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Abstract

Spontaneous breaking of Lorentz symmetry at energies on the order of the Planck energy or lower is predicted by
many quantum gravity theories, implying non-trivial dispersion relations for the photon in vacuum. Consequently,
gamma-rays of different energies, emitted simultaneously from astrophysical sources, could accumulate
measurable differences in their time of flight until they reach the Earth. Such tests have been carried out in the
past using fast variations of gamma-ray flux from pulsars, and more recently from active galactic nuclei and
gamma-ray bursts. We present new constraints studying the gamma-ray emission of the galactic Crab Pulsar,
recently observed up to TeV energies by the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC)
collaboration. A profile likelihood analysis of pulsar events reconstructed for energies above 400GeV finds no
significant variation in arrival time as their energy increases.Ninety-five percent CL limits are obtained on the

The Astrophysical Journal Supplement Series, 232:9 (17pp), 2017 September https://doi.org/10.3847/1538-4365/aa8404
© 2017. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-6729-9022
https://orcid.org/0000-0002-6729-9022
https://orcid.org/0000-0002-6729-9022
https://orcid.org/0000-0003-0605-108X
https://orcid.org/0000-0003-0605-108X
https://orcid.org/0000-0003-0605-108X
https://orcid.org/0000-0001-9078-5507
https://orcid.org/0000-0001-9078-5507
https://orcid.org/0000-0001-9078-5507
https://orcid.org/0000-0002-3433-4610
https://orcid.org/0000-0002-3433-4610
https://orcid.org/0000-0002-3433-4610
https://orcid.org/0000-0001-8442-7877
https://orcid.org/0000-0001-8442-7877
https://orcid.org/0000-0001-8442-7877
https://orcid.org/0000-0003-2252-3411
https://orcid.org/0000-0003-2252-3411
https://orcid.org/0000-0003-2252-3411
https://orcid.org/0000-0001-9159-9853
https://orcid.org/0000-0001-9159-9853
https://orcid.org/0000-0001-9159-9853
https://orcid.org/0000-0002-8541-8849
https://orcid.org/0000-0002-8541-8849
https://orcid.org/0000-0002-8541-8849
https://orcid.org/0000-0002-8321-9168
https://orcid.org/0000-0002-8321-9168
https://orcid.org/0000-0002-8321-9168
https://orcid.org/0000-0002-1445-8683
https://orcid.org/0000-0002-1445-8683
https://orcid.org/0000-0002-1445-8683
https://orcid.org/0000-0002-2239-3373
https://orcid.org/0000-0002-2239-3373
https://orcid.org/0000-0002-2239-3373
https://orcid.org/0000-0002-1566-9044
https://orcid.org/0000-0002-1566-9044
https://orcid.org/0000-0002-1566-9044
https://orcid.org/0000-0002-9931-4557
https://orcid.org/0000-0002-9931-4557
https://orcid.org/0000-0002-9931-4557
https://orcid.org/0000-0003-0256-0995
https://orcid.org/0000-0003-0256-0995
https://orcid.org/0000-0003-0256-0995
https://orcid.org/0000-0002-0653-6207
https://orcid.org/0000-0002-0653-6207
https://orcid.org/0000-0002-0653-6207
mailto:markus.gaug@uab.cat
https://doi.org/10.3847/1538-4365/aa8404
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4365/aa8404&domain=pdf&date_stamp=2017-09-01
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4365/aa8404&domain=pdf&date_stamp=2017-09-01


effective Lorentz invariance violating energy scale at the level of E 5.5 10 GeVQG
17

1 > ´ (4.5 10 GeV17´ ) for a
linear, and E 5.9 10 GeVQG

10
2 > ´ (5.3 10 GeV10´ ) for a quadratic scenario, for the subluminal and the

superluminal cases, respectively. A substantial part of this study is dedicated to calibration of the test statistic, with
respect to bias and coverage properties. Moreover, the limits take into account systematic uncertainties, which are
found to worsen the statistical limits by about 36%–42%. Our constraints would have been much more stringent if
the intrinsic pulse shape of the pulsar between 200GeV and 400GeV was understood in sufficient detail and
allowed inclusion of events well below 400GeV.

Key words: cosmic rays – gamma rays: general – gravitation – methods: data analysis – methods: statistical –
pulsars: individual (Crab Pulsar)

1. Introduction

Common models of quantum gravity (QG) (Rovelli 2004)
try to combine Einstein’s framework of gravitation with
modern quantum field theory, introducing microscopic granular
structure and probabilistic dynamics of spacetime. Although
none of these scenarios are currently universally accepted, most
of them(Kostelecký & Samuel 1989; Gambini & Pullin 1999;
Douglas & Nekrasov 2001; Burgess et al. 2002; Magueijo &
Smolin 2002; Hamed-Arkani et al. 2004; Horǎva 2009) predict
spontaneous violation of the Lorentz invariance (LIV). This can
lead to a non-trivial, i.e., energy-dependent dispersion relation
of the photon in vacuum and birefringence, as well as an
anisotropy of the vacuum. At lower energies, the modified
dispersion relation can be parameterized by an effective QG
energy scale (EQG), which can be on the order of the Planck

scale (E c G 1.22 10 GeVPl
5 19= » ´ ) or lower. QG

effects are then largely suppressed, but can manifest themselves
if photons of different energy travel very large distances and
hence accumulate tiny delays that yield potentially measurable
effects(Amelino-Camelia & Smolin 2009).

The group velocity of photons of energy E EQG can then
be parameterized (see, e.g., Amelino-Camelia & Smolin 2009,
Equation (3)) as:
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where c is the (Lorentz-invariant) speed of light and nx is the
sign of the change: 1nx = + for a “subluminal” scenario
(decreasing photon speed with increasing energy), 1nx = - for
the “superluminal” case (increasing photon speed with increasing
energy), and 0nx = for the case that the nth order is forbidden.
The modified dispersion relation can also be written in terms of
coupling constants f n

g
( ) of the minimal standard model extensions

(SME)(Colladay & Kostelecký 1998), in which case the
substitutions: n n 2 + and f E En n

nPl
2

QGnx- g
-( ) ( ) lead

to the form chosen in Equation (1) (see also Equations (15) and
(74) of Mattingly 2005). Equation (1) neglects terms breaking
rotation invariance, which would, however, imply some breaking
of boost invariance if they were present (see again Mattingly
(2005), chapter 3.1). Terms with n 0> produce energy-dependent
velocities and are typically considered in time-of-flight experi-
ments.26 Because odd terms of n violate CPT(Colladay &
Kostelecký 1998), the n=2 term may dominate if CPT is
conserved. From a theoretical point of view, subluminal propaga-
tion is equally plausible as superluminal(Amelino-Camelia &

Smolin 2009); birefringence effects are also possible, in which
photons show subluminal and superluminal propagation, depend-
ing on their circular polarization state(Kostelecký 2004; Covino &
Gotz 2016). Nevertheless, birefringence has been strongly bound
by other means(Gubitosi et al. 2009; Götz et al. 2014; Kislat &
Krawczynski 2017) and will not be considered in the following.
Actually, in the framework of an SME approach, current limits
from astrophysical polarization measurements constrain variations
of the speed of light that are linear with photon energy to several
orders of magnitude beyond the Planck scale(Götz et al. 2014;
Kislat & Krawczynski 2017). However, not all quadratic terms,
some of which may be realized without vacuum birefringence
(Kostelecký & Mewes 2008), are constrained. Therefore, in the
context of possibly constructing CPT conserving theories,
constraining the quadratic term EQG2 is now of particular interest.
Exploiting the fast variations of gamma-ray signals from

astrophysical sources at cosmological distances to limit LIV
was first suggested in Amelino-Camelia et al. (1998). So far,
flares from active galactic nuclei (AGNs), exploited first by
the Major Atmospheric Gamma-ray Imaging Cherenkov
system (MAGIC; Albert et al. 2008) and later by H.E.S.S.
(Abramowski et al. 2011), and the very fast flux variations of
gamma-ray bursts (GRBs) observed by FERMI(Vasileiou
et al. 2013), have boosted sensitivities to such energy-
dependent delays and achieved astonishingly strict limits on
EQG1 of well beyond the order of the Planck scale(Vasileiou
et al. 2013; Götz et al. 2014). Both types of sources have been
detected at cosmological distances, but their maximum
observable energy is increasingly limited due to extinction of
photons by extra-galactic background light (EBL)(Domínguez
& Ajello 2015). AGN flares, on the other hand, have been
observed until energies of several TeV(Albert et al. 2008;
Abramowski et al. 2011), but are closer in distance and show
slower rise and fall times than GRBs. Obtained limits on LIV
are nevertheless competitive, due to the higher energies
achieved, particularly for the quadratic term. Both types of
sources require a solid emission model in order to discard any
intrinsic, insufficiently understood, energy-dependent effects
on the time of emission, which is not yet the case(Bednarek &
Wagner 2008). The effect of this can be mitigated however,
through the observation of sources at different redshifts.
Gamma-ray pulsars, albeit being observed many orders of

magnitude closer(Abdo et al. 2013) than AGNs or GRBs, have
the advantage of precisely timed regular flux oscillations, with
periods down to the order of milliseconds, as well as the fact
that they are the only stable (in the sense of periodically
emitting) candidate sources for astrophysical time-of-flight
tests, prescinding from the need of target of opportunity alerts.
Sensitivity to LIV can hence be systematically planned and
improved using longer observation times. An LIV-induced

26 Note that terms of n 1= - and n=0 are also allowed by SME(Colladay &
Kostelecký 1998), but strongly constrained by Earth-based experiments.
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variation of the speed of light would produce a shift in the
position of the pulsar peak in its phaseogram, i.e., the emission
as a function of the pulsar rotational phase. Moreover, possible
intrinsic energy-dependent time delays from the pulsar itself
would be observed proportional to its rotational period, while
LIV induced effects are not, allowing to disentangle between
both, once measurements have been carried out over several
years(Otte 2011).

Actually, the first-ever astrophysical limit on LIV was
obtained from the Crab Pulsar using optical and radio
data(Warner & Nather 1969). First limits on LIV using
gamma-ray emission from the Crab Pulsar were computed from
EGRET data up to 2GeV(Kaaret 1999), and improved by
VERITAS using very high energy (VHE) gamma-rays reaching
up to 120GeV(Otte 2011). Recently, the MAGIC collabora-
tion has published the detection of pulsed emission from the
Crab Pulsar up to TeV energies(Ansoldi et al. 2016). We
exploit this unique set of data to derive improved limits on the
effective QG scale using a profile likelihood approach,
calibrated both in terms of bias and coverage, and include
systematic uncertainties.

This paper is structured as follows. First, we introduce the data
set taken on the Crab Pulsar, emphasizing information relevant
for LIV searches (Section 2). Second, we perform a basic peak
comparison search for signatures of LIV in Section 3, and
subsequently construct the full likelihood in Section 4. Several
results from applying these methods to data are presented in
Section 4.1 and limits to LIV are derived. A thorough calibration
of the likelihood using toy Monte Carlo (MC) simulations is
performed in Section 4.2, and systematic uncertainties discussed
in Section 4.3. The obtained new limits and their implications
will be discussed at the end, in Sections 5 and 6.

2. The Data Set

The Crab Pulsar PSRJ0534+2200, located at the center of the
Crab Nebula in the Taurus constellation, is one of the best-
studied pulsars due to its youth, proximity, brightness, and wide
spectral coverage(Bühler & Blandford 2014). It shows a rotation
period of T 33.7» ms, slowly increasing by T 4.2 10 13= ´ -˙ .
Its distance is still rather poorly determined (Trimble 1973) and
generally stated as 2.0±0.5kpc(Kaplan et al. 2008). The Crab
Pulsar phaseogram (defined as flux—or simply count rate—as a
function of the pulsar phase f) shows increased emission in two
phase ranges: the main pulse P1, which has been used to define
the zero phase value, and the inter-pulse P2 at 0.4f » . The
bridge region between P1 and P2 also exhibits emission in
optical, X-rays and, as was discovered by MAGIC(Aleksić et al.
2014a), in VHE gamma-rays between 50 and 150GeV. The
inter-pulse becomes dominant only at the high end of the
spectrum(Abdo et al. 2010a; Aliu et al. 2011; Aleksić et al.
2012a). The energy spectrum of both pulses can be described by
simple power-laws from 10GeV on, and extends to at least
0.5TeV for P1 and 1.5TeV for P2, as recently measured by
MAGIC(Ansoldi et al. 2016).

Contrary to AGNs and GRBs, the gamma-ray signal from
the Crab Pulsar at VHE is very background-dominated:
generated during a supernova explosion in 1054AD, this
young pulsar lies at the center of a strong gamma-ray emitter,
the expanding Crab Nebula. The VHE emission of both cannot
be spatially resolved so far.

The Major Atmospheric Gamma-ray Imaging Cherenkov
system (MAGIC) is located at the Roque de los Muchachos

observatory (28°.8 N, 17°.8 W, 2200m a.s.l.), in the Canary
Island of La Palma, Spain. During its first five years of
operation, the MAGIC system consisted of a single 17m dish
telescope (Cortina et al. 2009). In 2009, a second telescope was
added with identical structure, but including several major
improvements in its reflective surface, camera, and the
electronics used for signal processing (Aleksić et al. 2012b).
Between 2011 and 2012, a major upgrade of the MAGIC

system was performed to install a new camera and trigger
system for MAGIC-I, after which the two telescopes became
almost identical in their hardware components(Aleksić et al.
2016a). In stereoscopic observation mode, the system reaches a
maximum sensitivity of ∼0.6% of the Crab Nebula flux, for
energies above ∼300GeV in 50 hr of observation(Aleksić
et al. 2016b). Nevertheless, sensitivity is slightly worse for this
source, limited by the strong gamma-ray background from the
nebula.
Because the Crab Nebula is the brightest steady source in the

VHE gamma-ray sky, it is considered a calibration source for
this energy regime and regularly observed for performance
tests. The MAGIC telescopes have collected more than 1000hr
of total observation time, taken in every possible hardware
configuration during the past 12years of operation (a detailed
summary of the employed data set can be found in
Appendix A).
In total, the MAGIC telescopes collected 3080±460 excess

events from the P2 region, out of which 544±92 had
reconstructed energies above 400GeV. Moreover, MAGIC
was able to confirm that there is a significant difference
between the steepness in the spectrum of the Crab main and
inter-pulse. We use these very same data to perform tests on
LIV, but select only events close to P2 because they will allow
us to reach the highest sensitivity, due to the higher reach in
energy while keeping the analysis simple enough. For more
detailed information about the employed data, we refer the
reader to the detection paper(Ansoldi et al. 2016).

3. Peak Comparison Method

We first apply a straightforward method that compares the
differences in mean fitted pulse positions at different energies
(employed in previous LIV searches from Crab Pulsar data (see
e.g., Otte 2011)), and later a more sophisticated likelihood
approach. Other possible methods, as the so-called PairView or
Sharpness-maximization approaches (Vasileiou et al. 2013),
have not been exploited in this study.
A simple method to search for energy-dependent delays or

advancements in pulse arrival time consists of a direct
comparison of peak positions of a pulse.
QG effects predict an average phase delay between photons

of mean energies El and Eh of:

d

c P

n E E

E

1

2
, 2n

n n

n
Crab

Crab

h l

QGn

f xD =
+ -· ( )

where dCrab is the pulsar distance, c the Lorentz-invariant speed
of light, PCrab the pulsar period, and El and Eh are the mean
energies of two separated energy bands, typically chosen to
cover the highest part of the observed spectrum and a distinct
lower part.
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Limits to EQG can then be derived from limits on fD
according to:

E
n d

c P

E E1

2
. 3n

n n n
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h l
1
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 x
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+ -

D
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⎝⎜

⎞
⎠⎟ ( )

We use Equation (3) to compare the highest possible energy
band with sufficient statistics, i.e., from 600 to 1200GeV, with
two lower bands: in one case, they span from the analysis
threshold of 55 to 100GeV, while in the second scenario, the
lower band limits itself to the data published in Ansoldi et al.
(2016) and ranges from 400 to 600GeV. The second choice is
motivated by the fact that the detection of pulsar emission at
such high energies can hardly be reconciled with the traditional
interpretation of pulsar emission through the synchro-curvature
process at lower energies. Such a couple of high-energy bands
would hence not be affected by a change of the emission
mechanism, if such a change happens below ∼400GeV, albeit
at the price of a worse limit on LIV (see Figure 1).

The mean energies of the selected bands of reconstructed
energy, E 75 GeVl ~ and 465GeV, respectively, for the two
low-energy bands, and E 770 GeVh ~ for the high-energy
one, have been found by MC simulations of the energy

spectrum of P2 (Ansoldi et al. 2016), weighted with the correct
exposure of the different samples.
The pulses are fitted using the method of maximizing a

Poissonian likelihood whose mean is parameterized by one
Gaussian over a constant background (see Aleksić et al.
2012a).
A simulated signal of two half-Gaussians of different width,

joined at the peak, was also tested, but the NDF2c of the fits
did not improve in any of the tested energy bands. The fit
positions 0.3983 0.0013stat. and 0.4032 0.0063stat. of the
P2 peaks in the phaseogram are obtained for the two lower-
energy bands (compatible with Aleksić et al. 2012a), and
0.4035 0.0047stat. for the high-energy band, compatible with
Ansoldi et al. (2016). A Lorentzian pulse shape is also tested,
yielding marginally better NDF2c and compatible results for
the pulse positions. See Table 1 for the obtained results.
The delay in the arrival phase between these two energy

ranges is then 0.0052 0.0049 0.003P2 stat systfD =  
(between 75 GeV and 770 GeV) and 0.0003P2fD = 
0.0078 0.0030stat syst (between 465 and 770 GeV), both
compatible with no delay. However, they also show the
trend, observed at lower energies, of the mean pulse peak

Figure 1. Crab Pulsar folded light curves (two full phases), fitted with a Gaussian pulse shape plus flat background model for the P2 inter-pulse. The main and inter-
pulse regions are binned with a width of 0.005 phases, while the intermediate ranges use coarser bins. The bin width of the pulse regions are chosen to fit a reasonable
number of bins into the region, while the coarse bins are selected to fit an integer number of bins into each region. All bin widths have been chosen a priori,
independently of the fitting results. The likelihood fit assumes Poissonian fluctuations for the predicted sum of background plus pulse shape from phase 0.37 through
0.87. The background is subtracted here for display only, but is included in the fit. Two distant energy ranges are shown: between 55 and100GeV (top) or 400 and
600GeV (bottom) in red, and above 600GeV (both figures) in blue. The last one is artificially offset by 100 counts for better visibility. The traditional OFF-region is
underlaid with a gray area, the P1 region with green, and the P2 region with red(Ansoldi et al. 2016). The bridge region(Aleksić et al. 2014a) between P1 and P2 is
underlaid with yellow.
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positions slowly shifting toward higher phases, as their energy
increases (see e.g., Abdo et al. 2010a; Aleksić et al. 2012a).
The systematic term contains additional uncertainties due to
the phase binning and the differences obtained when choosing
a Lorentzian light curve model or asymmetric widths (see also
Aleksić et al. 2012a). The derived 95% CL limits on an
LIV-induced linear and quadratic phase delay are shown in
Table 2.

4. Maximum Likelihood Method

More sensitive constraints, which exploit the full information
of the MAGIC Crab Pulsar data set, can be obtained with a
maximum likelihood (ML) method, first introduced for this
kind of search in Martinez & Errando (2009) and further
elaborated in Vasileiou et al. (2013).

We define two new parameters for the linear and quadratic
LIV effect intensity, respectively: E10 GeV1

19
QG1l º and

E10 GeV2
12

QG2l º . The mean phase delay produced by the
LIV effect under test is then

c
E

GeV
, 4n n n

n

f lD = ⎜ ⎟
⎛
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⎛
⎝

⎞
⎠

⎞
⎠⎟· · ( )
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c
d

c P
10 GeV 51 1
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Crab

19 1x= ´ - -·
·

( ) ( )

c
d

c P

3

2
10 GeV , 62 2

Crab

Crab

24 2x= ´ - -·
·

( ) ( )

such that a positive (negative) value of ξ indicates a subluminal
(superluminal) scenario, and a zero intensity of 1,2l stands for an
infinite LIV energy scale EQG1,2. Note that these definitions differ
from those employed by Abramowski et al. (2011) and Vasileiou
et al. (2013), particularly for 2l , which is now directly
proportional to E1 QG2 instead of E1 QG

2
2
. Being closer to the

constrained quantity of interest, particularly EQG2, our definition
will allow us to investigate its statistical properties more accurately
(see Section 4.2).

Using the profile likelihood ratio method(Murphy & van der
Vaart 2000), we define a test statistic Dn for nl of our pulsar
data set X E k, ,i i if= ¢ ¢{ }, where Ei¢ is the reconstructed energy,

if¢ is the reconstructed phase, ki is the observation period of
event i, and n is a set of nuisance parameters:

X
X

X
D 2 ln

;

;
. 7n n

n n

n





n
n

l
l l
l

= - 



⎛
⎝⎜

⎞
⎠⎟( ∣ ) ( ( )∣ )

( ∣ )
( )

Single-hatted parameters ,n nl { } maximize the likelihood,
while double-hatted parameters n are those that maximize 
for a given assumption of nl .
Some care needs to be taken for the cases where nl comes to

lie in an “unphysical” region. We need to define as
“unphysical” all those values that cannot be part of a given
theory, due to fundamentally different concepts. In our case,
this would mean negative values of nl for subluminal theories,
i.e., 0nx > and positive values of nl for superluminal theories,
i.e., 0nx < . Following the recommendation of Cowan et al.
(2011), we adopt an alternative test statistic that avoids the

Table 1
Obtained Fit Values from the Peak Comparison Method

Nuisance Result Result Result Result
Parameter (55–100 GeV) (400–600 GeV) (600–1200 GeV) (400–1200 GeV)

Gaussian Pulse Shape

P2f 0.398±0.001 0.403±0.006 0.404±0.005 0.403±0.004

P2s 0.011±0.001 0.018±0.007 0.011±0.005 0.015±0.005
2c NDF 1.15 0.75 0.90 1.06

Lorentzian Pulse Shape

P2f 0.399±0.001 0.401±0.005 0.403±0.006 0.402±0.004

P2g 0.010±0.002 0.02±0.01 0.012±0.008 0.014±0.007
2c NDF 1.14 0.73 0.89 0.97

Note. The uncertainties are statistical only. The entries labeled P2f denote the Gaussian or Lorentzian mean, while P2s denotes the Gaussian sigma and P2g the
Lorentzian half width at half-maximum. The last column shows results for the full range from 400 to 1200GeV; it is not used for the peak comparison, but can be
compared to the later results in Table 3.

Table 2
Obtained 95%CL Limits from the Peak Comparison Method

55–100GeV 400–600GeV
Case versus versus

600–1200GeV 600–1200GeV

EQG1 (GeV)

11x = + 2.5 1017´ 1.1 1017´
11x = - 6.7 1017´ 1.1 1017´

EQG2 (GeV)

12x = + 1.8 1010´ 1.4 1010´
12x = - 2.9 1010´ 1.5 1010´

Note. The first two lines apply to the linear case (delay and advancement), while
the last two lines are valid for the quadratic case of LIV (again, delay and
advancement). The second column represents the limit on the characteristic LIV
energy scale, obtained by comparing the two distant energy bins 55–100GeV
and 600–1200GeV, while the last columns shows the limits obtained from the
two adjacent high-energy bins 400–600GeV and 600–1200GeV.
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formal use of physical boundaries by construction, namely:

XD
2 ln if sgn sgn

2 ln otherwise.
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Such a test statistics allows us to set limits on nl at a given
confidence level. A one-sided 95% CL limit is then determined
by the value of nl at which D 2.705n »˜ (Olive & Particle Data
Group 2014).

We compute  in the form of an extended likelihood, i.e., the
product of the probability density function (PDF) () of each
event in our data set, considered independent of each other,
multiplied by the Poissonian probability to obtain the number
of observed events, given the hypothesis ;n nl{ } (see, e.g.,
Barlow 1990 and Equation(6) of Kranmer 2015). We fit both
ON and OFF regions simultaneously27:
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where gk and Nk are the expected and observed number of
pulsar events of observation period k, respectively, with
reconstructed energy within a chosen range E E,min max¢ ¢[ ] (see
Section 4.1) and reconstructed phase within the ON -phase
range ,min maxf f¢ ¢[ ]. Note the dependency of gk on both the LIV
parameter nl and all nuisance parameters, which are a direct
consequence of the limited observed phase range. Similarly, bk,
which are nuisance parameters, are the corresponding numbers
of background events in the standard background control phase
(OFF) region 0.52, 0.87[ ] (Fierro et al. 1998), while τ is the
ratio of phase width of the OFF, divided by that of the ON
region. The phase limits of the ON region have been optimized
using simulations (see Section 4.2). The first product runs over
Ns used observation periods, the second and third over the
Nk
OFF events found in the OFF region, and Nk

ON events found in
the ON regions, respectively, for each observation period k.
Here, P n( ) is a possible PDF of the nuisance parameters,
obtained from external measurements.

A minimum set of nuisance parameters then includes: the
P2 flux normalization f, its spectral index α (see also
Equation (13)), the mean pulse position P2f and its width P2s
(see Equation (14)), and the bk background levels. Nuisance
parameters may nevertheless also include additional asymmetry
parameters, a spectral cutoff, or other variables parameterizing
a different pulse model (see later Section 4.1 or 4.3).

The PDF of event i is a normalized combination of PDFs for
its measured quantities E ,i if¢ ¢( ) to belong either to a pulsar
event S E , ;k i i n nf l¢ ¢( ∣ ) or a background event h Ek i¢( ) (see, e.g.,

Aleksić et al. 2014b):

E

b h E g S E

g b
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with h Ek ¢( ) being the (interpolated) spectral energy distribu-
tion of the background, and S E , ;k i i n nf l¢ ¢( ∣ ) the PDF of the
pulsar signal for the kth data subsample, respectively. Here,
h Ek i¢( ) is a complex combination of cosmic-ray events and
gamma-ray images from the Crab Nebula, and is very difficult
to model analytically. Because the integral number of
background events is always at least a factor of 20 larger
than the integrated signal, b g 20k kt >( ) , an accurate
construction of h Ek i¢( ) is indispensable. We chose to linearly
interpolate the binned spectral energy distribution of the
background region in double-logarithmic space, and inter-
polate events without any background events using a linear
fit to that distribution. We find that h Ek i¢( ) follows only
approximately a power law, showing subtle features such
as spectral breaks. We tested different binnings to the
original background distribution and found that their effect
is acceptable, but nonetheless a non-negligible source of
systematic uncertainties (see Section 4.3). The signal PDF,
S E , ;k i i n nf l¢ ¢( ∣ ), is calculated as follows:

12
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where:

1. tkD is the effective observation time for the kth data
subsample.

2. Rk is the telescope response function of the true photon
energy E for the kth subsample, computed as the product
of the effective collection area and the energy redistribu-
tion function of the instrument. Both have been obtained
from Monte-Carlo simulations and fitted to obtain smooth
functions in energy.

3. P2G is the pulsar spectrum at P2, namely:

E f E E E Eexp

TeV cm s . 13
bP2 dec

1 2 1

G = -
´

a-

- - -

( ) · ( ) · ( )
( )

A previous publication using the same data set(Ansoldi
et al. 2016) obtained the values f 5.7 0.60 =  ´( )
10 TeV cm s10 1 2 1- - - - , a de-correlation energy(Abdo
et al. 2010b) E 50 GeVdec = , and 3.0 0.1a = ( ) in a
joint fit with Fermi data, using a pure power law (i.e.,
Eb ¥≔ ). A possible exponential cutoff has only been
excluded below 700GeV so far(Ansoldi et al. 2016).

27 Note that the factors N1 k
ON! and N1 k

OFF! have been omitted here because
they drop out in the test statistics Equation (8).
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4. FP2 is the pulsar phaseogram model for a given LIV
intensity λn and is computed as:
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where P2s¢ is the intrinsic pulse width at the pulsar itself,
which may in principle depend on energy, and ress the
instrumental phase resolution, which is dominated by
the uncertainties of the pulsar ephemerides, the rms of the
timing noise, and the uncertainties of the barycentric
corrections. Because the latter contribution is two orders
of magnitude smaller than the former(Garrido 2015), the
observed width P2s can be considered completely
dominated by the intrinsic pulse width. Note that the
pulse form does not necessarily need to follow a
Gaussian, and other, even asymmetric, functions cannot
be excluded so far. The effect of different alternative
possibilities will be investigated later on (see
Section 4.3).

The mean position of the Gaussian includes a signed phase
delay produced by the LIV effect under test, described by fD
(Equation (4)).

5. Here, gk and bk are the normalization constants of Sk and
hk, which depend on the actual realizations of all nuisance
parameters, and on nl , once these PDFs are integrated
within the phase window limits minf¢ and maxf¢ , and the
reconstructed energy limits Emin¢ and Emax¢ .

In principle, minf¢ and maxf¢ could be chosen to be 0 and 1,
respectively, and the PDF constructed as cyclical. However, in
that case, the contributions of P1 and the bridge emission
(Aleksić et al. 2014a) need to be modeled as well,
unnecessarily complicating the PDF and adding systematic
uncertainties to the results. Moreover, it is more computation-
ally efficient to reduce the background as much as possible, by
choosing tight windows minf¢ and maxf¢ around P2.

6. The limits for the integration over the true photon energy
are formally set to zero and infinity, but physically need
to be set to a lower value Emin above which the emission
model Equation (13) is considered valid, e.g., a good
choice would be the transition from the exponential cutoff
to the power-law, around 40GeV. Such a value does not
hamper the precision of the overall likelihood, because
the minimum reconstructed energy E¢ has been chosen to
be 400GeV, sufficiently far from this value in compar-
ison with the energy resolution of 15%–20% (see
Appendix A).

7. The choice of the cutoff energy Eb is less obvious: the last
significant spectral point, obtained with these data, lies at
∼1.5TeV and still fits the power-law (Equation (13)),
although an exponential cutoff can only be excluded
below 700GeV at 95%CL(Ansoldi et al. 2016). A
reasonable, justified choice of Eb above 700GeV is
hence a priori impossible; its effects on the limits on nl
will be studied in Section 4.1.

The PDF for the nuisance parameters flux ( f ) and spectral
index (α) is assumed to be normally distributed and un-
correlated because it was evaluated at the de-correlation energy
Edec(Ansoldi et al. 2016):

P f , , , , 15f f
2 2 a m s m s= a a( ) ( ) · ( ) ( )

with fm and ma being the central fit results for f0 and α, and fs
and sa their statistical uncertainties.
The PDF for the pulse position parameters P2f and P2s had to

be assumed flat because no previous information is available
about their values, except for this very same data set.
The definition of the likelihood, Equation (11), assumes that

the phases have been reconstructed with sufficient precision
(we assume the systematic uncertainty in the reconstruction of
the phases of the order of 10−3 in phase), such that any residual
uncertainty between reconstructed phase if¢ and true phase f
can be absorbed in the nuisance parameter P2s . Similarly, the
change of pulsar period from 33.60ms in 2007 to 33.69ms in
2014 has been absorbed in P2s . Note that both effects are
statistically independent of the reconstructed photon energy.

4.1. Application of the Profile Likelihood to Data

The ML algorithm (Equation (8)) is now applied to the
MAGIC Crab Pulsar data set(Ansoldi et al. 2016), using
E 100 GeVmin¢ = and E 400 GeVmin¢ = . Toward even lower
energy limits, the background results difficult to model with
high accuracy, because gamma-hadron separation works less
and less efficiently, especially for those data that were taken
with only one telescope. Remember that the analysis leading to
this data sample has been optimized for high energies. For the
minimization of the profile likelihood, we use the TMINUIT
class of ROOT(James & Roos 1975; Brun & Rademakers
1996; Brun & James 2015), employing the MIGRAD, and in
case of no success, the SIMPLEX algorithms.
The obtained values of 1,2l at the found minima are close to

zero in all cases. Table 3 (pulse evolution model 1) shows the
obtained nuisance parameters at the minimum. All values
obtained for E 400 GeVmin¢ = are compatible with the ones
presented in Ansoldi et al. (2016). The results for
E 100 GeVmin¢ = are compatible with the numbers presented
from previous analyses of data from 40 to 400GeV(Aliu et al.
2011; Aleksić et al. 2012a). Interestingly, the pulse widths
seem to widen (by an about 1σ fluctuation into opposite
directions) for data below and above 400GeV. This is
unexpected, given that a significant shrinking of the pulse
width had been observed previously from GeV energies to
beyond 100GeV (as well as from MeV to GeV energies)
(Aleksić et al. 2011, 2012a).
For this reason, we test a second pulse evolution model2,

incorporating a linearly changing pulse width with the
logarithm of energy (compare also with Figure3 of Aleksić
et al. 2012a):

d

d E
E E

log
log . 16P2 P2,0

P2
10 mins s

s
= -

( )
· ( ) ( )

Including d d ElogP2s ( ) in the set of nuisance parameters
yields d d Elog 0.00 0.01P2s = ( ) above 400GeV, compa-
tible with the assumption of a constant pulse width (see
Table 3, pulse evolution model 2). For reconstructed energies
starting from 100GeV, however, the situation changes
and an increasing pulse width is marginally favored,
namely: d d Elog 6 4 10P2

3s = -  ´ -( ) ( ) . This finding is

7

The Astrophysical Journal Supplement Series, 232:9 (17pp), 2017 September Ahnen et al.



in agreement with the results presented in Ansoldi et al. (2016)
and Aleksić et al. (2012a).

Finally, another pulse evolution model3, describing an
abrupt transition of both pulse position and pulse width, at a
fixed (true) energy Et, can be tested, namely:
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Just as pulse evolution model2 contains model1 in the case
of d d Elog 0P2s ( ) , pulse evolution model3 includes
model1 in the limit Et  ¥. Figure 2(left) shows the
likelihood at the minimum, when only the parameter Et is
varied. One can see that Et  ¥ is excluded by about 3s
significance, if the other nuisance parameters are kept fixed,
i.e., at the values obtained below Et. Similarly, a transition of
the mean pulse position ( 0P2fD > ) at E 285 GeVt = is found,
albeit with only 1.2s significance. Combining the two
individual log-likelihoods for P2,1s and P2,2s excludes a
common pulse width with about 2s significance (see
Figure 2 right).

It is evident that more data are required to clearly determine
the behavior of the P2 pulse position and width above about

200GeV, something out of the scope of this paper. However,
its influence on the behavior of the profile likelihood below
400GeV is notable, as can be seen in Figure 3: while the
profile likelihood with E 400 GeVmin¢ = appears symmetric
around the minimum, the lower energy limit E 100 GeVmin¢ =
produces a skewed likelihood with non-standard features,
except for the linear case using pulse evolution model3. In the
quadratic case, a common feature between 202l = and

402l = is observed for all cases, less pronounced for the case
of pulse evolution model3.
Strikingly, the incorporation of considerably more data between

E 100 GeV¢ = and E 400 GeV¢ = , which fixes the nuisance
parameters P2f and P2s to much more precise values and should
consequently produce a steeper profile likelihood, seems to
achieve no improvement—or even a worsening—of the precision
with which the parameters of interest, 1,2l , can be determined.
Because we cannot be sure about the correct pulse evolution

model for P2, at least below about 300GeV, and to exclude
any fake effects on the LIV parameters due to wrongly modeled
behavior of the nuisance parameters, we decide to restrict the
further LIV-search to the part of the sample starting with
E 400 GeVmin¢ = . The most probable values are then

0.41l = - and 1.52l = - , both statistically compatible with
the null hypothesis at the level of 0.1σ.

4.2. Calibration of Bias and Coverage

In this section, the statistical properties bias and coverage of the
likelihoodEquation (8) are studied with the help of MC
simulations. Using the results from the previous section, we
perform sets of 1000 simulations of events lists E k, ,i i i nf¢ ¢{ ∣ }.
For each simulation set, we randomly sample pulse peak
positions, pulse widths, absolute flux levels, and spectral indices
of normal distributions centered on the values from Table 3, and
widths obtained from a Cholesky decomposition of the covariance
matrix (provided by MINUIT from the real data sample), matrix-
multiplied with a vector of random normally distributed numbers.
With this procedure, the correlations between the nuisance
parameters, especially between flux, spectral index, and pulse
width, are correctly taken into account (see e.g., Walck 1996;
Blobel & Lohmann 2012). We also test a 2c -distributed pulse
width, but obtain results very similar to the normal case.
To simulate the background, parameterized power-laws

obtained from the background phase region of real data are
used, adapted to each observation period. Phases for the
background events are picked from a flat distribution of the
entire phase range. Background is hence simulated simulta-
neously for the signal and background control phase region.
The background model is extracted individually from the latter
for each simulated data set, according to the algorithm
described in the previous section. Because flux and spectral
index can vary considerably between each simulation set, the
number of reconstructed excess events do so as well, although
its mean number coincides with the 544 events (for
E 400 GeV¢ > ) presented in Ansoldi et al. (2016).
In order to reduce the computational resources, we consider

only events up to E 7¢ = TeV, because an extrapolation of the
spectrum predicts on average only one event above that energy.
In case of an exponential cutoff E 7 TeVb  , the prediction
would be even smaller. We can hence get rid of a residual
background contribution at high energies, to which the
likelihood may be sensitive, particularly in the case of quadratic
LIV.

Table 3
Obtained Nuisance Parameter Values at the Minimum for 1,2l from the Full

Likelihood Method

Nuisance Result Result
parameter (E 400 GeVmin¢ = ) (E 100 GeVmin¢ = )

Pulse evolution model1

f 6.3±0.7 6.2±0.6
10 TeV cm s10 1 2 1- - - -(· )

a 2.81±0.07 2.95±0.07

P2f 0.403±0.003 0.401±0.001

P2s 0.015±0.003 0.011±0.002

Pulse evolution model2

f 6.3±0.7 5.9±0.5
10 TeV cm s10 1 2 1- - - -(· )

a 2.81±0.07 2.92±0.07

P2f 0.403±0.004 0.401±0.001

P2s 0.015±0.003 0.009±0.002
d d ElogP2s( ) 0.00±0.01 −0.006±0.004

Pulse evolution model3

f K 5.9±0.6
10 TeV cm s10 1 2 1- - - -(· )

a K fixed2.95 ( )
P2f K 0.4005±0.0011

P2fD K 0.004±0.003

P2,1s K 0.0089±0.0009

P2,2s K 0.015±0.003
Et (GeV) K 285±32

Note. The uncertainties are statistical only and have been obtained from the
diagonal elements of the covariance matrix, provided by MINUIT. Pulse
evolution model1 refers to the original likelihoodEquation (8), while pulse
evolution models2 and3 use the extensions Equations (16) and (17),
respectively.
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To determine the optimum phase window ,min maxf f¢ ¢ , we
select ±3 standard deviations around the central fit value
obtained in Section 3, i.e., 0.3558, 0.4495f¢ Î [ ], after
explicitly checking that a bigger window does not improve
the precision of the method. This effectively occurs only when
the simulated LIV scale is larger than the limits obtained in
Section 3 (for more details, see Garrido 2015).

Stability tests are carried out with simulated data sets of
different LIV parameters, the results of which are shown in
Figure 4. We find that our algorithm converges correctly on
average, under the restriction that a very small, but nevertheless
significantly measured, bias of about 4%–5% is present, over-
estimating the LIV effect. The bias reduces by approximately
half when the median of the distribution ofl is evaluated instead
of the mean (not shown in Figure 4). We conclude that the ML
estimator is consistent, under the restrictions just mentioned.

In order to demonstrate the statistical behavior of the ML
estimator, we simulate and reconstruct the case of no LIV for
the following four example cases:

E 400 GeVmin¢ = no systematics: samples with
E 400, 7000 GeV¢ Î [ ] and effective areas and energy
resolution simulated with the same values as those used in
the ML analysis.
E 400 GeVmin¢ = with systematics: samples with
E 400, 7000 GeV¢ Î [ ] and effective areas and energy
resolution varied randomly according to the systematic
uncertainties stated in Aleksić et al. (2012b, 2016b).
E 100 GeVmin¢ = with systematics: samples with
E 100, 7000 GeV¢ Î [ ] and effective areas and energy
resolution varied randomly according to the systematic
uncertainties stated in Aleksić et al. (2012b, 2016b).
E 400 GeVmin¢ = with systematics CTA: samples with
E 400, 22, 000 GeV¢ Î [ ] and effective areas and back-
ground multiplied by a factor ten, in order to simulate a
toy performance of the Cherenkov Telescope Array (Actis
et al. 2011). The energy resolution is estimated from
Bernlöhr et al. (2013) and systematic uncertainties according
to the CTA calibration requirements(Gaug et al. 2014).

The last case is included to obtain a toy estimate of the
sensitivity of this method within a realistic experimental option
in the near future for the same amount of observation time, if

pulse evolution between 200 and 400GeV remains insuffi-
ciently understood.
Figure 5 shows the obtained distributions of 1l for these

simulated scenarios. In all cases, Gaussian fits yield values of
NDF2c considerably worse than Student’s t-distributions with

argument t 1l s n=  · , which seem to correctly describe the
shape of the distribution, particularly the tails. The addition of
systematic uncertainties seem to have an effect on the shape,
expressed in Student’s ν-parameter, rather than the distribution
widthσ. The apparent discrepancy can be understood as an
effect of the variations of the two nuisance parameters P2s and
α (see Appendix B). The slightly non-Gaussian behavior of the
reconstructed LIV scales has a direct consequence on the
expected coverage properties of the test statisticsEquation (8).
A cumulative of the Student’s distribution with an effective

2.06 0.37 1.96 0.39n =  ( ) ( ) predicts coverage of only
(93±2)%/(92.5±2)% at 1.64s for a one-sided distribution,
instead of the 95% for the Gaussian case. We check this
behavior using pull-plots and find coverages of only
(93.1±0.6)%/(91.2±0.7)%, respectively, for the cases of
no systematics and included systematics. Confidence limits
using the normal values of1.64s (i.e., D 2.71nD =˜ ), will hence
be under-covered. In order to retrieve 95% coverage using a
Student’s distribution, values of 1.99d s= and 2.11d s=
( D 3.961D = and D 4.451D = ) are predicted instead. A sample
with limits extracted using these higher values allow us to
retrieve the correct coverage of 95%.
The distributions of 2l for the simulated scenarios with no

LIV are shown in Figure 6. In order to better understand their
obviously non-Gaussian shapes, it is instructive to study a
simplified version of the likelihood Equation (10). In the
hypothetical case of just one observation period, no back-
ground, an infinite energy resolution, and infinite phase range,
the likelihood can be written as (see also Section 3B of
Vasileiou et al. 2013):

E

t A E E F E

g
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,
.
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i i i i n
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D á ¢ ñ G ¢ ¢ ¢

=

( ∣ )

· ( ) · ( ) · ( ∣ )

( )

Table 4
Results of the Fits to the Distributions of Reconstructed Values of 1l and 2l

Case Gaussian Fit Student’s Fit

σ NDF2c σ ν NDF2c

Linear Model
E 400 GeVmin¢ = no syst. 7.16±0.19 2.93 8.8±1.2 2.06±0.37 0.72
E 400 GeVmin¢ = with syst. 6.88±0.20 2.93 7.6±1.1 1.96±0.39 1.42
E 100 GeVmin¢ = with syst. 2.26±0.07 1.10 3.70±0.69 3.58±0.98 0.44
E 400 GeVmin¢ = with syst. CTA 1.40±0.04 1.51 2.33±0.35 3.81±0.81 0.37

Quadratic Model
E 400 GeVmin¢ = no syst. 9.27±0.18 3.00 8.20±0.19 2.16±0.28 1.67
E 400 GeVmin¢ = with syst. 9.05±0.14 2.52 7.87±0.21 2.16±0.31 0.94
E 100 GeVmin¢ = with syst. 6.79±0.15 1.86 5.99±0.18 2.93±0.55 1.12
E 400 GeVmin¢ = with syst. CTA 2.77±0.05 5.04 2.47±0.06 1.65±0.15 1.02
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For this simplified likelihood, the expectation value for nl
can be calculated analytically, yielding:
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root involved. Instead, the PDF of 2l has the form28
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Alternatively, if nt is distributed according to a Student’s
t-distribution, the PDF for 2l yields:

c

c

c

2 1 2

2

1 .

20

stud 2
2

2 2 2
2

2
2

1 2

2

2

2

2

 l
p s

n
n

l l m

s
l

=
G +

G

+
-

t

t

t

n- +



 








⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )
( )

· (( ) )
( )

·
( · ∣ ∣ ( ))

( )
· ∣ ∣

( )

( )

Equation (19) is, strictly speaking, the PDF of the square of a
normally distributed variable, while Equation (20) is the PDF
of the square of a variable distributed according to Student’s
t-distribution.29

Contrary to the linear case, the distribution Equation (19)
predicts slight over-coverage, while the Student’s of 2nd-order
predicts marginal under-coverage of (94.5±1)%, which is
found back in the data, namely (94.2±0.5)%.

In order to retrieve 95% coverage using a Student’s
distribution, values of 1.66d s= ( D 2.762D = ) are predicted.
Figure 7 displays predicted p-values and suggested new

confidence intervals from different integrated one-sided prob-
ability distributions: a normal distribution, both of the statistical
parameter x as its square x2 and Student’s t-distributions
parameterized with the ν-values obtained from the fits to the
distributions of reconstructed LIV parameters from the
simulations (Figures 5 and 6).
Finally, we calculate limits from each of the simulated

samples for the previously found test statistic differences
D Dn n n

95%CLl = D˜ ( ) ˜ . Figure 8 shows the resulting limits.

4.3. Systematic Uncertainties

A change of the binning for the spectral energy distribution
of the background within reasonable ranges affects the obtained
limits by �10%.
As seen in the previous section, inclusion of the systematic

uncertainties in reconstructed energy and effective area requires
evaluating the test statistic at a larger increase, D 4.451D =
instead of D 3.961D = , leading to a ∼6–7% increase in the
upper limit for the linear case, while no effect has been found
for the quadratic case. From the obtained statistical precision of
the parameters to fit Equation (20), we can estimate that their
effect must be smaller than 5% (95% CL) on the limit to 2l .
The effect of possible inter-pulse shapes differing from a

standard Gaussian is more complicated to assess because, in
principle, a panoply of different shapes is possible. Until a
better theoretical understanding of the pulse shape is also
available, we test two easily implemented alternatives: a
Lorentzian-shaped pulse, of the form

N , 21L LP2
2 2s p f f s= - +( ) (( ) ) ( )

and an asymmetric Gaussian shape.
Evaluating the test statistic on real data using the Lorentzian

pulse shape model Equation (21) instead of the Gaussian
Equation (14), the limits on 1l change by maximal 6%, while
those on 2l improve by up to 14%.
We address the possibility of asymmetric pulse shapes, as

usually observed at lower energies(Abdo et al. 2010a), using a
possible extension of the Gaussian pulse shape with an

Figure 2. Left: log-likelihood ratio(Equation (8)) as a function of the transition parameter Et, under the assumption of no LIV ( 01l = ). Right: the combined log-
likelihoods for P2,1s and P2,2s , with the other nuisance parameters kept fixed at the minimum in both cases.

28 Following the rule that if X is a random variable that is distributed like
XfX ( ), then a variable transformation y g X= ( ) yields f y f g yY x

1= -( ) ( ( )) ·
g yd

dy
1- ( ).

29 For large values of
2 2m st t  , both distributions converge to a Gaussian.

Substituting c sgn22 2
m m m= t t ˜ ∣ · ( )∣ and c22s s= t˜ , or for the Student’s

case, c22s s n= t˜ ( · ) , the variance of Equation (19) can be derived as
V 22,simp

2l p s=[ ] · ˜ for the case of 0m =˜ , and for the Student’s case
Equation (20) V 2 1 2 2 12,stud

2l pn n n n n s= G + G -[ ] · (( ) ) ( ) · ( ) · ˜ ,
which converges against the Gaussian variance for n  ¥.
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asymmetry parameter P2sD ¢ :
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A replacement of the pulse shape model FP2 (Equation (14))
by FP2

asym and addition of P2sD ¢ to the list of nuisance
parameters yields 0.0137P2 0.0032

0.0041sD ¢ = -
+ , with the hypothesis

of a symmetric pulse excluded by 2.4s (see Figure 9). The
obtained limits on nl improve by at least ∼30% when including
the possibility of asymmetric pulse shapes. However, note that
the asymmetry parameter and λ are anti-correlated:

, 0.47, , 0.161 P2 2 P2r l s r l sD ¢ = - D ¢ = -( ) ( ) , and such an
improvement is hence expected. However, until a pulse shape
asymmetry is significantly established by more data, we refrain
from using it to improve the limits on LIV.

An exponential cutoff in the energy spectrum at energy Eb

(see Equation (13)) at the currently published constraint of
700GeV(Ansoldi et al. 2016) worsens the limits on 1,2l by
almost a factor of four. We add Eb to the list of nuisance
parameters and find no cutoff as the most probable hypothesis,
as stated in Ansoldi et al. (2016). Assuming no LIV, and
profiling the rest of nuisance parameters with respect to Eb, we
obtain a new limit of 4.3TeV (95% CL) on the cutoff, and
the previous limit of 700GeV disfavored from the most
probable hypothesis of no cutoff with a p-value of 5 10 4´ - .
See Appendix C for further details. Evaluating the limits on
LIV at Eb=4.3 TeV, we observe a worsening on the order of
30% for both linear and quadratic LIV.

Contributions of the bridge emission leaking into the
inter-pulse region have not been taken into account in the
construction of the likelihood. The flux of the bridge from f =
0.026 0.377( – ) has been measured to E 12.2 3.3bridgeG = ( ) ( ) ·
E 100 GeV 103.35 0.79 11´-  -( ) ( ) TeV−1cm−2s−1 (Aleksić
et al. 2014a). Any homogeneous coverage of P2 by the
bridge would have no effect on the LIV analysis, but in the
worst case, the bridge emission leaks into parts of P2, distorting

the pulse shape in an energy-dependent way. If we conserva-
tively assume no spectral cutoff, such a contribution of the
bridge to half the P2 pulse might amount to 10% of the observed
excess events on average. We introduce such a case into our toy-
MC simulation and obtain a worsening of the limits of less
than 5%.
The (un-modeled) slow-down of the pulsar frequency,

possible glitches of pulsar phase, and mainly the uncertainties
of the currently available measurements of the distance to the
Crab Pulsar all contribute to the astrophysical uncertainties.
Table 5 summarizes the systematic uncertainties studied.

Assuming they are all un-correlated, they add up quadratically
to about 42% for the linear and 36% for the quadratic case.
A different class of systematic uncertainties relates to

intrinsic energy-dependent pulse position drifts from the pulsar
itself. Such intrinsic delays may superimpose a possible LIV
effect, and in the worst case, mimic or cancel part of its
signature. We do not include these in Table 5 and the derived
limits, but will briefly discuss them here.
Generally, the origin of VHE pulsar emission up to TeV

energies is still debated in the literature(Aharonian et al. 2012;
Du et al. 2012; Hirotani 2013), albeit it is out of the question that
inverse Compton scattering must be at play in some way or
another(Hirotani 2001; Aleksić et al. 2011; Lyutikov et al. 2012;
Bogovalov 2014). Energy-dependent time drifts of the pulse can
then follow those of the illuminating electron population, or the
illuminated seed UV and X-ray photons, although this is less
plausibly because of the involved Klein–Nishina scattering
regime. A time dependency of the mean scattering angle is also
possible.
At lower (seed photon) energies, dependencies of the pulse

peak positions have previously been studied in detail in the
literature(Mineo et al. 1997; Massaro et al. 2006, 2000),
particularly throughout the strong X-ray signal regime. These
studies find constancy of the peak positions of both P1 and P2
throughout more than three orders of magnitude, albeit the
pulse widths and shapes do change throughout the X-ray
domain.30

To make numerical predictions of the size of a possible LIV-
mimicking effect is clearly beyond the scope of this paper. We

Figure 3. Test statistic (Equation (8)) as a function of the linear LIV parameter 1l (left) and the quadratic LIV parameter 2l (right). The different pulse evolution
models (model 1, model 2, and model 3) have been used, as have two lower energy limits (see text for details).

30 Note, e.g., that the phase boundaries, and particularly f3 remain constant,
both in Massaro et al. (2000) and the more complex multicomponent fits
ofMassaro et al. (2006).
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emphasize, however, that the measured absence of any linear or
quadratic energy dependency of the mean pulse position (up to
our sensitivity) makes rather unlikely any intrinsic effect of the
same size and opposite direction, canceling LIV effects.

5. Results and Discussion

The 95%CL limits obtained with the calibrated profiled
likelihood method are shown in Table 6, with and without
including systematic uncertainties. One can see that the profile
likelihood method improves the limits by about a factor of four
to five with respect to the simple peak search algorithm (shown
in Table 2), if the same energy range is used. This is expected
because the test statistic Equation (8) exploits additional
information, like the constancy of the signal over time (through
the condition that the expected number of events for the
different observation periods is proportional to the respective
observation time), the characteristics of the fluctuation of
the expected signal, and last but not least, the continuous linear
(or quadratic) evolution of the signal with energy. Along with

—and necessary for—such an improvement is the stronger
confinement of the nuisance parameters, particularly the mean
pulse position P2f , which strongly correlates with the LIV scale
(correlation coefficient 0.5r ~ ).
Our new limits improve previous constraints from the Crab

Pulsar(Otte 2011) by almost a factor of three for the linear case,
and by about an order of magnitude for the quadratic case
(depending on how systematic uncertainties, not mentioned in Otte
(2011), are accounted). For the linear case, our limits are still two
orders of magnitude below the best experimental results obtained
from GRB090510(Vasileiou et al. 2013) (see Table 6). For the
quadratic case, however, the current best constraints from
Vasileiou et al. (2013) are only about a factor of two better than
our limits. It should be noted, however, that the limit of
E 1.3 10 GeVQG

11
2 > ´ reported in their abstract does not

incorporate the additional systematic uncertainty of 10% from
instrumental effects, estimated in their Section6B. Moreover, that
limit applies only to the subluminal case (the superluminal limit
from the same method is a factor seven worse) and came out as the
best of three statistical methods applied. If we consider their

Figure 4. Reconstructed LIV parameter distributionsl as a function of simulated intensities λ. The mean values have been fitted to a linear response function, with the
fit results shown in the inserted box. Below the fit, residuals are shown.

Figure 5. Distribution of estimated linear LIV intensities 1l for 1000 MC simulations with no LIV each, for four example cases: E 400 GeVmin¢ = and no additional
systematics simulated (blue); E 400 GeVmin¢ = and additional systematics simulated on the absolute energy and flux scales (green); E 100 GeVmin¢ = with the same
systematics simulated (red); and E 400 GeVmin¢ = , with statistics 10 times higher on signal and background, with energy resolution and systematics simulated for the
case of CTA (orange). All curves are fit to a normal function (dashed lines) and a Student’s t-distribution (full lines). All fit results are shown in the Table 4. The inlet
shows the same figure in logarithmic scale, to make the tails of the distributions better visible.
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likelihood results only, and include the mentioned systematic
uncertainty, our limits are only 30% and 60% lower for the
subluminal and superluminal cases, respectively. Even better,
though rather model-dependent, constraints on subluminal quad-
ratic LIV have been recently published by Rubstov et al. (2017)
and Martínez-Huerta & Pérez-Lorenzana (2017), using the highest
energy photons observed from the Crab Nebula, and the apparent
absence of a modification of the Bethe-Heitler cross-section for
pair production in the atmosphere, or the absence of photon decay
at these energies. A detailed treatment of the systematics inherent
to the IACT technique, and in the source spectra themselves, is,
however, still missing in both analyses.

Given the strong arguments for an experimental exclusion of
any linear LIV effects(Götz et al. 2014; Kislat & Krawczynski
2017), limits constraining the quadratic dispersion of photons with
energy have now become of greater interest. Moreover, if LIV is
not isotropic, 25 non-birefringent coefficients must be constrained
via direction dependent limits(Kislat & Krawczynski 2015) whose
current best values are five to six orders of magnitude worse.

Unlike flaring astrophysical sources like AGNs or GRBs,
pulsar data can be continuously accumulated and statistics
improved thereby. The likelihood is currently still dominated by
background fluctuations, as well as un-resolved systematics,
particularly the pulse shape and its evolution with energy. Such
effects have possibly been found between 200 and 300GeV,
although the given statistics does not allow to claim firm
detection. More data will eventually allow to shed light on the
pulse evolution in this energy range and subsequently include
events with reconstructed energies below 400GeV into the
likelihood analysis. Our simulations (see Figure 8) have shown
that this possibility alone may already improve the limits by at
least a factor of two. Moreover, more data will allow to better
model the pulse shape itself and take less conservative choices
than the used Gaussian pulse shape with fixed symmetric width.
The possibility to take regular data on the Crab Pulsar with a

telescope system at the zenith of its performance (Aleksić et al.
2016b) will now permit to regularly improve the sensitivity, and
even plan such observations based on numerical predictions of

Figure 6. Distribution of estimated quadratic LIV intensities 2l for 1000 MC simulations with no LIV each, for four exemplary cases: E 400 GeVmin¢ = and no
additional systematics simulated (blue), E 400 GeVmin¢ = and additional systematics simulated on the absolute energy and flux scales (green), E 400 GeVmin¢ = ,
E 150 GeVmin¢ = with the same systematics simulated, and a ten times higher statistics on signal and background, with systematics on the absolute energy and scale
simulated for the case of CTA (orange). All curves are fit to a converted normal function (Equation (19), dashed lines) and a converted Student’s t-distribution
(Equation (20), full lines). The fit results of the latter are shown in the text boxes.

Figure 7. Ninety-five percent confidence limits for the different used distributions.
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such improvements. A data set of 2000hr of stereo data,
something perfectly within reach for the MAGIC collaboration,
given the regular observation of the Crab Pulsar for calibration
purposes, can hence ensure an improvement of the quadratic limit
by a factor of two, using data above 400GeV reconstructed
energy alone. Within a framework of collaboration between the
different current IACT installations, a significantly higher amount
of data is even plausible. Such a limit will reach the current
world-best constraints, but has the possibility to go well beyond
these, because these data can also help to better understand pulse
evolution of the inter-pulse, and such would allow to include
events below 400GeV in the likelihood.

Moreover, it is hoped that the Gaia mission(Gaia Collabora-
tion et al. 2016) will soon be able to measure the distance to Crab
to at least an order of magnitude better precision, removing one
of the main uncertainties to these limits.

6. Summary and Conclusions

We have made use of the profile likelihood method and the
Crab Pulsar signal above 400GeV detected by the MAGIC
gamma-ray telescopes(Ansoldi et al. 2016) to perform a test on
LIV involving an additional linear or quadratic dispersion relation
term with energy for photons. No significant correlation between

arrival time and energy of the pulsar photons is observed, and
upper limits on the linear and quadratic energy scale of LIV have
been derived. The profile likelihood has been carefully calibrated
with respect to its bias and coverage properties. For the first time
for the Crab Pulsar, systematic uncertainties have been studied
and included in the limits, apart from overall conservative choices
in the selection of pulse shape models and tested energy ranges.
While the obtained limits are less constraining for the linear

case, they come to lie at less than a factor two from the current best
limit from GRBs for the interesting quadratic case(Vasileiou et al.
2013), depending on which of the several limits in Vasileiou et al.
(2013) are chosen. There is nevertheless a large potential for
improvement, once the form of the pulse shapes and their
evolution with energy are better understood. We observe hints for
such an evolution, particularly in the range between 200 and
300GeV, although statistics do not allow yet to make a firm claim.
This paper brings back pulsars to the class of astrophysical

objects that are useful (and competitive) to investigate time-of-
flight differences of energetic photons. Due to the stable and
continuous nature of pulsar emission, limits can now be
constantly improved over time, and corresponding observations
planned accordingly. Source intrinsic effects that might mimic a
possible LIV signal from flaring sources (see, e.g., Bednarek &

Figure 8. Distribution of 95% confidence limits for 1l (top) and 2l (bottom) for the four simulated case scenarios. The arrows denote the experimentally found limits
(full line for subluminal behavior, dashed lines for superluminal scenarios).
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Wagner 2008; Zheng & Zhang 2011) are thus being diversified,
adding to the robustness of obtained limits and/or possible future
signals.

A combination of the profile likelihood obtained in this paper,
with those from similar searches using other sources and
instruments, like the strong AGN flares observed by MAGIC
and H.E.S.S.(Albert et al. 2008; Abramowski et al. 2011), and
combinations of GRBs(Vasileiou et al. 2013) can be another
promising way to further constrain the effects of LIV, particularly

with concern to the quadratic energy dependency of the photon
time of flight. The arrival of the next-generation VHE gamma-ray
observatory, the Cherenkov Telescope Array (CTA), will easily
improve this limit even if a factor of ten less observation time is
dedicated to the Crab pulsar.
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Appendix A
Used Data Samples

Because the energy reconstruction and effective collection
area of the system were different for each combination of
camera hardware (see, e.g., Figure1 of Ansoldi et al. 2016),
trigger, and readout system, the data had to be divided in
several subsamples, each with similar instrumental response.
This data set was down-selected to more than 300hr of
excellent quality data, including particularly medium and high-
zenith angle observations that provide better sensitivity above
about 800GeV(Aleksić et al. 2016b).
Table 7 lists the resulting 19 data samples used for this study.

The first two sets (I and II) were taken with one telescope in
stand-alone mode (see Aliu et al. 2009) and had an energy
resolution of around 20% in the energy range from 400GeV to
1TeV. The rest of the data samples were taken with two
telescopes, operated as a stereoscopic system (see Aleksić et al.
2012b). These have an energy resolution of 15–17% at
∼1TeV(Aleksić et al. 2016b). Major upgrades were carried
out in mid-2012 and mid-2013, first replacing the readout system,
and in the next year, the camera of the first telescope, to achieve a
system with almost identical telescopes. The data samples III–VI
were taken before the major upgrade(Aleksić et al. 2016a), while
samples VII–XIX are from after the upgrade(Aleksić et al.
2016b). From 2012 on, an upgraded sumtrigger(García et al.
2014) was tested on Crab, together with the normal coincidence
trigger, and was used to reduce the effective energy threshold of
the system(Aliu et al. 2008). However, those events triggered by
the sum trigger, and not the standard coincidence trigger, were
not included in this analysis.
Using the ephemeris provided by the Jodrell Bank

Observatory(Lyne & Roberts 2014), a phase value was
assigned to each of the recorded events with an accuracy of
about 4μs (see Section4.6 of Garrido 2015) using the
TEMPO2 package(Hobbs et al. 2006) (and cross-checked by
our own code (López Moya 2006)).

Figure 9. Log-likelihood ratio as a function of the asymmetry parameter P2sD ¢ .

Table 5
List of Studied Systematic Uncertainties

Systematic Effect Size (EQG1) Size (EQG2)

Background estimation <10% <15%
Absolute energy and flux scale <7% <5%
Different pulse shapes <6% 0*

Cutoff in energy spectrum <30% <30%
Contribution from the bridge <5% <5%
Distance Crab Pulsar <25% <12%

Total <42% <36%

Note. The effects labeled with an asterisk have been found to improve only the
limits.

Table 6
95% CL Limits from the Profile Likelihood Method and the Best Limits from

GRB090510 Obtained by Vasileiou et al. (2013)

Case Crab Pulsar (This Paper) GRB090510a

(W/o
Systematics)

(Incl.
Systematics)

(Best of 3
Methods) (Likelihood)

EQG1 (GeV)

11x = + 7.8 1017´ 5.5 1017´ 9.3 1019´ 6.3 1019´
11x = - 6.4 1017´ 4.5 1017´ 1.3 1020´ 1.3 1020´

EQG2 (GeV)

12x = + 8.0 1010´ 5.9 1010´ 1.3 1011´ 8.6 1010´
12x = - 7.2 1010´ 5.3 1010´ 9.4 1010´ 9.4 1010´

Note.
a 10% systematic uncertainty due to instrumental effects not included.
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Appendix B
Dependency of the Spread of Estimated LIV Parameters on

Nuisance Parameters

The effect of the variations of the nuisance parameter P2s the
spread of 1l is displayed in Figure 10. One can see that the
nuisance parameter is reconstructed correctly on average, i.e., it
shows no bias with respect to the simulated ones. The
reconstructed LIV parameter 1l , although not correlating with
the simulated nuisance parameter, shows a reconstruction
uncertainty that increases with larger values of simulated P2s .
This behavior ultimately produces a stronger peaked distribu-
tion of 1l with wider tails.

Appendix C
Exponential Cutoff Limit

We define a test statistic D for Eb, based on the profile
likelihood method, similar to the one defined in Equation (7),
and set the LIV parameters 1,2l to zero:
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A minimum of D is then found for no cutoff, i.e., Eb = ¥.
Figure 11 shows the test statistic as a function of Eb. A 95%CL
limit can be evaluated at that value of Eb where D= 2.71,

Figure 10. Left: distribution of reconstructed pulse width P2s vs. simulated pulse width P2s , for a set of 1000 MC simulations involving variation of all nuisance
parameters, under absence of LIV. Below, the residuals are shown. Right: distribution of reconstructed linear LIV intensities 1l for the same set of simulations, as a
function of the simulated pulse width P2s . The inlet shows the rms of 1l .

Table 7
Summary of the Used Data Samples

Data Set Observation Zenith Angle Effective Telescope Observation
Cycles Range On-time System Configuration

(deg.) (hr)

I 2–4 5–35 31 mono wobble
II 2–4 5–35 66 mono on
III 5–6 5–35 40 stereo wobble
IV 5–6 35–50 16 stereo wobble
V 5–6 50–62 5 stereo wobble
VI 5–6 5–35 34 stereo on
VII 7 5–35 4 stereo sumtrigger
VIII 7 35–50 2 stereo sumtrigger
IX 7 5–35 5 stereo sumtrigger
X 7 35–50 8 stereo sumtrigger
XI 8 5–35 22 stereo sumtrigger
XII 8 35–50 5 stereo sumtrigger
XIII 8 50–70 12 stereo sumtrigger
XIV 8 5–35 22 stereo sumtrigger
XV 8 35–50 5 stereo sumtrigger
XVI 8 50–70 9 stereo sumtrigger
XVII 9 5–35 26 stereo wobble
XVIII 9 35–50 6 stereo wobble
XIX 9 50–70 8 stereo wobble

Note. Observation cycles are MAGIC-internal numbers where each cycle corresponds to roughly one year. The telescopes were operating first with only one telescope
(in mono-mode), but later a second telescope was added and stereo observations made possible. Observations can either be carried out in wobble mode(Fomin et al.
1994), or on mode, where the source is imaged on to the center of the camera. Data sets labeled sumtrigger contained additional events triggered by the sum
trigger(García et al. 2014).
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resulting in E 4.3b  TeV. The value of D is found to be 11.0
at the previous limit E 700 GeVb > (95% CL) published in
Ansoldi et al. (2016), who used a binned likelihood approach
with fixed nuisance parameters P2f and P2s .
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