 𝑦

𝑀 𝑦 ,                     (8) 
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𝐾 𝑦 𝑡 𝑦 𝑡 𝑦 0 𝑆𝑇 𝑆𝑇 𝑀 𝑦

𝑀 𝑦 𝑀 𝑦 ,  

𝐾 𝑦 𝑡 𝑦 𝑡 𝑦 0 𝑆𝑇 𝑆𝑇 𝑀 𝑦 𝑦

𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,  

𝐾 𝑦 𝑡 𝑦 𝑡 𝑦 0 𝑆𝑇 𝑆𝑇 𝑀 𝑦 𝑦

𝑀 𝑦 ,  

𝐾 𝑦 𝑡 𝑦 𝑡 𝑦 0 𝑆𝑇 𝑆𝑇 𝑀 𝑦 𝑦

𝑀 𝑦 .  

Proof: By using triangular inequality with the definition of norms, we get  

𝐾 𝑦 𝑡 𝐾 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑆𝑇

𝑆𝑇 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 ,  

𝐾 𝑦 𝑡 𝐾 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑆𝑇

𝑆𝑇 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 ,  

𝐾 𝑦 𝑡 𝐾 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑆𝑇
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𝑆𝑇 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 ,  

𝐾 𝑦 𝑡 𝐾 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑆𝑇

𝑆𝑇 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 ,     (9) 

𝐾 𝑦 𝑡 𝐾 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑆𝑇

𝑆𝑇 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 ,  

𝐾 𝑦 𝑡 𝐾 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑆𝑇

𝑆𝑇 𝑀 𝑦 𝑦 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦

𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 ,  

𝐾 𝑦 𝑡 𝐾 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑆𝑇

𝑆𝑇 𝑀 𝑦 𝑦 𝑦 𝑦 𝑀 𝑦 𝑦 ,  

𝐾 𝑦 𝑡 𝐾 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑆𝑇

𝑆𝑇 𝑀 𝑦 𝑦 𝑦 𝑦 𝑀 𝑦 𝑦 .  

Hence satisfied given conditions. 

𝜃 0,0,0,0,0,0,0,0 , 𝜃
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⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦

𝑀 𝑦 𝑦 𝑀

𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦

𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦

𝑀 𝑦 𝑦

𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦

𝑀 𝑦 𝑦

𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦

𝑀 𝑦 𝑦

𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑀 𝑦 𝑦 𝑦 𝑦

𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦

𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑀 𝑦 𝑦 𝑦 𝑦

𝑀 𝑦 𝑦

𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑦 𝑡 𝑀 𝑦 𝑦 𝑦 𝑦

𝑀 𝑦 𝑦

  

Hence the system is stable.  
Theorem 4.2: Unique singular solution with the iterative method for the special solution of 
system 2 .  
Proof: Considering the Hilbert space 

𝐻 𝐿 𝑝, 𝑞 0, 𝑇  which can be defined as 

ℎ: 𝑝, 𝑞 0, 𝑇 → ℝ, 𝑔ℎ𝑑𝑔𝑑ℎ ∞. 

For this purpose, we consider the following operator 

𝜃 0,0,0,0,0,0,0,0 , 𝜃

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 ,
𝑀 𝑦 𝑀 𝑦 ,

𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,
𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,
𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,

𝑀 𝑦 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,
𝑀 𝑦 𝑦 𝑀 𝑦 ,
𝑀 𝑦 𝑦 𝑀 𝑦 .
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By using inner product, we get 

𝑇 𝑦 𝑦 , 𝑦 𝑦 , 𝑦 𝑦 , 𝑦 𝑦 , 𝑦 𝑦 , 𝑦

𝑦 , 𝑦 𝑦 , 𝑦 𝑦 , 𝑉 , 𝑉 , 𝑉 , 𝑉 , 𝑉 , 𝑉 , 𝑉 , 𝑉 .  

Where  

𝑦 𝑦 , 𝑦 𝑦 , 𝑦 𝑦 , 𝑦 𝑦 , 𝑦 𝑦 , 𝑦

𝑦 , 𝑦 𝑦 , 𝑦 𝑦 , are the special solutions of the system. Taking into account 

the inner function and the norm, we have  

𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 , 𝑉 𝑀 𝑦

𝑦 ‖𝑉 ‖ 𝑀 𝑦 𝑦 ‖𝑉 ‖ 𝑀 𝑦 𝑦 ‖𝑉 ‖ 𝑀 ‖𝑉 ‖,  

𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 , 𝑉 𝑀 𝑦 𝑦 ‖𝑉 ‖ 𝑀 𝑦

𝑦 ‖𝑉 ‖,  

𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 , 𝑉 𝑀 𝑦

𝑦 ‖𝑉 ‖ 𝑀 𝑦 𝑦 ‖𝑉 ‖ 𝑀 𝑦 𝑦 ‖𝑉 ‖,  

𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 , 𝑉 𝑀 𝑦

𝑦 ‖𝑉 ‖ 𝑀 𝑦 𝑦 ‖𝑉 ‖ 𝑀 𝑦 𝑦 ‖𝑉 ‖,  

𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 , 𝑉 𝑀 𝑦

𝑦 ‖𝑉 ‖ 𝑀 𝑦 𝑦 ‖𝑉 ‖ 𝑀 𝑦 𝑦 ‖𝑉 ‖,  

𝑀 𝑦 𝑦 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦

𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 , 𝑉 𝑀 𝑦 𝑦 𝑦

𝑦 ‖𝑉 ‖ 𝑀 𝑦 𝑦 ‖𝑉 ‖ 𝑀 𝑦 𝑦 ‖𝑉 ‖ 𝑀 𝑦

𝑦 ‖𝑉 ‖ 𝑀 𝑦 𝑦 ‖𝑉 ‖,  
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𝑀 𝑦 𝑦 𝑦 𝑦 𝑀 𝑦 𝑦 , 𝑉 𝑀 𝑦

𝑦 𝑦 𝑦 ‖𝑉 ‖ 𝑀 𝑦 𝑦 ‖𝑉 ‖,  

𝑀 𝑦 𝑦 𝑦 𝑦 𝑀 𝑦 𝑦 , 𝑉 𝑀 𝑦

𝑦 𝑦 𝑦 ‖𝑉 ‖ 𝑀 𝑦 𝑦 ‖𝑉 ‖.  

In the case for large number 𝑒 , 𝑒 , 𝑒 , 𝑒 , 𝑒 , 𝑒 , 𝑒 𝑎𝑛𝑑 𝑒 ,  both solutions happen to be 
converged to the exact solution. Employing the topology concept, we can obtain eight positive very 
small parameters 𝜒 , 𝜒 , 𝜒 , 𝜒 , 𝜒 , 𝜒 , 𝜒  𝑎𝑛𝑑 𝜒 . 

𝑦 𝑦 , 𝑦 𝑦
𝜒
𝜛

, 𝑦 𝑦 , 𝑦 𝑦
𝜒
𝜍

, 

𝑦 𝑦 , 𝑦 𝑦
𝜒
𝜐

, 𝑦 𝑦 , 𝑦 𝑦
𝜒

𝜅
, 

𝑦 𝑦 , 𝑦 𝑦
𝜒

𝜚
, 𝑦 𝑦 , 𝑦 𝑦

𝜒

𝜁
, 

𝑦 𝑦 , 𝑦 𝑦
𝜒

𝜈
, 𝑦 𝑦 , 𝑦 𝑦

𝜒
𝜀

. 

Where 

𝜛 8 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 ‖𝑉 ‖  

𝜍 8 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 ‖𝑉 ‖  

𝜐 8 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 ‖𝑉 ‖  

𝜅 8 𝑀3 𝑦2 21
𝑦2 22

𝑀8 𝑦3 31
𝑦3 32

𝑀9 𝑦4 41
𝑦4 42

‖𝑉4‖  

𝜚 8 𝑀10 𝑦5 51
𝑦5 52

𝑀2 𝑦6 61
𝑦6 62

𝑀2 𝑦7 71
𝑦7 72

‖𝑉5‖  

𝜁 8 𝑀11 𝑦6 61
𝑦6 62

𝑦8 81
𝑦8 82

𝑀12 𝑦4 41
𝑦4 42

𝑀8 𝑦5 51

𝑦5 52
𝑀2 𝑦6 61

𝑦6 62
𝑀12 𝑦7 71

𝑦7 72
‖𝑉6‖  

𝜈 8 𝑀11 𝑦6 61
𝑦6 62

𝑦8 81
𝑦8 82

𝑀13 𝑦7 71
𝑦7 72

‖𝑉7‖  
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𝜀 8 𝑀11 𝑦6 61
𝑦6 62

𝑦8 81
𝑦8 82

𝑀13 𝑦7 71
𝑦7 72

‖𝑉8‖  

But, it is obvious that 

𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 0  

𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 0  

𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 0  

𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 0  

𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 0  

𝑀 𝑦 𝑦 𝑦 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦

𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑦 0  

𝑀 𝑦 𝑦 𝑦 𝑦 𝑀 𝑦 𝑦 0  

𝑀 𝑦 𝑦 𝑦 𝑦 𝑀 𝑦 𝑦 0  

where ‖𝑉 ‖, ‖𝑉 ‖, ‖𝑉 ‖, ‖𝑉 ‖, ‖𝑉 ‖, ‖𝑉 ‖, ‖𝑉 ‖, ‖𝑉 ‖ 0. 

Therefore, we have 

𝑦 𝑦 0, 𝑦 𝑦 0, 𝑦 𝑦 0, 

𝑦 𝑦 0, 𝑦 𝑦 0, 𝑦 𝑦 0, 

𝑦 𝑦 0, 𝑦 𝑦 0. 

Which yields that 

𝑦 𝑦 ,  𝑦 𝑦 ,  𝑦 𝑦 ,  𝑦 𝑦 ,  𝑦 𝑦 ,  𝑦

𝑦 ,  𝑦  𝑦 ,  𝑦 𝑦   

This completes the proof of uniqueness. 



1168 

AIMS Mathematics  Volume 7, Issue 1, 1155–1184. 

An operator 𝐵: 𝑍 → 𝑍 can be defined as: 

𝐵 𝜑 𝑡  𝜑 0 µ µ
 £ 𝑡, 𝜑 𝑡 µ 𝜆µ 1 𝜆 µ £ 𝑡, 𝜑 𝑡 𝑑𝜆  (10) 

If £ 𝑡, 𝜑 𝑡  satisfies the Lipschitz condition and the following extension then 

 For every 𝜑 ∈ 𝑍 there exists constants 𝐿£ 0 and 𝑀£ such that 

£ 𝑡, 𝜑 𝑡 | 𝐿£ 𝜑 𝑡 | 𝑀£        (11) 

 For every 𝜑, 𝜑 ∈ 𝑍, there exists a constant 𝑀£ 0 such that 

 £ 𝑡, 𝜑 𝑡 £ 𝑡, 𝜑 𝑡 || 𝑀£ 𝜑 𝑡 𝜑 𝑡 |       (12) 

Theorem 4.2: If the condition of (11) holds then for the function £: 0, 𝑇 𝑍 → 𝑅 there exists at 
least one solution for the (1). 
Proof: Since £ in (10) is continuous function, so 𝐵 is also a continuous. Assume  

𝑀  𝜑 ∈ |𝜑| 𝑅, 𝑅 0 , then for 𝜑 ∈ 𝑍, we have  

𝐵 𝜑 𝑡 𝑚𝑎𝑥 ∈ , |𝜑 0
µ𝑡µ 1 𝛼

AB 𝛼
 £ 𝑡, 𝜑 𝑡

µ𝛼
AB 𝛼 Γ 𝛼

𝜆µ 1 𝜆 µ £ 𝑡, 𝜑 𝑡 𝑑𝜆 

|𝜑 0
µ𝑇µ 1 𝛼

AB 𝛼
 𝐿£||𝜑 𝑡 || 𝑀£

𝑚𝑎𝑥 ∈ ,
µ𝛼

AB 𝛼 Γ 𝛼
𝜆µ 1 𝜆 µ £ 𝑡, 𝜑 𝑡 𝑑𝜆 | 

𝜑 0
µ𝑇µ 1 𝛼

AB 𝛼
 𝐿£ |𝜑 𝑡 | 𝑀£

µ𝛼
AB 𝛼 Γ 𝛼

𝐿£ |𝜑 𝑡 | 𝑀£ 𝑇µ 𝑀 µ, 𝛼  

𝑅. 

Hence, 𝐵 is uniformly bounded, and 𝑀 µ, 𝛼  is a beta function. For equicontinuity of 𝐵, we take 
𝑡 𝑡 𝑇, then consider 

𝐵 𝜑 𝑡 𝐵 𝜑 𝑡 |
µ𝑡 µ 1 𝛼

AB 𝛼
 £ 𝑡 , 𝜑 𝑡

µ𝛼
AB 𝛼 Γ 𝛼
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𝜆µ 𝑡 𝜆 µ £ 𝑡, 𝜑 𝑡 𝑑𝜆  
µ𝑡 µ 1 𝛼

AB 𝛼
 £ 𝑡 , 𝜑 𝑡

µ𝛼
AB 𝛼 Γ 𝛼

𝜆µ 𝑡 𝜆 µ £ 𝑡, 𝜑 𝑡 𝑑𝜆|  

µ𝑡 µ 1 𝛼
AB 𝛼

 𝐿£|𝜑 𝑡 | 𝑀£
µ𝛼

AB 𝛼 Γ 𝛼
𝐿£|𝜑 𝑡 | 𝑀£ 𝑡 µ 𝑀 µ, 𝛼  

µ𝑡 µ 1 𝛼
AB 𝛼

 𝐿£|𝜑 𝑡 | 𝑀£
µ𝛼

AB 𝛼 Γ 𝛼
𝐿£|𝜑 𝑡 | 𝑀£ 𝑡 µ 𝑀 µ, 𝛼  

If 𝑡 → 𝑡  then  |𝐵 𝜑 𝑡 𝐵 𝜑 𝑡 → 0|  Consequently |𝐵 𝜑 𝑡 𝐵 𝜑 𝑡 →
0| , 𝑎𝑠 𝑡 → 𝑡 . Hence 𝐵  is equicontinous. Thus, by Arzela-Ascoli theorem 𝐵  is completely 
continuous. Consequently, by the result of Schauder’s fixed point, it has at least one solution. 

Theorem 4.3: If 𝜂 µ µ
 µ  𝑇µ 𝑀 µ, 𝛼 𝑀£ 1  and the condition (12) 

holds, then 𝜂 has a unique solution. 
Proof: For 𝜑, 𝜑 ∈ 𝑍, we have 

|𝐵 𝜑 𝐵 𝜑 | 𝑚𝑎𝑥 ∈ , |
µ𝑡µ 1 𝛼

AB 𝛼
 £ 𝑡, 𝜑 𝑡 £ 𝑡, 𝜑 𝑡  

µ𝛼
AB 𝛼 Γ 𝛼

𝜆µ 1 𝜆 µ £ 𝑡, 𝜑 𝑡 £ 𝑡, 𝜑 𝑡 𝑑𝜆 | 

µ𝑇µ 1 𝛼
AB 𝛼

 
µ𝛼

AB 𝛼 Γ 𝛼
𝑇µ 𝑀 µ, 𝛼 ||𝐵 𝜑 𝐵 𝜑 || 

 𝜂 |𝐵 𝜑 𝐵 𝜑 | . 

Hence, 𝐵 is a contraction. So, by the principle of Banach contraction, it has a unique solution. 

Ulam-Hyres stability 

The proposed model is Ulam-Hyres stable if there exists 𝐵µ, 0 such that for every 𝜀
0 and for every 𝜑 ∈ 𝐿 0, 𝑇 , 𝑅  satisfies the following inequality 

𝐽 ,
µ, 𝜑 𝑡 £ 𝑡, 𝜑 𝑡 𝜀, 𝑡 ∈ 0, 𝑇  such that |𝜑 𝑡 £ 𝑡 | 𝐵µ,  𝜀, 𝑡 ∈ 0, 𝑇 . 

Suppose a perturbation 𝜔 ∈ 𝐿 0, 𝑇 , 𝑅 then 𝜔 0 0 and 

 For every 𝜀 0 ∃ 𝜔 𝑡 𝜀 | 
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 𝐽µ, 𝜑 𝑡 £ 𝑡, 𝜑 𝑡 𝜔 𝑡 . 

Lemma 4.4: The solution of the perturbed model 𝐽µ, 𝜑 𝑡 £ 𝑡, 𝜑 𝑡 𝜔 𝑡 , 𝜑 0 𝜑  
fulfills the relation 

𝐵 𝑡  𝜑 0
µ𝑡µ 1 𝛼

AB 𝛼
 £ 𝑡, 𝜑 𝑡

µ𝛼
AB 𝛼 Γ 𝛼

𝜆µ 1 𝜆 µ £ 𝜆, 𝜑 𝜆 𝑑𝜆

𝛼 ,
∗ 𝜀 

Where 𝛼 ,
∗ 𝜀 µ µ

 µ 𝑇µ 𝑀 µ, 𝛼 . 

Lemma 4.5: By using condition (12) with lemma (4.4), proposed model is Ulam-Hyres stable if 𝜂 1. 
Proof: Suppose 𝛼 ∈ 𝑍 be a solution and 𝜑 ∈ 𝑍 be any solution of (1), then 

|𝜑 𝑡 𝛼 𝑡 | |𝜑 𝑡 𝛼 0 µ µ
 £ 𝑡, 𝛼 𝑡 µ 𝜆µ 1

𝜆 µ £ 𝜆, 𝛼 𝜆 𝑑𝜆 |  

𝜑 𝑡 𝜑 0
µ𝑡µ 1 𝛼

AB 𝛼
 £ 𝑡, 𝜑 𝑡

µ𝛼
AB 𝛼 Γ 𝛼

𝜆µ 1 𝜆 µ £ 𝜆, 𝜑 𝜆 𝑑𝜆

|𝜑 0
µ𝑡µ 1 𝛼

AB 𝛼
 £ 𝑡, 𝜑 𝑡

µ𝛼
AB 𝛼 Γ 𝛼

𝜆µ 1 𝜆 µ £ 𝜆, 𝜑 𝜆 𝑑𝜆 | 

-| 𝛼 0 µ µ
 £ 𝑡, 𝛼 𝑡 µ 𝜆µ 1 𝜆 µ £ 𝜆, 𝛼 𝜆 𝑑𝜆 | 

𝛼 ,
∗ 𝜀

µ𝑇µ 1 𝛼
AB 𝛼

 
µ𝛼

AB 𝛼 Γ 𝛼
𝑇µ 𝐿£|𝜑 𝑡 𝛼 𝑡 | 

𝛼 ,
∗ 𝜀 𝜂 |𝜑 𝑡 𝛼 𝑡 |. 

Consequently, 

||𝜑 𝛼 || 𝛼 ,
∗ 𝜀 𝜂 ||𝜑 𝑡 𝛼 𝑡 ||. 

So, we can write it as  

|𝜑 𝛼 | 𝐵 , 𝜀,  
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Where 𝐵 , 𝜀 ,
∗

. Hence the solution is Ulam-Hyres stable. 

5. Fractal-fractional operator for hires problem  

In this section, we present the Hires problem model 1  using fractal-fractional 
Atangana-Baleanu derivative. We have  

𝐷 ,
, 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 ,  

𝐷 ,
, 𝑦 𝑀 𝑦 𝑀 𝑦 ,       

𝐷 ,
, 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 , 

𝐷 ,
, 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 ,              (13) 

𝐷 ,
, 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 , 

𝐷 ,
, 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 , 

𝐷 ,
, 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 , 

𝐷 ,
, 𝑦 𝑀 𝑦 𝑦 𝑀 𝑦 . 

With initial conditions 

𝑦 0 𝑦 , 𝑦 0 𝑦 , 𝑦 0 𝑦 , 𝑦 0 𝑦 , 

𝑦 0 𝑦 , 𝑦 0 𝑦 , 𝑦 0 𝑦 , 𝑦 0 𝑦 . 

We present the numerical algorithm for the fractal-fractional Hires problem model (13). The 
following is obtained by integrating the system (13). 

𝑦 𝑡 𝑦 0 𝛼 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀

𝜏 𝑀 𝑦 𝜏 𝑀 𝑦 𝜏 𝑀 𝑦 𝜏 𝑀 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝛼 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝜏 𝑀 𝑦 𝜏

𝑀 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  
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𝑦 𝑡 𝑦 0 𝛼 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡

𝜏 𝑀 𝑦 𝜏 𝑀 𝑦 𝜏 𝑀 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝛼 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝜏 𝑀 𝑦 𝜏

𝑀 𝑦 𝜏 𝑀 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,               (14) 

𝑦 𝑡 𝑦 0 𝛼 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡

𝜏 𝑀 𝑦 𝜏 𝑀 𝑦 𝜏 𝑀 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝛼 𝑡 𝑀 𝑦 𝑡 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡

𝑀 𝑦 𝑡 𝜏 𝑀 𝑦 𝜏 𝑦 𝜏 𝑀 𝑦 𝜏 𝑀 𝑦 𝜏 𝑀 𝑦 𝜏

𝑀 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝛼 𝑡 𝑀 𝑦 𝑡 𝑦 𝑡 𝑀 𝑦 𝑡

𝜏 𝑀 𝑦 𝜏 𝑦 𝜏 𝑀 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝛼 𝑡 𝑀 𝑦 𝑡 𝑦 𝑡 𝑀 𝑦 𝑡

𝜏 𝑀 𝑦 𝜏 𝑦 𝜏 𝑀 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

Let 

𝑘 𝑡, 𝑦 𝑡 𝛼 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 ,  

𝑘 𝑡, 𝑦 𝑡 𝛼 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 ,  

𝑘 𝑡, 𝑦 𝑡 𝛼 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 ,  

𝑘 𝑡, 𝑦 𝑡 𝛼 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 ,  

𝑘 𝑡, 𝑦 𝑡 𝛼 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 ,  

𝑘 𝑡, 𝑦 𝑡 𝛼 𝑡 𝑀 𝑦 𝑡 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 ,  



1173 

AIMS Mathematics  Volume 7, Issue 1, 1155–1184. 

𝑘 𝑡, 𝑦 𝑡 𝛼 𝑡 𝑀 𝑦 𝑡 𝑦 𝑡 𝑀 𝑦 𝑡 ,  

𝑘 𝑡, 𝑦 𝑡 𝛼 𝑡 𝑀 𝑦 𝑡 𝑦 𝑡 𝑀 𝑦 𝑡 .  

Then system (14) becomes 

𝑦 𝑡 𝑦 0 𝑘 𝑡, 𝑦 𝑡 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝑘 𝑡, 𝑦 𝑡 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝑘 𝑡, 𝑦 𝑡 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝑘 𝑡, 𝑦 𝑡 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,      (15) 

𝑦 𝑡 𝑦 0 𝑘 𝑡, 𝑦 𝑡 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝑘 𝑡, 𝑦 𝑡 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝑘 𝑡, 𝑦 𝑡 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝑘 𝑡, 𝑦 𝑡 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

At 𝑡 𝑛 1 ∆𝑡, we have 

𝑦 𝑡 𝑦 0 𝑘 𝑡 , 𝑦 𝑡 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝑘 𝑡 , 𝑦 𝑡 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝑘 𝑡 , 𝑦 𝑡 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝑘 𝑡 , 𝑦 𝑡 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,   (16) 

𝑦 𝑡 𝑦 0 𝑘 𝑡 , 𝑦 𝑡 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝑘 𝑡 , 𝑦 𝑡 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝑘 𝑡 , 𝑦 𝑡 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  
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𝑦 𝑡 𝑦 0 𝑘 𝑡 , 𝑦 𝑡 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏.  

Also, we have 

𝑦 𝑡 𝑦 0 𝑘 𝑡 , 𝑦 𝑡 ∑ 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝑘 𝑡 , 𝑦 𝑡 ∑ 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝑘 𝑡 , 𝑦 𝑡 ∑ 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝑘 𝑡 , 𝑦 𝑡 ∑ 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝑘 𝑡 , 𝑦 𝑡 ∑ 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏, (17) 

𝑦 𝑡 𝑦 0 𝑘 𝑡 , 𝑦 𝑡 ∑ 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝑘 𝑡 , 𝑦 𝑡 ∑ 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏,  

𝑦 𝑡 𝑦 0 𝑘 𝑡 , 𝑦 𝑡 ∑ 𝑘 𝜏, 𝑦 𝜏 𝑡 𝜏 𝑑𝜏.  

In general, approximating the function 𝑘 𝜏, 𝑦 𝜏 , using the Newton polynomial, we have 

𝑃 𝜏
,

𝜏 𝑡
,

𝜏 𝑡
,

𝜏 𝑡
,

𝜏

𝑡 .          (18) 

Using Eq (18) into system (17) we have 

𝑦 𝑦 𝑘 𝑡 , 𝑦 𝑡 ∑ 𝑘 𝑡 , 𝑦

, ,

∆
𝜏 𝑡

, , ,

∆
𝜏 𝑡 𝜏

𝑡 𝑡 𝜏 𝑑𝜏,                 (19) 

Rearranging the above equation, we have 

𝑦 𝑦 𝑘 𝑡 , 𝑦 𝑡 ∑ 𝑘 𝑡 , 𝑦 𝑡 𝜏 𝑑𝜏

, ,

∆
𝜏 𝑡 𝑡 𝜏 𝑑𝜏
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, , ,

∆
𝜏 𝑡 𝜏 𝑡 𝑡 𝜏 𝑑𝜏 ,    (20) 

Writing further system (20) we have 

𝑦 𝑦 𝑘 𝑡 , 𝑦 𝑡 ∑ 𝑘 𝑡 , 𝑦 𝑡 𝜏 𝑑𝜏

∑
, ,

∆
𝜏 𝑡 𝑡 𝜏 𝑑𝜏

∑
, , ,

∆
𝜏 𝑡 𝜏 𝑡 𝑡 𝜏 𝑑𝜏 ,   

                      (21) 

Now, calculating the integrals in system (21) we get 

𝑡 𝜏 𝑑𝜏 ∆ 𝑛 𝑗 1 𝑛 𝑗 ,  

𝜏 𝑡 𝑡 𝜏 𝑑𝜏 ∆ 𝑛 𝑗 1 𝑛 𝑗 3 2𝛼 𝑛 𝑗 1 𝑛

𝑗 3 3𝛼 ,  

𝜏 𝑡 𝜏 𝑡 𝑡 𝜏 𝑑𝜏 ∆ 𝑛 𝑗 1 2 𝑛 𝑗

3𝛼 10 𝑛 𝑗 2𝛼 9𝛼 12 𝑛 𝑗 2 𝑛 𝑗 5𝛼 10 𝑛 𝑗 6𝛼
18𝛼 12 .  

Inserting them into system (21) we get 

𝑦 𝑦 𝑘 𝑡 , 𝑦 𝑡 ∆ ∑ 𝑘 𝑡 , 𝑦 𝑛 𝑗 1 𝑛 𝑗

∆ ∑ 𝑘 𝑡 , 𝑦 𝑘 𝑡 , 𝑦 𝑛 𝑗 1 𝑛 𝑗 3 2𝛼 𝑛 𝑗

1 𝑛 𝑗 3 3𝛼 ∆ ∑ 𝑘 𝑡 , 𝑦 2𝑘 𝑡 , 𝑦 𝑘 𝑡 , 𝑦 𝑛

𝑗 1 2 𝑛 𝑗 3𝛼 10 𝑛 𝑗 2𝛼 9𝛼 12 𝑛 𝑗 2 𝑛 𝑗 5𝛼
10 𝑛 𝑗 6𝛼 18𝛼 12               (22) 

Finally, we have the following approximation: 

𝑦 𝑦 𝛼 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀

∆ ∑ 𝑡 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑛 𝑗 1 𝑛 𝑗

∆ ∑ 𝑡 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑡 𝑀 𝑦 𝑀 𝑦

𝑀 𝑦 𝑀 𝑛 𝑗 1 𝑛 𝑗 3 2𝛼 𝑛 𝑗 1 𝑛 𝑗 3 3𝛼
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∆ ∑ 𝑡 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 2𝑡 𝑀 𝑦 𝑀 𝑦

𝑀 𝑦 𝑀 𝑡 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑛 𝑗 1 2 𝑛 𝑗

3𝛼 10 𝑛 𝑗 2𝛼 9𝛼 12 𝑛 𝑗 2 𝑛 𝑗 5𝛼 10 𝑛 𝑗 6𝛼
18𝛼 12 ,  

𝑦 𝑦 𝛼 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 ∆ ∑ 𝑡 𝑀 𝑦

𝑀 𝑦 𝑛 𝑗 1 𝑛 𝑗 ∆ ∑ 𝑡 𝑀 𝑦 𝑀 𝑦

𝑡 𝑀 𝑦 𝑀 𝑦 𝑛 𝑗 1 𝑛 𝑗 3 2𝛼 𝑛 𝑗 1 𝑛 𝑗 3

3𝛼 ∆ ∑ 𝑡 𝑀 𝑦 𝑀 𝑦 2𝑡 𝑀 𝑦 𝑀 𝑦

𝑡 𝑀 𝑦 𝑀 𝑦 𝑛 𝑗 1 2 𝑛 𝑗 3𝛼 10 𝑛 𝑗 2𝛼 9𝛼 12

𝑛 𝑗 2 𝑛 𝑗 5𝛼 10 𝑛 𝑗 6𝛼 18𝛼 12 ,  

𝑦 𝑦 𝛼 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡

∆ ∑ 𝑡 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑛 𝑗 1 𝑛 𝑗

∆ ∑ 𝑡 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑡 𝑀 𝑦 𝑀 𝑦

𝑀 𝑦 𝑛 𝑗 1 𝑛 𝑗 3 2𝛼 𝑛 𝑗 1 𝑛 𝑗 3 3𝛼

∆ ∑ 𝑡 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 2𝑡 𝑀 𝑦 𝑀 𝑦

𝑀 𝑦 𝑡 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑛 𝑗 1 2 𝑛 𝑗 3𝛼 10 𝑛

𝑗 2𝛼 9𝛼 12 𝑛 𝑗 2 𝑛 𝑗 5𝛼 10 𝑛 𝑗 6𝛼 18𝛼 12 ,  

𝑦 𝑦 𝛼 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡

∆ ∑ 𝑡 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑛 𝑗 1 𝑛 𝑗

∆ ∑ 𝑡 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑡 𝑀 𝑦 𝑀 𝑦

𝑀 𝑦 𝑛 𝑗 1 𝑛 𝑗 3 2𝛼 𝑛 𝑗 1 𝑛 𝑗 3 3𝛼

∆ ∑ 𝑡 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 2𝑡 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦

𝑡 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑛 𝑗 1 2 𝑛 𝑗 3𝛼 10 𝑛 𝑗 2𝛼
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9𝛼 12 𝑛 𝑗 2 𝑛 𝑗 5𝛼 10 𝑛 𝑗 6𝛼 18𝛼 12 ,  

𝑦 𝑦 𝛼 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡

∆ ∑ 𝑡 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑛 𝑗 1 𝑛 𝑗

∆ ∑ 𝑡 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑡 𝑀 𝑦 𝑀 𝑦

𝑀 𝑦 𝑛 𝑗 1 𝑛 𝑗 3 2𝛼 𝑛 𝑗 1 𝑛 𝑗 3 3𝛼

∆ ∑ 𝑡 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 2𝑡 𝑀 𝑦 𝑀 𝑦

𝑀 𝑦 𝑡 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑛 𝑗 1 2 𝑛 𝑗 3𝛼

10 𝑛 𝑗 2𝛼 9𝛼 12 𝑛 𝑗 2 𝑛 𝑗 5𝛼 10 𝑛 𝑗 6𝛼 18𝛼
12 ,                      (23) 

𝑦 𝑦 𝛼 𝑡 𝑀 𝑦 𝑡 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡 𝑀 𝑦 𝑡

∆ ∑ 𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑛

𝑗 1 𝑛 𝑗 ∆ ∑ 𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 𝑀 𝑦

𝑀 𝑦 𝑀 𝑦 𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦

𝑀 𝑦 𝑛 𝑗 1 𝑛 𝑗 3 2𝛼 𝑛 𝑗 1 𝑛 𝑗 3 3𝛼

∆ ∑ 𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦

2𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦

𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑀 𝑦 𝑛 𝑗 1 2 𝑛

𝑗 3𝛼 10 𝑛 𝑗 2𝛼 9𝛼 12 𝑛 𝑗 2 𝑛 𝑗 5𝛼 10 𝑛 𝑗
6𝛼 18𝛼 12 ,  

𝑦 𝑦 𝛼 𝑡 𝑀 𝑦 𝑡 𝑦 𝑡 𝑀 𝑦 𝑡

∆ ∑ 𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 𝑛 𝑗 1 𝑛 𝑗

∆ ∑ 𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 𝑛

𝑗 1 𝑛 𝑗 3 2𝛼 𝑛 𝑗 1 𝑛 𝑗 3 3𝛼
∆ ∑ 𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 2𝑡 𝑀 𝑦 𝑦 𝑀 𝑦
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𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 𝑛 𝑗 1 2 𝑛 𝑗 3𝛼 10 𝑛 𝑗 2𝛼

9𝛼 12 𝑛 𝑗 2 𝑛 𝑗 5𝛼 10 𝑛 𝑗 6𝛼 18𝛼 12 ,  

𝑦 𝑦 𝛼 𝑡 𝑀 𝑦 𝑡 𝑦 𝑡 𝑀 𝑦 𝑡

∆ ∑ 𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 𝑛 𝑗 1 𝑛 𝑗

∆ ∑ 𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 𝑡 𝑀 𝑦 𝑦

𝑀 𝑦 𝑛 𝑗 1 𝑛 𝑗 3 2𝛼 𝑛 𝑗 1 𝑛 𝑗 3 3𝛼

∆ ∑ 𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 2𝑡 𝑀 𝑦 𝑦 𝑀 𝑦

𝑡 𝑀 𝑦 𝑦 𝑀 𝑦 𝑛 𝑗 1 2 𝑛 𝑗 3𝛼 10 𝑛 𝑗 2𝛼

9𝛼 12 𝑛 𝑗 2 𝑛 𝑗 5𝛼 10 𝑛 𝑗 6𝛼 18𝛼 12 .  

6. Results and discussions  

A fractional-order model is proposed for analysis and simulation, to observe the concentration 
of chemicals in chemistry kinematics problems with a stiff differential equation. For this purpose, 
we used ABC with Mittage-Lefffier law, Atangana-Tufik scheme, and fractal fractional derivative 
for hires problem with given initial conditions. Details of parameters values of real data are also 
given in [18,19] which will consider for simulation analysis for the proposed study. Solution of 
compartment shows in Figures 1 to 8 with fractional fractal operator at different order. Effect of 
fraction order can easily be observed in simulation of the compartments having a concentration of 
chemical reaction with stiff differential equations. The concentration 𝑦  and 𝑦  of the chemical 
species start decreasing by decreasing fractional values respectively while concentration 𝑦 , 𝑦 , 𝑦 , 
𝑦 , 𝑦  and 𝑦  of the chemical species start increasing by decreasing fractional values. These 
concentrations of chemical species converge to our desired value according to steady state by 
decreasing the fractional values which shows that it provides us appropriate results at non integer 
value. We can get better concentration of the components by using the fractional derivative which are 
very important for chemical problem to check the actual behavior of the concentration of the 
chemical with smallest changes in derivative with respect to time. It is also very important for 
solutions of nonlinear problems which are commonly used researcher and scientist in kinetics 
chemistry. 
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Figure 1. Simulation of 𝑦 𝑡  with fractal fractional derivative. 

 

Figure 2. Simulation of 𝑦 𝑡  with fractal fractional derivative. 
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Figure 3. Simulation of 𝑦 𝑡  with fractal fractional derivative. 

 

 

Figure 4. Simulation of 𝑦 𝑡  with fractal fractional derivative. 
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Figure 5. Simulation of 𝑦 𝑡  with fractal fractional derivative. 

 

Figure 6. Simulation of 𝑦 𝑡  with fractal fractional derivative. 

0 1 2 3 4 5 6 7

Time (t)

0

0.5

1

1.5
10-3 Hires Problem with fractional Order Derivative

at  = 1

at  = 0.9
at  = 0.8

0 1 2 3 4 5 6 7

Time (t)

0

0.5

1

1.5

2

2.5

3

3.5

4
10-3 Hires Problem with fractional Order Derivative

at  = 1

at  = 0.9
at  = 0.8



1182 

AIMS Mathematics  Volume 7, Issue 1, 1155–1184. 

 

Figure 7. Simulation of 𝑦 𝑡  with fractal fractional derivative. 

 

Figure 8. Simulation of 𝑦 𝑡  with fractal fractional derivative. 
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7. Conclusions 

We examine the hires problems with stiff systems of nonlinear ordinary equations that rely on 
the concentration of chemical reaction of components in this study. The advanced techniques of 
fractional operator have been implemented for initial value problem arising from chemical reactions 
composed of large systems of stiff ordinary differential equations. The arbitrary derivative of 
fractional order has been taken with Atangana-Toufik scheme and fractal fractional derivative. 
Solutions have been obtained efficiently within limited time which shows the actual behavior of 
kinetic chemical reactions. Existence and uniqueness of results have been verified by fixed point 
theorem. Simulations are carried out for different fractional values. New chemical reactions can be 
done with the help of these analyses. These concepts are very important to use for real life problems 
like Brine tank cascade, Recycled Brine tank cascade, pond pollution, home heating and biomass 
transfer problem.  
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