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Abstract. Inferring interactions between co-occurring species is key to identify processes govern-
ing community assembly. Incorporating interspecific interactions in predictive models is common in
ecology, yet most methods do not adequately account for indirect interactions (where an interaction
between two species is masked by their shared interactions with a third) and assume interactions do
not vary along environmental gradients. Markov random fields (MRF) overcome these limitations by
estimating interspecific interactions, while controlling for indirect interactions, from multispecies
occurrence data. We illustrate the utility of MRFs for ecologists interested in interspecific interactions,
and demonstrate how covariates can be included (a set of models known as Conditional Random
Fields, CRF) to infer how interactions vary along environmental gradients. We apply CRFs to two
data sets of presence–absence data. The first illustrates how blood parasite (Haemoproteus, Plasmod-
ium, and nematode microfilaria spp.) co-infection probabilities covary with relative abundance of their
avian hosts. The second shows that co-occurrences between mosquito larvae and predatory insects
vary along water temperature gradients. Other applications are discussed, including the potential to
identify replacement or shifting impacts of highly connected species along climate or land-use gradi-
ents. We provide tools for building CRFs and plotting/interpreting results as an R package.

Key words: co-infection; environmental gradient; graphical network model; Haemoproteus; interspecific
interactions; Markov random fields; network modeling; Plasmodium; species distribution model.

INTRODUCTION

Interactions between co-occurring species are crucial for
explaining variation in biodiversity (Dayton 1971, Azaele
et al. 2010, Mayfield and Stouffer 2017). Understanding
these interactions is necessary to predict how communities
will respond to climate change or habitat modification
(G€otzenberger et al. 2012, Golding and Harris 2013, Harris
2015a). A multitude of statistical approaches can model
species’ pairwise co-occurrence probabilities, typically by
estimating interspecific associations as multivariate vari-
ance–covariance matrices after controlling for species’ envi-
ronmental niches (Golding et al. 2015, Tikhonov et al.
2017). These so-called Joint Species Distribution Models
(JSDMs) are used widely in ecology and have yielded impor-
tant insights, ranging from improved species distribution
models to the discovery of unforeseen parasite co-infection
patterns (Kissling et al. 2012, Clark et al. 2016, Ovaskainen
et al. 2017).
JSDMs open exciting avenues for predicting assemblage

variation while accounting for biotic interactions. However,
most JSDMs are unable to incorporate non-stationarity in
pairwise dependencies (e.g., variation in species interactions

across spatiotemporal gradients; Kissling et al. 2012, but see
Tikhonov et al. 2017). The assumption that interactions are
constant limits predictive capacity, as both the direction and
strength of interspecific interactions can vary across
environmental gradients (Grime 1973, He et al. 2013). Inter-
pretation of covariance coefficients as interspecific “interac-
tions” has also been questioned, as pairwise interactions are
not directly accounted for (they are inferred from correlated
residuals), nor are their effect sizes directly comparable to
those of covariates (Pellissier et al. 2013, Harris 2015a,
Tikhonov et al. 2017).
Graphical network models offer the opportunity to flexi-

bly estimate conditional dependencies from networks of
interacting variables (Meinshausen and B€uhlmann 2006,
Azaele et al. 2010). Markov random fields (MRFs; also
known as Markov networks) are particularly useful graphi-
cal network models as they estimate dependencies among
presence–absence variables (commonly used in species distri-
bution modeling) and their properties are well understood
(Ising 1925, Li et al. 2012). Because MRFs are undirected
(edges do not incorporate directionality), cyclicity is feasible.
This means we can ask if each variable pair is conditionally
dependent given their relationships with all other variables,
as opposed to estimating independence given only relation-
ships of their parent variables (as in directed Bayesian net-
works). In other words, MRFs infer direct interactions (i.e.,
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competition, facilitation) that may be obscured by strong
indirect interactions (i.e., competitors that both show strong
correlations with a third species; see Harris 2016: Fig. 1 for
a visualization of direct vs. indirect interactions). MRFs
have been implemented across many disciplines, with aims
ranging from identifying gene associations and mutation
dependencies to uncovering network relationships in lan-
guage passages (Li et al. 2012, Lee and Hastie 2015).
Recently, their flexibility has been expanded by incorporat-
ing covariates to estimate conditional dependencies among
variables and how these dependencies vary with covariates
(also known as conditional random fields, or CRFs; Sutton
and McCallum 2012, Cheng et al. 2014, Lindberg 2016).
Although less often used in ecology (but see Azaele et al.

2010, Harris 2016) graphical network models provide
promising frameworks to understand interactions and their
consequences on biodiversity. Here, we adapt a CRF model
described by Cheng et al. (2014) to identify co-occurrence
probabilities and estimate how they vary across environ-
mental gradients. We apply models to two community data
sets and, using functions in the MRFcov R package (Clark
et al. 2018), we demonstrate that model execution and
interpretation are straightforward. Our aim is not to carry
out a statistical proof of the model (provided by works
cited in this paper, most notably by Cheng et al. 2014) but
to facilitate application of CRFs for analyzing ecological
data.

METHODS AND CASE STUDIES

Approximating conditional random fields with
logistic regressions

ACRF models all the species jointly in a unified graphical
model. However, we can focus on one species at a time
within the larger model to better understand how pairwise
interactions are modeled conditionally on an external
covariate. The log-odds of observing species j given the pres-
ence–absence of species k can be modeled with inclusion of
covariate x by:

log
Pðyj ¼ 1jynj ; xÞ

1� Pðyj ¼ 1jynj ; xÞ
� �

¼ aj0 þ bTj xþ
X
k:k 6¼j

ðajk0 þ bTjkxÞyk

(1)

where yj is a vector of binary observations for species j (1 if
the species was observed, 0 if not), y\j is a vector of binary
observations for all other species apart from j, aj0 is the spe-
cies-level intercept and bTj is the coefficient of covariate x on
species j’s occurrence probability. Linear parameterization
of the CRF ½aj0 þ bTj xþP

k:k 6¼jðajk0 þ bTjkxÞyk� can be esti-
mated using logistic regression, where each coefficient repre-
sents the size of a predictor’s effect on a species’ conditional
log-odds. For instance, if ajk0 = 0, occurrence probabilities
of species j and k are conditionally independent, after
accounting for covariates and other species. If ajk0 6¼ 0 but
bTjkx = 0, the species’ occurrence probabilities are condition-
ally dependent, but the strength of this dependence does not
vary with covariate x. For a data set with J species and
X covariates, maximizing the joint likelihood requires

estimation of (J + 1) 9 X(X + 1)/2 coefficients in addition
to a normalizing constant that grows exponentially with the
number of species (Cheng et al. 2014). This quickly becomes
intractable even for moderately sized data sets. A common
approach to circumvent the exponentially growing parame-
ter estimation is to approximate the graph by employing a
series of single-species regressions and combining the
parameter vectors in a common matrix (Cheng et al. 2014,
Harris 2016). Because CRFs are undirected, coefficients
of conditional dependence must be symmetric, where
ajk0 = akj0. Likewise, coefficients for covariate effects on co-
occurrences must be symmetric (bTjkx ¼ bTkjx). As these esti-
mates come from separate regressions, symmetry is not
guaranteed. We follow Cheng et al. (2014) to enforce sym-
metry using a separate.max approach to keep the coefficient
with the larger absolute value. In this way, we generate a uni-
fied graphical network by separately maximizing the condi-
tional log-likelihood of each species. Studies with many
species or covariates may benefit from a conservative sepa-
rate.min approach, keeping the coefficient with the smaller
absolute value.
As with JSDMs, CRFs can be limited by the complexity

of estimating dependency parameters from data sets with
many species and/or covariates (Golding et al. 2015, Harris
2015b). For example, the mosquito data set described in
Case study 2 includes 16 species and 17 covariates, resulting
in 288 coefficients in each regression. As estimating so many
coefficients can lead to problems of overfitting, sparsity is
added using regularization, which forces some coefficients
to zero (Goeman 2010). Regularization is used in a variety
of statistical frameworks due to its ability to simultaneously
perform variable selection (the least important variables are
more likely to be penalized at lower regularization values)
and model shrinkage to avoid overfitting. We use L1 regular-
ization (e.g., LASSO), where lower values of the regulariza-
tion parameter ƛ lead to a greater number of non-zero
coefficients. Note that regularization is influenced by the
scale of predictors (covariates on larger scales are less likely
to be penalized, even if they have marginal effects; Goeman
2010) so it is important that covariates are appropriately
scaled. Following Lindberg (2016), we use 10-fold cross vali-
dation to identify optimal ƛ values. Considering that sepa-
rate regressions are unified in a joint model, we estimate
model fit by comparing predicted and observed outcomes
simultaneously for all species. Cross validation is preferred
to statistics such as AIC or BIC, which are difficult to inter-
pret in LASSO applications (Goeman 2010).

Case study 1: Estimating co-infection probabilities for avian
blood parasites

Data published by Clark et al. (2016) contains binary
observations for four vector-borne blood parasites (Haemo-
proteus zosteropis species complex, H. killangoi species com-
plex, Plasmodium spp., and nematode microfilaria species)
among New Caledonian birds. The authors used a JSDM to
estimate co-infection probabilities in the primary host group
(species in the genus Zosterops; n = 449), including a covari-
ate representing the proportion of captures in each site
attributed to Zosterops spp. (a proxy of host relative abun-
dance). We did not impute missing microfilaria data as in
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the original analysis (some birds were not tested for microfi-
laria), instead treating missing data as zeros. We first esti-
mated an MRF (no covariates) and compared to a model fit
using the rosalia R package (Harris 2015b), which solves
small MRF networks by maximum likelihood (Harris 2016).
Interaction signs showed perfect concordance (both models
estimated the same positive and negative interactions), sug-
gesting our approach does well at approximating the MRF.
We next estimated a CRF by including Zosterops relative

abundance as a scaled continuous predictor (mean centered,
divided by 1 SD). To choose a regularization parameter, we
tested predictive performance at a range of ƛs (values
between 1.0 and 2.5, sequenced in 0.1 steps) using 10-fold
cross validation. We fit models at each ƛ using a training
partition containing ~90% of observations (n ~404), and cal-
culated linear predictions of species’ occurrences for a test
partition containing ~10% of observations (n ~45;
Appendix S1). This was repeated 10 times (training parti-
tions chosen at random) and, for each test prediction, we
calculated sensitivity (the proportion of observed positives
that were predicted to be positive). To assess whether addi-
tion of the covariate improved predictions, we also assessed
performance of MRFs (without a covariate) at each ƛ.
Using LOESS regressions to analyze sensitivity vs. ƛ values,
we find that (1) inclusion of the covariate increases model
sensitivity across the range of ƛs and (2) increased

regularization decreases our ability to predict true positives
(Appendix S2: Fig. S1). Given our interest in predicting rela-
tively rare parasite infections, fitting models at the ƛ that
coincides with the asymptote for sensitivity (ƛ = 1.5;
Appendix S2: Fig. S1) is a reasonable approach (higher ƛs
lead to less chance of overfitting). Yet lower ƛs will not
always overfit, and may provide better insights if higher ƛs
regularize some interactions. We chose to fit models using ƛs
within the range uniform[1, 1.5]. For each ƛ, we modeled
500 bootstrapped replicates (randomly shuffling rows of
training sets with replacement) to account for uncertainty in
interaction coefficients.
Coefficient 95% confidence intervals identified several

strongly supported interactions (Fig. 1a). Microfilaria and
Plasmodium spp. showed a positive interaction, while the
two Haemoproteus species showed a strong negative inter-
action (Fig. 1a). We compared interactions to those from
competing methods to validate our approach (R scripts
available in Data S1). We fitted a Bayesian JSDM (using
the R package BayesComm; Golding and Harris 2013) and
estimated species’ pairwise correlations and partial correla-
tions following methods in Harris (2016). Our approach
identified similar interactions to those from Clark et al.
(2016) and to competing methods, with methods that
account for environment (BayesComm and environmentally
controlled partial correlations) showing the most similar
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A) Predicted interactions (95% CI)

B) Predicted interactions at varying Zosterops relative abundance

FIG. 1. Predicted interactions between blood parasites (Haemoproteus zosteropis species complex, H. killangoi species complex, Plas-
modium spp. and nematode microfilaria species). Positive interactions are in red; negative interactions are in blue. Panel A shows 95% confi-
dence intervals of coefficients estimated from bootstrapped conditional random fields (CRF) models (including Zosterops relative
abundance as a covariate) fit in the optimal range of ƛ values. Note that these estimates represent predicted interactions when the scaled
covariate is zero, representing mean Zosterops spp. relative abundance. Panel B shows how interactions are predicted to change as Zosterops
spp. relative abundance changes.
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effects to the CRF (Appendix S2: Fig. S2). However, com-
peting methods provide little information on species’ co-
occurrences beyond these average interactions. Our
approach, in contrast, provides two powerful new insights:
(1) perhaps representing the most attractive property of
CRFs, we can directly compare interaction coefficients to
those of other predictors. Interspecific interactions were
stronger predictors than was the host relative abundance
covariate for each of the four parasites (see Table 1 for the
H. zosteropis model summary; Appendix S1). By contrast,
comparing effects of interactions to those of other predic-
tors is not straightforward with most JSDMs (typically
requiring variance partitioning among fixed and random
effects; see Ovaskainen et al. 2017); (2) CRFs revealed that
several key interactions were predicted to change as host
relative abundance changes (Fig. 1b; Appendix S1). Most
competing methods estimate static interactions, providing
no indication of how interactions change (but see Tikhonov
et al. [2017], who relate correlations to covariates, though
the ability to compare interaction effect sizes is still diffi-
cult). For both Haemoproteus spp., interactions with Plas-
modium spp. became more positive with increasing host
relative abundance, suggesting these parasites are more
likely to co-occur in sites with high host availability, while
the interaction between H. zosteropis and microfilaria
showed the opposite (Fig. 1b). The negative interaction
between Haemoproteus spp. did not vary.
We explored how well our model predicted variable

interactions by subsetting the data to only include sites
with above average Zosterops relative abundance. We then
estimated environmentally controlled partial correlations
and compared these to interactions predicted from our
model. This was repeated using sites with lower than aver-
age host abundance (R scripts available in Data S1). Five
of the six possible pairwise interactions were successfully
predicted at low host abundance (based on overlapping
confidence intervals), while only four were predicted at
high host abundance (Fig. 2). All four parasites were less
likely to occur in sites with high host abundance, which
may help to explain the wider partial correlations confi-
dence intervals and the poorer matching with CRF predic-
tions (Fig. 2). Overall, our findings raise questions about
the roles that host availability and parasite community

composition play in driving parasite co-occurrences (Clark
et al. 2016).

Case study 2: Estimating biotic interactions influencing larval
mosquito occurrences

Data published by Golding et al. (2015) contains binary
observations for four mosquito species and 12 other benthic
faunal groups recorded across three UK marsh sites. The
data provides four continuous covariates (depth, salinity,
oxidation reduction potential, and temperature) and binary
covariates for a range of vegetation indicators. The authors
used stepwise selection to determine important abiotic
covariates for each species; they then used a JSDM to iden-
tify co-occurrence probabilities after accounting for speci-
fied covariates in each species-level regression. The larger
size of the mosquito data set (16 species and 17 predictors)
affords an opportunity to test our approach’s performance
in larger parameter spaces. As above, we estimated perfor-
mance using 10-fold cross validation of bootstrapped data
sets. Considering the high number of species and their vari-
able occurrence frequencies, our criterion for choosing ƛs
was to identify a range of values that maintained high
proportions of true predictions (ƛ = uniform[4.8, 5.8];
Appendix S3).
Models identified numerous interspecific interactions. We

found a strong positive interaction between Culex mosquito
species (modestus and pipiens; Appendix S3), suggesting that
they rely on similar larval habitats. We identified negative
ditch shrimp (Palaemonetes spp.)–Culex modestus, and
saucer bug–Anopholes maculipennis interactions, indicating
possible predatory exclusion (Appendix S3). Our model
estimated that several interactions between mosquito
species and potential predators changed considerably
across temperature gradients. Saucer bugs (Ilyocoris spp.)
were less likely to co-occur with A. maculipennis as tempera-
ture increased, while the damselflies (Coleoptera spp.)–
Culex modestus interaction showed the opposite (Fig. 3).
Several interactions also changed across gradients of depth
and oxidation reduction potential (Appendix S3). Consider-
ing the roles of these mosquito species in disease transmis-
sion, identifying variable interactions across environmental
gradients can be informative for vector management
programs.

DISCUSSION

In most ecological applications, the occurrence probabili-
ties of species, and the way species interact within a commu-
nity, cannot be assumed to be static or independent of
environmental influences. Given the unprecedented environ-
mental change occurring globally, estimating variable spe-
cies interactions across temporal or environmental gradients
is of vital importance (Wilson and Keddy 1986). We suggest
CRFs can help achieve this goal. Applying CRFs to two
case studies, we build on inferences that can be gleaned from
JSDMs to show that interactions between avian blood para-
sites have strong influences on infection rates and that co-
infection probabilities are not static across host abundance
gradients. In addition, we found that potential interactions
between larvae of disease-transmitting mosquitoes and their

TABLE 1. Example model summary showing mean regression
coefficients (b) and their relative importance for predictors of
Haemoproteus zosteropis occurrence, taken across bootstrapped
CRF models (using ƛs in the range [1, 1.5]).

Predictor
Mean

coefficient (b)

Relative
importance
(b/sum(b2))

H. killangoi �2.69 0.62
Host relative
abundance 9 Microfilaria spp.

�1.30 0.14

Microfilaria spp. 1.06 0.10
Host relative abundance �0.94 0.08
Host relative
abundance 9 Plasmodium spp.

0.70 0.04

Plasmodium spp. �0.55 0.03

Note: Predictors with multiplier symbol (9) indicate an inter-
specific interaction that varies with varying host relative abundance.
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co-occurring predators may vary across gradients of water
depth, temperature, and oxidation reduction potential.
Our report offers a glimpse of the promising ways that

CRFs can infer multispecies interactions. The ability to
include covariates, directly estimate interaction terms, and
evaluate relative effect sizes provides a framework to extend
JSDMs to multilayer ecological networks (Pilosof et al. 2017)
and opens a wealth of useful directions. An attractive prop-
erty of CRFs is their ability to identify highly connected vari-
ables with particularly large influences on graph structure.
Applied to ecological settings, uncovering such highly

connected species can provide evidence of species whose pres-
ences have important consequences for community composi-
tion. Whether highly connected species are ecologically
replaced across gradients of land use, elevation, or tempera-
ture, or whether their impact on other species changes in
more diverse assemblages, are topical questions (Tanner et al.
1994, Le Roux et al. 2005) that can be addressed using CRFs.
By presenting analyses that can be programmed using an

open-source R package (Clark et al. 2018), this paper
extends the relatively unfamiliar topic of CRFs (and graphi-
cal networks in general) to the applied ecologist’s analysis

High host abundance Low host abundance

0 4 8 −2 0 2
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Plasmodium−Microfilaria

Interaction coefficient

CRF predictions Partial correlations + env

FIG. 2. CRF predicted interactions for subsets of the bird parasite data set. Predictions are compared to partial correlations that repre-
sent estimates of partial correlations in species’ occurrences after controlling for correlations with remaining species and correlations with
environmental covariates (env). The left panel shows estimates for sites with above average Zosterops spp. relative abundance; the right panel
shows estimates for sites with below average relative abundance. Points show estimate medians; bars show 95% confidence intervals from
1,000 bootstrapped estimates.
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toolset. Considering the key roles biotic interactions play in
generating biodiversity, influencing species’ distributions,
and driving infection epidemics (Kissling et al. 2012, He
et al. 2013), there is need for analytical approaches that gen-
erate interpretable estimates of interactions from types of
data commonly gathered by ecologists. In this respect, coef-
ficients estimated from CRFs will be of broad interest
because they (1) offer the opportunity to disentangle com-
plex biotic interactions from environmental drivers and (2)
are generated from arguably one of the most common analy-
sis procedures in ecology: logistic regression of presence–
absence data. Interpreting CRF coefficients will be straight-
forward for a broad range of ecologists working in different
fields. Moreover, it is important to note that, while our study
describes models built with presence–absence data, the abil-
ity to include covariates in interspecific interaction studies
has also been introduced as an extension to Gaussian graph-
ical models to model continuous outcomes (i.e., abundances
or fitness measures; Li et al. 2012). Additionally, methods
implementing mixed graphical models, which can incorpo-
rate both binary and continuous data, are being investigated
to answer a growing need to model relationships between
variables of heterogeneous variable types (Lee and Hastie
2015). These will add further flexibility to the types of
interactions that can be explored with undirected graphical
models.
We caution that our method is not a replacement for hier-

archical JSDMs. The ability to account for species’ non-lin-
ear responses to environmental covariates in distribution
models affords greater flexibility for forecasting regime
changes (Harris 2015a). While our approach will be useful
for accurately estimating interaction networks from moder-
ate- or large-sized data sets, independent regressions also
prevent the use of informative grouping parameters that can
be modeled with hyperpriors in multispecies models (Ovas-
kainen et al. 2017). Although we have much to learn about
species interactions and their effects on biodiversity, we
hope that CRFs will serve as a useful addition in the
expanding toolbox for understanding community assembly.
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