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Abstract. We prove that, for any positive constants δ and ε and every large

enough x, the interval [x, x+
√
x(log x)7/3+δ] contains numbers whose all prime

factors are smaller than xε.

1. Introduction

Let Ψ(x, y) denote the number of integers below x whose all prime factors are
at most y. As usual we call such numbers y-smooth. It is well known that, for
a wide range of x and y = x1/u, we have Ψ(x, y) ∼ ρ(u)x, where ρ(u) is the
Dickman function which is defined through a differential-difference equation and
which satisfies ρ(u) = u−u(1+o(1)) (see for instance the survey [9]). Besides being
of theoretical interest, smooth numbers play an important role in computational
number theory. For such applications, see for instance the survey [4].

In this note we are interested in y-smooth numbers in short intervals. One
expects that, for a wide range of variables x, y and z,

(1) Ψ(x+ z, y)−Ψ(x, y) ∼ z

x
Ψ(x, y),

and Friedlander and Granville [3] have established this for

exp((log x)5/6+o(1)) ≤ y ≤ x and
√
xy2 exp((log x)1/6) ≤ z ≤ x.

It is also interesting to prove just the existence of smooth numbers in a given short
interval instead of establishing the asymptotic formula. Furthermore, intervals
with length around

√
x are of special interest from applications point of view but

also because it is a breaking point for Dirichlet polynomial techniques. Indeed
Granville [4, Section 4.1] writes that he believes that the outstanding problen in
the whole area of smooth numbers is to show that, for any ε > 0 and large enough
x, one has

Ψ(x+
√
x, xε)−Ψ(x, xε) > 0.

This is currently only known, by work of Harman [7], for ε = 1/(4
√
e). This value

can be somewhat improved for slightly longer intervals: the author [13] has shown,
refining an idea of Croot [2], that, for every ε > 0, there is a positive constant

C = C(ε) such that the interval [x, x+C
√
x] contains x1/(5

√
e)+ε-smooth numbers.

Assuming the Riemann hypothesis, Soundararajan [14] has remarkably shown that
such intervals contain xε-smooth numbers for every ε > 0 (with C again depending
on ε, see Theorem 1.2 below for detailed statement).
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In this note we investigate how much longer intervals one must take to guaran-
tee existence of xε-smooth numbers unconditionally. By work of Lenstra, Pila and
Pomerance [12] which extends Balog’s [1] and Harman’s [6] earlier works one knows
that the interval [x, x+

√
x exp(C(log x)3/4(log log x)1/4)] contains xε-smooth num-

bers (actually exp(C ′(log x)3/4(log log x)1/4)-smooth numbers). Granville [4, Sec-
tion 1.5] speculates that perhaps pushing several known methods to their extreme
leads to a better result, possibly for intervals [x, x+

√
xc(x)] with c(x) a power of a

logarithm. In this note we confirm this intuition by proving the following theorem.

Theorem 1.1. Let ε > 0 and let x ≥ y ≥ exp((log x)2/3(log log x)4/3+ε) be large,
and write y = x1/u. Then, with

z =
√
x exp((7/3 + ε)(log log x+ 4u log u)),

one has
Ψ(x+ z, y)−Ψ(x, y)� zx−ε.

In particular, for any α > 0 and large enough x,

Ψ(x+
√
x(log x)7/3+ε, xα)−Ψ(x, xα)� x1/2−ε.

It is clear from the proof that if, for some λ ≤ 1/2, the zero density conjecture
for the Riemann zeta function can be beated in the strip <s ∈ (1 − λ, 1] (see
Lemma 2.3(i) below for an exact statement with the best known value λ = 3/14),
then 7/3 above can be replaced by 1/(2λ).

Therorem 1.1 should be compared with Soundararajan’s conditional result

Theorem 1.2 (Soundararajan [14]). Assume the Riemann Hypothesis. Let ε > 0
and let x ≥ y ≥ exp(

√
log x log log x) be large, and write y = x1/u. There is an

absolute positive constant B such that with z = Bu
√
x/ρ(u/2) one has

Ψ(x+ z, y)−Ψ(x, y)� zx−ε.

In particular, for every α > 0, there is a constant C = C(α) such that

Ψ(x, x+ C
√
x, xα)−Ψ(x, xα)� x1/2−ε.

Let us now give an outline of the proof of Theorem 1.1. As in the previous
works, we study a carefully chosen weighted sum over short intervals, in our case
something like

(2)
∑

x≤n1···n2kr1r2q≤x+z
conditions on ranges of nj and rj

Λ(n1) · · ·Λ(n2k)Λ(q) · (nice weight),

where Λ(n) is the von Mangoldt function. The ranges of the variables are chosen
so that nj , rj ≤ y and q � z2/x ≤ y, so that only y-smooth numbers are counted.
As in previous works we use Perron’s formula to relate this sum to an integral, in
our case the sum equals

1

2πi

∫ 2+i∞

2−i∞
−ζ
′

ζ
(s)M(s)2xs

(1 + (z/x))s − 1)2

s2
ds,

where M(s) is certain Dirichlet polynomial of length � x/z.
In previous works the integration path is next moved to the left but only so little

that it stays in the zero-free region of the Riemann zeta function. The main term
comes from the pole of ζ(s) at s = 1. An important new ingredient in our proof is
that we move the integration path further to the left, following works of Wolke [15]
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and Harman [5] on E2s (numbers with exactly two prime factors) in almost all short
intervals [x, x+ (log x)C ].

More precisely we move the integration path close to the line σ = 11/14 + η,
where η is a very small positive constant (depending on δ). The new integration
path is chosen carefully so that it avoids going too close to zeros of the zeta function.
Thanks to this the integral on the new path can be handled using a good estimate for
ζ′

ζ (s) and the mean value theorem for Dirichlet polynomials. Since we go beyond

the zero-free region, we encounter several poles and so need to handle a sum of
xβ |M(β+ iγ)|2, where β+ iγ runs over zeros of the zeta function to the right of the
line σ = 11/14 + η. Handling this sum is the most technical part of the argument
and it can be handled thanks to the special form of the polynomial M(s) and since
the zero density conjecture is known in this region.

Our techniques can naturally be adapted to get corresponding results concerning
smooth numbers in almost all very short intervals. Here and later we say that a
claim holds for almost all x ∼ X (i.e. x ∈ [X, 2X]) if the measure of the exceptional
set is o(X).

Theorem 1.3. Let ε > 0 and let x ≥ y ≥ exp((log x)2/3(log x log x)4/3+ε) be large,
and write y = x1/u. Then, with

z = exp((14/3 + ε)(log log x+ 4u log u)),

one has

Ψ(x+ z, y)−Ψ(x, y) > 0

for almost all x ∈ [X, 2X]. In particular, for any α > 0 and large enough X,

Ψ(x+ (log x)14/3+ε, xα)−Ψ(x, xα) > 0.

for almost all x ∈ [X, 2X].

Again this theorem covers shorter intervals than have been covered before, see [9,
Section 5] for earlier results.

Remark 1.4. After completion of the present paper, the author and M. Radziwi l l
have investigated a different way to study multiplicative problems in very short
intervals. This new method seems to, among other things, give improvements to
the logarithmic powers 7/3 and 14/3 in Theorems 1.1 and 1.3. The new work will
appear later.

2. Auxiliary results

As indicated in the introduction, in the proofs of our theorems we will use Per-
ron’s formula to relate a weighted sum (2) of smooth numbers to an integral of a
Dirichlet polynomial. This Dirichlet polynomial will be closely related to a product
of polynomials of types P (s) =

∑
n Λ(n)n−s and R(s) =

∑
r r
−s where summations

run over all integers in an interval. To study those we need some auxiliary results.
Following lemma follows immediately from the weighted truncated Poisson formula
(see for example [11, Lemma 8.8]).

Lemma 2.1. Let |t| ≤ N1 ≤ N2 and s = σ + it. Then∑
N1≤n≤N2

n−s =
N1−s

2 −N1−s
1

1− s
+O(N−σ1 ).



4 KAISA MATOMÄKI

We will need to relate P (s) to a sum of zeros of the Riemann zeta function.

Lemma 2.2. Let s = σ + it and P ≥ 1. One has

(3)
∑
n∼P

Λ(n)

ns
� P1(s) + P2(s) + P3(s),

where

P1(s) =
P 1−σ

1 + |t|
, P2(s) =

∑
%=β+iγ
|γ−t|≤P

P β−σ

1 + |γ − t|
, and P3(s) = P−σ log2 P,

and the sum in P2(s) is over non-trivial zeros of the Riemann ζ-function.

Proof. This is a standard consequence of Perron’s formula and move of the inte-
gration path. See also Wolke [15, Hilfssatz 2]. �

The following lemma collects the information we will need about the zeros of the
zeta-function. We write % = β + iγ for non-trivial zeros and, as usual, denote by
N(σ, T ) the number of zeros with β ≥ σ and |γ| ≤ T .

Lemma 2.3. Let V ≥ 1.

(i) For any ε > 0 there exists a positive constant θ = θ(ε) < 2 such that

N(σ, V )� V θ(1−σ)(log V )15 for σ ≥ 11/14 + ε;

(ii) One has

N(σ, V + 1)−N(σ, V )� log V ;

(iii) There exists a small positive constant c such that

N(σ, V ) = 0 for σ ≥ 1− c(log V )−2/3(log log V )−1/3.

Proof. See [10, formulas (11.83) and (11.33), Theorem 1.7, and Theorem 6.1] re-
spectively. �

To estimate ζ′

ζ (s) we use the following lemma which is [10, formula (1.52)].

Lemma 2.4. In the strip σ ∈ [−1, 2] one has

ζ ′

ζ
(σ + it) =

∑
%=β+iγ
|t−γ|<1

1

s− %
+O(log(|t|+ 2)),

where the summation runs over the zeros % of the Riemann zeta function.

We will use the following quick consequence of the mean value theorem for Dirich-
let polynomials.

Lemma 2.5. Let σ ∈ R, δ > 0 and M,T ≥ 1. Let M(s) =
∑
m∼M amm

−s. Then∫ σ+iT

σ−iT
|M(s)|2xσ min

{
δ2,

1

|s|2

}
dt� δ2x

( x

M2

)σ−1(
1 +

1

δM

) ∑
m∼M

|am|2

m
.
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Proof. Write I for the integral. Splitting it into intervals of length 1/δ,

I �
∑
|r|≤δT

1

(1 + |r|)2
· δ2xσ

∫ (r+1)/δ

r/δ

|M(σ + it)|2dt.

Applying the mean value theorem for Dirichlet polynomials (see for example [11,
Theorem 9.1]) to the last integral we get

I �
∑
|r|≤δT

1

(1 + |r|)2
· δ2xσ ·

(
1

δ
+M

) ∑
m∼M

(
|am|
mσ

)2

� δ2x
( x

M2

)σ−1(
1 +

1

δM

) ∑
m∼M

|am|2

m
.

�

The following simple lemma ([5, Lemma 3] rescaled) is used when we select the
integration contour which avoids going too close to zeros of the zeta function.

Lemma 2.6. Let β > α be real numbers. For every set {λ1, . . . , λN} of N real
numbers there is a set S ⊆ (α, β) of measure ≥ (β − α)/2 such that

N∑
j=1

1

|t− λj |
� N logN

β − α

for every t ∈ S.

3. Sums over zeros of the ζ-function

As explained in the introduction, we will need to handle a sum of certain Dirichlet
polynomaial over zeros of the zeta function. The following proposition allows us
to do this. The proposition is rather tailored to our needs, but similar arguments
could be used to show more general results.

Proposition 3.1. Let η > 0, β0 = 11/14+η and let θ = θ(η) be as in Lemma 2.3(i).
Let P2 = 2`P1 ≥ 2, T ≥ Q ≥ 1, R ≥ 1, and M = RP k2 , where k and ` are positive
integers, be such that, for some ε > 0,

k � (log T )1/3

(log log T )4/3+ε
, P 2k

1 ≥ T θ+ε, T ≥ max{Mε, P2}, and R ≥ (log T )20k.

Then, with

M(s) =
∑

n1···nkr∼M
P1≤nj≤P2

Λ(n1) · · ·Λ(nk)

(n1 · · ·nkr)s
,

one has ∑
%=β+iγ
β≥β0

Q≤|γ|≤T

|M(%)|2M2(β−1) = o(M(1)2 + 1)

when P1, Q→∞.

Let us first study a somewhat simpler sum. The arguments in the proof of the
following lemma go back to works of Wolke [15] and Harman [5] who study similar
sums with k = 1.
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Lemma 3.2. Let P, T ≥ 1 and T ≥ T0 ≥ 0, let t0 ∈ R, k ∈ N, β0 ∈ [0, 1), and
P (s) =

∑
n∼P Λ(n)n−s. Then there is an absolute positive constant C such that∑

%=β+iγ
β≥β0,|γ|≤T
|γ−t0|≥T0

|P (%− it0)|2kP 2k(β−1)

� Ck
(

log T

(T0 + 1)2k−1
+ (logPT (|t0|+ 1))4k+1 max

β0≤σ≤1
N(σ, P + T + |t0|)P 2k(σ−1)

)
.

Proof. Let C ′ be the implied constant in (3). By Lemma 2.2 we have

|P (%− it0)|2k ≤ (3C ′)2k(|P1(%− it0)|2k + |P2(%− it0)|2k + |P3(%− it0)|2k),

where Pj(%) are as in that lemma. Hence our claim follows once we have shown
that, for j = 1, 2, 3, and a certain positive constant C,

Sj :=
∑

%=β+iγ
β≥β0,|γ|≤T
|γ−t0|≥T0

|Pj(%− it0)|2kP 2k(β−1)

� Ck
(

log T

(T0 + 1)2k−1
+ (logPT (|t0|+ 1))4k+1 max

β0≤σ≤1
N(σ, P + T + |t0|)P 2k(σ−1)

)
.

By Lemma 2.3(ii)

S1 =
∑

%=β+iγ
β≥β0,|γ|≤T
|γ−t0|≥T0

1

(1 + |γ − t0|)2k
�

∑
r≥T0+1

log T

r2k
� log T

(T0 + 1)2k−1
.

and

S3 ≤ (logP )4k
∑

%=β+iγ
β≥β0,|γ|≤T

P 2k(β−1) � k(logP )4k+1 max
β0≤σ≤1

N(σ, T )P 2k(σ−1).

From now on we can concentrate to the most difficult sum S2. Expanding out
the 2kth power, we have

S2 =
∑

%=β+iγ
β≥β0,|γ|≤T

∑
%1,...,%2k

|γj−γ+t0|≤P

P β1+···+β2k−2kβ

(1 + |γ1 − γ + t0|) · · · (1 + |γ2k − γ + t0|)
P 2k(β−1).

We change the order of summation so that we first sum over the zero with the
largest real part. Notice also that the summands are increasing in βj , so that we
can replace all βj by max{β, β1, . . . , βj} in the summand. Since the situation is
symmetric in %j , we get

S2 ≤
∑

%=β+iγ
β≥β0,|γ|≤T

∑
%1,...,%2k
βj≤β

|γj−γ+t0|≤P

P 2k(β−1)

(1 + |γ1 − γ + t0|) · · · (1 + |γ2k − γ + t0|)

+ 2k ·
∑

%1=β1+iγ1
|γ1|≤T+P+|t0|

∑
%=β+iγ
β0≤β≤β1

|γ−γ1−t0|≤P

∑
%2,...,%2k
βj≤β1

|γj−γ+t0|≤P

P 2k(β1−1)

(1 + |γ1 − γ + t0|) · · · (1 + |γ2k − γ + t0|)
.
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Performing then all but the outmost sum using Lemma 2.3(ii) and noticing that in
the second line β1 ≥ β ≥ β0, we obtain, for some large enough constant C,

S2 � (C log2(P + T + |t0|))2k
∑

%=β+iγ
β≥β0,|γ|≤T+P+|t0|

P 2k(β−1)

� (C log(P + T + |t0|))4k+1 max
β0≤σ≤1

N(σ, P + T + |t0|)P 2k(σ−1)

which finishes the proof. �

Proposition 3.1 is a consequence of the lemma but there are several small com-
plications: the variable r, the cross-condition r · n1 · · ·nk ∼ M and the larger
ranges P1 ≤ p ≤ P2. These are not difficult to overcome but make the proof quite
technical.

Proof of Proposition 3.1. Let us write

∑
%=β+iγ
β≥β0

Q≤|γ|≤T

|M(%)|2M2(β−1) =


∑

%=β+iγ
β≥β0

Q≤|γ|≤R

+
∑

%=β+iγ
β≥β0

R<|γ|≤T

 |M(%)|2M2(β−1) =: Z1 + Z2,

say. (If R ≥ T , then let Z2 = 0 and the above holds with = replaced by ≤).
Let us first consider Z1. In this sum the saving will come from the sum of r% in

M(s). Note that in the sum defining M(s), r ≥ M/P k2 = R, so that Lemma 2.1
implies that, for |γ| ≤ R,

M(%) =
∑

n1,...,nk
P1≤nj≤P2

Λ(n1) · · ·Λ(nk)

(n1 · · ·nk)%

∑
r∼M/(n1···nk)

1

r%

=
∑

n1,...,nk
P1≤nj≤P2

Λ(n1) · · ·Λ(nk)

(n1 · · ·nk)%

(
M1−%

(n1 · · ·nk)1−%
· 21−% − 1

1− %
+O

(
M−β

(n1 · · ·nk)−β

))

�M(1)
M1−β

1 + |γ|
+ P k2M

−β = M(1)
M1−β

1 + |γ|
+
M1−β

R
.

(4)

Hence

Z1 =
∑

%=β+iγ
β≥β0

Q≤|γ|≤R

|M(%)|2M2(β−1) �M(1)2
∑

%=β+iγ
Q≤|γ|≤R

1

(1 + |γ|)2
+R−2N(β0, R)

�M(1)2Q−1/2 +R−1/2 = o(M(1)2 + 1)

by Lemma 2.3(ii) and since Q,R→∞.
Now we can concentrate to bounding Z2. Here the saving will eventually come

from Lemma 3.2.
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Let us first reduce the variables nj to dyadic intervals: Let us split the Dirichlet
polynomial M(s) dyadically into `k Dirichlet polynomials of the shape

MQ(s) =
∑

n1···nkr∼M
nj∼Qj

Λ(n1) · · ·Λ(nk)

(n1 · · ·nkr)s
.

Notice that

(5) Z2 =
∑

%=β+iγ
β≥β0

R<|γ|≤T

|M(%)|2M2(β−1) � `2k max
Q

Qj∈[P1,P2]

∑
%=β+iγ
β≥β0

R<|γ|≤T

|MQ(%)|2M2(β−1).

From now on we let Q be that reaching the maximum.
Our next task is to dispose of the cross-condition (n1 · · ·nk) · r ∼ M in the

definition of MQ(s). For this we use a variant of Perron’s formula. Write U =
Q1 · · ·Qk,

U(s) :=
∑

n1,...,nk
nj∼Qj

Λ(n1) · · ·Λ(nk)

(n1 · · ·nk)s
=:

k∏
j=1

Qj(s), and R(s) :=
∑

M/(2kU)≤r≤2M/U

1

rs
.

We may assume that M − 1/4 is an integer. Then, by Perron’s formula in form [8,
Lemma 2.2], we have, for any ε > 0,

MQ(%) =
1

π

∫ T

−T
U(%+ it)R(%+ it)

sin(t log(2M))− sin(t logM)

t
ds+O

(
M1−β+ε

T

)
=:

∫ T

−T
F (%, t)dt+O

(
M1−β+ε

T

)
,

say. Here

F (%, t)� |U(%+ it)||R(%+ it)|min

{
1,

1

|t|

}
� |U(%+ it)|k

(
M

U

)1−β

min

{
1,

1

|t|

}
� kM1−β min

{
1,

1

|t|

}(6)

We want eventually, after an application of Hölder’s inequality, to apply Lemma 3.2

to
∑
% |Qj(%+ it)|2kQ2k(β−1)

j but this can be done only when γ+ t is not too small.

However, the complementary region will be easy to handle (a similar argument is
used for instance in [8, Proof of Lemma 7.5]). To do this, we write∫ T

−T
F (%, t)dt =

∫
t∈[−T,T ]

|t+γ|>R1/5

F (%, t)dt+

∫
t∈[−T,T ]

|t+γ|≤R1/5

F (%, t)dr =: J1(%) + J2(%),

say. We have

∑
%=β+iγ
β≥β0

R≤|γ|≤T

M2(β−1)|MQ(%)|2 �
∑

%=β+iγ
β≥β0

R≤|γ|≤T

M2(β−1)
(
|J1(%)|2 + |J2(%)|2 +O

(
M2−2β+ε

T 2

))

=: E1 + E2 +O

(
Mε log T

T

)
,

(7)

say.
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Now using (6)

E2 �
∑

%=β+iγ
β≥β0

R≤|γ|≤T

M2(β−1)

(∫ −γ+R1/5

−γ−R1/5

|F (%, t)|dt

)2

�
∑

%=β+iγ
β≥β0

R≤|γ|≤T

M2(β−1)
(
R1/5 · kM

1−β

|γ|

)2

� R−1/3

by Lemma 2.3(ii).
On the other hand changing the order of summation and integration and apply-

ing (6) we get

E1 �
∫ T

−T

∫ T

−T

∑
%=β+iγ
β≥β0

R≤|γ|≤T,|γ+tj |>R1/5

M2(β−1)F (%, t1)F (%, t2)dt1dt2

� (log T )2k2 max
|t1|,|t2|≤T

∑
%=β+iγ
β≥β0

R≤|γ|≤T,|γ+tj |>R1/5

|U(%+ it1)||U(%+ it2)|U2(β−1)

� (log T )2k2 max
|t|≤T

∑
%=β+iγ
β≥β0

R≤|γ|≤T,|γ+t|>R1/5

|U(%+ it)|2U2(β−1).

By Hölder’s inequality and Lemma 3.2

E1 � (log T )2k2 max
|t|≤T

k∏
j=1


∑

%=β+iγ
β≥β0

R≤|γ|≤T,|γ+t|>R1/5

|Qj(%+ it)|2kQ2k(β−1)
j


1/k

� (log T )2Ck
k∏
j=1

(
log T

R1/5
+ (log T )4k+1 max

β0≤σ≤1
N(σ, 3T )Q

2k(σ−1)
j

)1/k

� (log T )2Ck
(

log T

R1/5
+ (log T )4k+1 max

β0≤σ≤1
N(σ, 3T )P

2k(σ−1)
1

)
.

Hence recalling (5) and (7) and Lemma 2.3(i) and (iii)

Z2 �
(log T )2k+3Ck

min{R1/5,Mε}
+ (log T )6k+3Ck max

β0≤σ≤1
N(σ, 3T )P

2k(σ−1)
1

� o(1) + (C log T )6k+18 max
β0≤σ≤1−c(log T )−2/3(log log T )−1/3

(
P 2k
1

T θ

)σ−1
� o(1) + exp

(
(6k + 18)(log log T + logC)− c (log T )1/3

(log log T )1/3

)
,

and the claim follows from the upper bound for k.
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�

4. Proof of Theorem 1.1

Let us first fix some notation. Let x, y, z, u and ε be as in Theorem 1.1, and
define δ by

xe2δ = x+ z, so that δ ∼ z

2x
.

Let η, η′ be small positive constants and let θ = θ(η) be as in Lemma 2.3(i). Let

L = log x, L2 = log log x, λ =
3

14
− η, k =

⌈
max

{
u,

2

2− θ

}⌉
,

T =
xη
′

δ
� x1+η

′

z
Q =

z2

x
, M =

(
x

Q

)1/2

,

P1 = M1/k−1/(2k2), P2 = 2`P1 ∼M1/k−1/(4k2) where ` =

⌊
logM

4k2 log 2

⌋
,

and M(s) =
∑

n1···nkr∼M
P1≤nj≤P2

Λ(n1) · · ·Λ(nk)

(n1 · · ·nkr)s
.

(8)

Let

(9) S =
∑

x≤n:=n1···n2kr1r2q≤xe2δ
P1≤nj≤P2

n1···nkr1∼M
nk+1···n2kr2∼M

Λ(n1) · · ·Λ(n2k)Λ(q) min

{
log

e2δx

n
, log

n

x

}
.

Notice that nj ≤ P2 ≤ (x/Q)1/u ≤ y, rj ≤ 2M/P k1 = 2M1/2k ≤ y and q ≤
(x+z)/M2 ≤ 2Q ≤ y, so only y-smooth numbers are counted in S. We have chosen
S so that, after an application of Perron formula and moving the integration region,
we can apply Proposition 3.1 to the resulting sum over zeros of the zeta function.
Somewhat similar sums have been considered in earlier works but there the sum
has been chosen so that one gets good estimates for the corresponding Dirichlet
polynomials in the zero-free region of the Riemann zeta function.

Notice that, writing τ(n) for the number of divisors of n and Ω(n) for the number
of prime divisors of n, each number n is counted in S with weight at most

Ω(n)2k+1τ(n)2 log eδ � (log 2x)2k+1xε/2δ � δxε.

Hence

(10) Ψ(x+ z, y)−Ψ(x, y)� x−εδ−1S.

It would be possible to get a better lower bound by arguing more carefully, using
averaging, but our method would not yield a correct order of magnitude lower
bound.

The log-weights in S are chosen so that, similarly to Soundararajan’s conditional
work [14] (where different M(s) is used), the variant

1

2πi

∫ 2+i∞

2−i∞

xs

s2
=

{
log x if x ≥ 1;

0 otherwise.
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of Perron’s formula gives

(11) S =
1

2πi

∫ 2+i∞

2−i∞
−ζ
′

ζ
(s)M(s)2xs

(eδs − 1)2

s2
ds.

We use this instead of the unweighted form to save a logarithmic factor — there
are points where we need to integrate the denominator 1/|s|2 and integrating 1/|s|
would lose a logarithm (another, almost equivalent, way to save this logarithm is
to slightly average over z as is done for instance in [6]).

We wish to move the integration path to the left, but not too much so that good
zero density estimates are available. Furthermore we want to avoid the contour
going too close to the zeros of the zeta function. To find suitable contour we argue
similarly to [5, Section 3] but for completeness we give the construction here.

In the region |=s| ≤ T the contour will be a union of horizontal and vertical line
segments inside the rectangle [1− λ, 1− λ+ L−12 ]× [−iT, iT ]. Let u ∈ [−T, T ] and
let us first show how to find an appropriate line segment σ0 + [iu, i(u + 1)] with
σ0 ∈ [1−λ, 1−λ+L−12 ]. Write Z for the set of zeros % = β+ iγ of the zeta function
in the rectangle [0, 1] × [i(u − 1), i(u + 2)]. Note that by Lemma 2.3(ii) we know
|Z| � L, so that, by Lemma 2.6, there is a set E0 ⊂ [1−λ, 1−λ+L−12 ] of measure
at least L−12 /2 such that

(12)
∑

β+iγ∈Z

1

|σ − β|
� LL2

2

for every σ ∈ E0.
Since E0 has measure at least L−12 /2, there exists σ0 ∈ E0 such that∫ σ0+i(u+1)

σ0+iu

∣∣∣∣M(s)2xs
(eδs − 1)2

s2

∣∣∣∣ |ds| ≤ 2L2

∫
E0

∫ σ+i(u+1)

σ+iu

∣∣∣∣M(s)2xs
(eδs − 1)2

s2

∣∣∣∣ |ds|dσ
� L2

∫ 1−λ+L−1
2

1−λ

∫ σ+i(u+1)

σ+iu

∣∣∣∣M(s)2xs
(eδs − 1)2

s2

∣∣∣∣ |ds|dσ.
Note that by Lemma 2.4 and (12), for every s ∈ σ0 + [iu, i(u+ 1)],

ζ ′

ζ
(s)�

∑
β+iγ∈Z

1

|s− (β + iγ)|
+ L� LL2

2.

One can argue similarly to show that, for any given u ∈ [−T, T ], there exists
t0 ∈ [u, u + L−12 ] such that the line segment [1 − λ, 1 − λ + L−12 ] + it0 has the
same properties. Combining these line segments we find that there is a countour C
consisting of

• sublines of [σ + iu, σ + i(u+ 1)] with σ ∈ [1− λ, 1− λ+ L−12 ]
• sublines of [1− λ+ iu, 1− λ+ L−12 + iu] with u ∈ [−T, T ]

such that, with s = σ + it,
(13)∫
C

∣∣∣∣M(s)2xs
(eδs − 1)2

s2

∣∣∣∣ |ds| � L2

∫ 1−λ+L−1
2

1−λ

∫ T

−T
|M(s)|2xσ min

{
δ2,

1

|s|2

}
dtdσ

and

(14)
ζ ′

ζ
(s)� LL2

2 for every s ∈ C ∪ [1− λ± iT, 1± iT ].
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(here we have changed T by O(1) if necessary to avoid zeros of zeta-function too
close to [1− λ± iT, 1± iT ]).

Moving the contour in (11) to C ∪ [1 − λ′ ± iT, 1 ± iT ] ∪ [1 ± iT, 1 ± i∞] and
picking up the poles we find that

S = x(eδ − 1)2M(1)2 +
∑′

%

M(%)2x%
(
eδ% − 1

%

)2

+O

((∫
C

+

∫ 1+iT

1−λ+iT
+

∫ 1+i∞

1+iT

)∣∣∣∣ζ ′ζ (s)M(s)2xs
(eδs − 1)2

s2

∣∣∣∣ |ds|
)

=: x(eδ − 1)2M(1)2 + Z +O(IC + IT + I>T ),

(15)

say, where
∑′

means that the sum is over those zeros of the zeta-function that are
to the right of the contour C.

Let us first figure out the size of the main term x(eδ−1)2M(1)2. Since P k2 ≤M ,

M(1) =
∑

n1,...,nk
P1≤nj≤P2

Λ(n1) · · ·Λ(nk)

n1 · · ·nk

∑
r∼M/(n1···nk)

1

r
�

∑
n1,...,nk
P1≤nj≤P2

Λ(n1) · · ·Λ(nk)

n1 · · ·nk

=

(
log

P2

P1
+O(1)

)k
=

(
logM

4k2
+O(1)

)k
= (1 + o(1))

(logP2)k

(4k − 1)k
,

(16)

so that the main term in (15) is

x(eδ − 1)2M(1)2 � δ2xM(1)2 � δ2x
(logP2)2k

(4k)2k
,

Let us now turn to error terms coming from the new integrals. The main tools
for estimating these are (13)–(14) and Lemma 2.5. Using (14) we get

IT �
∫ 1

1−λ

∣∣∣∣ζ ′ζ (s)M(s)2
∣∣∣∣ xσT 2

dσ � LL2
2

T 2

∫ 1

1−λ
xσM(σ)2dσ

� xM(1)2LL2
2

T 2

∫ 1

1−λ

( x

M2

)σ−1
dσ � δ2xM(1)2 · x−η

′
.

On the other hand, by (13) and (14) we have

IC � LL3
2

∫ 1−λ+L−1
2

1−λ

∫ T

−T
|M(s)|2xσ min

{
δ2,

1

|s|2

}
.dtdσ.(17)

Applying Lemma 2.5 we find that the inner integral is at most of order

δ2x ·
( x

M2

)σ−1(
1 +

1

δM

)
M(1) max

m∼M

 ∑
n1···nkr=m
P1≤nj≤P2

Λ(n1) · · ·Λ(nk)

 .

Since log 2M
logP1

< k + 1, every m ∼ M has at most k prime power factors from the

interval [P1, P2]. These can be ordered to be n1, . . . , nk in at most k! ways and hence
the maximum above is at most k! · (logP2)k. Recalling also that M = (x/Q)1/2 =
x/z � 1/δ we see that the inner integral in (17) is at most

δ2x ·Qσ−1M(1)k!(logP2)k � δ2xM(1)2Qσ−1(4k)2k
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since by (16) (logP2)k � (4k)kM(1). Hence

IC � δ2xM(1)2 · LL2
2(4k)2kQ−λ+L

−1
2 .

Recall that Q = z2/x = exp(( 14
3 + 2ε)(log log x+ 4u log u)), so that

Q−λ+L
−1
2 ≤ Q−3/14+2η ≤ exp(−(1 + ε)(log log x+ 4u log u)) = o(((4k)2kLL3

2)−1).

when η is chosen small enough compared to ε. Hence IC = o(δ2M(1)2x).

By Lemmas 2.4 and 2.3(ii)–(iii) ζ′

ζ (1 + it)� log2 t, so that

I>T � L2

∫ 1+iT 10

1+iT

∣∣∣∣M(s)2xs

s2

∣∣∣∣ |ds|+ ∫ 1+i∞

1+iT 10

∣∣∣∣M(s)2xs

s2
log2 |s|

∣∣∣∣ |ds|
� L2

∫ 1+iT 10

1−iT 10

|M(s)|2xσ min{T−2, |s|−2}|ds|+M(1)2x

∫ 1+i∞

1+iT 10

log2 |s|
|s|2

|ds|.

Applying Lemma 2.5 to the first integral we get as for IC

I>T � L2T−2x

(
1 +

T

M

)
M(1)k!(logP2)k +

M(1)2x

T 4

� δ2M(1)2x(4k)2kx−η
′
+ δ4M(1)2x = o(δ2M(1)2x)

by (16) and since M � 1/δ and T = xη
′
/δ. Combining the estimates

(18) IC + IT + I>T = o(δ2xM(1)2),

so we can concentrate on Z in (15). We have

Z =
∑′

%

M(%)2x%
(
eδ% − 1

%

)2

� δ2x

∑′

%
|γ|≤Q

xβ−1|M(%)|2 +
∑′

%
|γ|>Q

xβ−1|M(%)|2


=: δ2x(Z1 + Z2),

(19)

say. Here, recalling that x = QM2, and using the estimate (4),

Z1 �M(1)2
∑′

%=β+iγ
|γ|≤Q

Qβ−1

(1 + |γ|)2
�M(1)2 exp(−(logQ)1/4).

(20)

by Lemma 2.3(ii)–(iii).
Notice that

P 2k
1 = xo(1)+1−1/(2k) ≥ xo(1)+1−(2−θ)/4 = xo(1)+θ/2+(2−θ)/4 ≥ T θ+ε

′

for some ε′ > 0 since θ < 2, so Proposition 3.1 gives Z2 = o(M(1)2 + 1). Hence
Z = o(δ2xM(1)2). Combining with (18) and (15) we see that S � δ2xM(1)2 � δz
and the claim follows immediately from (10). �
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5. Proof of Theorem 1.3

Here we sketch the proof of Theorem 1.3 which is a variant of the proof of
Theorem 1.1. We need to choose some parameters differently and start with fixing
the notation. Let x, y, z, u and ε be as in Theorem 1.3, and define δ by

Xeδ = X + z, so that δ ∼ z

X
.

Let η, η′ be small positive constants, let

L = logX, L2 = log logX, T =
Xη′

δ
� X1+η′

z
, Q = z, M =

X

Q
,

and let λ, θ, k, P1, P2, ` and M(s) be as in (8).
Let us study

S(x) =
∑

x≤n1···nkrq≤xeδ
P1≤nj≤P2

n1···nkr∼M

Λ(n1) · · ·Λ(nk)Λ(q)

for x ∼ X. Notice that as before nj , r ≤ y and also q ≤ (2X + z)/M ≤ 3Q ≤ y, so
only y-smooth numbers are counted in S. Hence it is enough to show that S(x) > 0
for almost all x ∼ X. By Perron’s formula

S(x) =
1

2πi

∫ 2+i∞

2−i∞
−ζ
′

ζ
(s)M(s)xs

eδs − 1

s
ds.

We move the contour as in the proof of Theorem 1.1, getting

S(x) = x(eδ − 1)M(1) +
∑′

%

M(%)x%
eδ% − 1

%

+
1

2πi

(∫
C

+

∫ 1+iT

1−λ+iT
+

∫ 1+i∞

1+iT

)
− ζ ′

ζ
(s)M(s)xs

eδs − 1

s
ds

=: x(eδ − 1)M(1) + Z(x) + IC(x) + IT (x) + I>T (x),

say, where
∑′

means that the sum is over those zeros of the zeta-function that are
to the right of the contour C. We want to show that, for almost all x ∼ X, we have

Z(x) + IC(x) + IT (x) + I>T (x) = o(δxM(1)).

The contribution from the zeros % = β + iγ with |γ| ≤ Q to Z(x) is o(δxM(1)) as
in (20). Write Z2(x) for the contribution of rest of the zeros. Changing the order
of summation and integration we see that

∫ 2X

X/2

∫ 2x

x

|Z2(h)|2dhdx =

∫ 2X

X/2

∫ 2x

x

∣∣∣∣∣∣∣
∑′

%
|γ|>Q

M(%)h%
eδ% − 1

%

∣∣∣∣∣∣∣
2

dhdx

=
∑′

%1
|γ1|>Q

∑′

%2
|γ2|>Q

∣∣∣∣M(%1)M(%2)
eδ%1 − 1

%1

eδ%2 − 1

%2

∣∣∣∣
∣∣∣∣∣
∫ 2X

X/2

∫ 2x

x

h%1+%2dhdx

∣∣∣∣∣ .
(21)
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Integrating over h and x and using the inequality |ab| ≤ |a|2 + |b|2 we get∫ 2X

X/2

∫ 2x

x

|Z2(h)|2dhdx� δ2
∑′

%1
|γ1|>Q

∑′

%2
|γ2|>Q

|M(%1)M(%2)| Xβ1+β2+2

(1 + |γ1 − γ2|)2
dx

� δ2X2
∑′

%1
|γ1|>Q

∑′

%2
|γ2|>Q

|M(%1)|2X2β1 + |M(%2)|2X2β2

(1 + |γ1 − γ2|)2

� δ2X4
∑′

%
|γ|>Q

|M(%)|2M2(β−1)

(22)

by Lemma 2.3(ii). Recalling that the summation in
∑′

is only over zeros with real
part > 11/14 + η, we see by Proposition 3.1 that∫ 2X

X/2

∫ 2x

x

|Z2(h)|2dhdx = o(X2 · (δM(1)X)2).

Hence Z(x) = o(δM(1)x) for almost all x ∼ X.
As in the proof of Theorem 1.1, IT (x) = o(δxM(1)). Furthermore recalling (14)

and arguing analogously to (21)– (22)∫ 2X

X/2

∫ 2x

x

|IC(x)|2dhdx� L2L2
2X

2

∫
C
|M(s)|2X2σ

∣∣∣∣eδs − 1

s

∣∣∣∣2 ds
� L2L3

2X
2

∫ 1−λ+L−1
2

1−λ

∫ T

−T
|M(s)|2X2σ min

{
δ2,

1

|s|2

}
dtdσ

by (13). Comparing with (17) and the arguments following it we see that∫ 2X

X

∫ 2x

x

|IC(x)|2dhdx� L2L2
2X

2δ2X2M(1)2(4k)2kQ−2λ+2L−1
2 = o(X2·(δM(1)X)2)

since

Q−2λ+2L−1
2 ≤ exp(−2(3/14−2η)(14/3+ε)(log log x+4u log u)) = o(((4k−1)2k+1L2L3

2)−1)

when η is chosen small enough compared to ε. Hence IC(x) = o(δM(1)x) for
almost all x ∼ X. Similarly I>T (x) = o(δM(1)x) for almost all x ∼ X and the
claim follows. �
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