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Abstract

An infinite square-free word w over a three letter alphabet T is said to have a
k-stem σ if w = σw1w2 · · · where for each i, there exists a permutation πi of T
which extended to a morphism gives wi = πi(σ). We show that there exists an
infinite k-stem word for k = 1, 2, 3, 9 and 13 ≤ k ≤ 19, but not for 4 ≤ k ≤ 8
and 10 ≤ k ≤ 12. The problem whether a k-stem words exist for each k ≥ 20
remains open.
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1. Introduction

We consider square-freeness of ternary words, i.e., words over a three letter
alphabet. Without restriction we can choose T = {0, 1, 2}. Let T ∗ be the set of
all strings, called words, over T . The empty word is denoted by ε. The length
of a word w is denoted by |w|. If w = u1vu2, then v is a factor of w. If here
u1 = ε then v is a prefix of w and if u2 = ε then v is a suffix of w. An infinite
sequence of letters w = a1a2 · · · with ai ∈ T is an infinite word. The above
terminology generalizes to infinite words in a natural way. Let Tω denote the
set of all infinite words over T .

A finite or infinite word w is square-free if it does not contain any factors
u2 = uu for nonempty words u. Axel Thue showed a hundred years ago that
there are infinite square-free words over T . One such example, see Lothaire [11],
is obtained by iterating the morphism

τ(0) = 012, τ(1) = 02, τ(2) = 1

starting from the word 0. The iteration gives the following square-free word,

t = 012021012102012021020121012 · · · (1)
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that, as seen from the definition of τ , does not have factors 010 and 212. We
call t the Thue word although it is due to M. Hall Jr. [8]; see also Istrail [9].

A word u ∈ T ∗ is said to be a permutation of a word v ∈ T ∗, if there exists a
permutation π of T which extended to a morphism π : T ∗ → T ∗ gives u = π(v),
i.e., if v = a1a2 · · · ak, with aj ∈ T , then u = π(a1)π(a2) · · ·π(ak). Note that
there are six permutations of each square-free ternary word of length at least
two.

We say that a finite prefix σ of a (finite or infinite) word w is a stem of
length k of w if w = σw1w2 · · · where for each i there exists a permutation πi
of T with wi = πi(σ). In this case the word w has a k-stem factorization of w,
or w is a k-stem word.

Our first result is immediate.

Theorem 1. There exist infinite square-free 1-stem and 2-stem words.

Proof. Indeed, all infinite square-free ternary words have trivially 1-stem and
2-stem factorizations. For the 2-stem factorizations it is sufficient to observe
that each word ab with a 6= b of length two, is a permutation of 01.

Our main result shows that there exist infinite square-free words with a
3-stem factorization.

Theorem 2. There exist infinite square-free words with k-stem factorizations
for k = 3, 9 and 13 ≤ k ≤ 19 but not for other k less than 20.

A quick analysis shows that none of the infinite suffixes of the Thue word t
in (1) has a 3-stem factorization. Indeed, 0 is recurrent in t and the word

τ4(0) = 012021012102012021020121

violates the factorization condition of the suffixes of t, i.e., τ4(0) has the factor
020 starting from position 19 (congruent to 1 modulo 3) and 020 is not a permu-
tation of the prefix 012. The same nonsynchronization happens for the shorter
suffixes of τ4(0): (120)210(121)02012021020121 and (202)101(210)2012021020121.

Permutations in constructing square-free words are common when counting
the number of ternary square-free words. This counting techniques is due to
Brinkhuis [3]; see also Berstel [1]. The Brinkhuis-type morphism consists of
square-free images that are obtained by taking permutations on T .

2. Preliminaries

Let A be an alphabet. A morphism h : A∗ → A∗ is said to be uniform if, for
all a, b ∈ A, |h(a)| = |h(b)|. If here the length of the images is n then h is called
n-uniform. Also, a morphism h is square-free, if it preserves square-freeness of
words, i.e., if v ∈ A∗ is square-free, then so is the image h(v) ∈ A∗.

Our proofs of existence of k-stem words rely on the following result due to
M. Crochemore [5].
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Theorem 3. (a) A morphism h : T ∗ → T ∗ on T = {0, 1, 2} is square-free if
and only if h preserves square-freeness of words of length 5.

(b) For any alphabet A, a uniform morphism h : A∗ → A∗ is square-free if and
only if h preserves square-freeness of words of length 3.

The ternary alphabet is quite special for square-freeness. Indeed, there are
only finitely many square-free words over a binary alphabet, and often for larger
alphabets special kinds of square-free morphisms are very simple.

Example 1. According to Carpi [4], if a morphism h : T ∗ → T ∗ over the ternary
alphabet is square-free, such that h(T ) 6= T , then

∑
a∈T |h(a)| ≥ 18. This bound

is the best possible as shown by the following morphism due to Thue [12, 13],

h(0) = 01201, h(1) = 020121, h(2) = 0212021 .

Also, there are square-free morphisms over T that fix a letter. The following
example can be verified using Theorem 3,

h(0) = 0 ,

h(1) = 10212021012 ,

h(2) = 102012021201021012 .

In general, there exists a rather noninteresting square-free morphism h on
the alphabet An+1 = {0, 1, . . . , n} of n+ 1 letters of total size n+ 5 for n ≥ 3:

h(i) = i for i = 0, 1, . . . , n− 2 ,

h(n− 1) = (n− 1)0n and h(n) = (n− 1)1n .

It was shown by Brandenburg [2] that the smallest square-free uniform mor-
phism has uniform length 11. An example of such a morphism is given by

h(0) = 01021012102 ,

h(1) = 01021202102 ,

h(2) = 01210120212 .

On the other hand, for larger alphabets An+1 with n ≥ 3, we have square-free
uniform morphisms of uniform length 3, e.g.,

h(i) = 01(i+ 2) for i = 0, 1, . . . , n− 2 ,

h(n− 1) = 021 and h(n) = 031 .

We now turn to study stems for square-free words. The following lemma
restricts the structure of k-stems.

Lemma 4. Let w = σw1w2 · · · be a k-stem factorization of a square-free in-
finite ternary word w ∈ Tω with a stem σ, where k ≥ 3, then σ starts with a
permutation of 012 and ends with a permutation of 012.
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Proof. Suppose to the contrary that σ does not start with a permutation of 012,
i.e., σ = pqprρ for T = {p, q, r} and some suffix ρ ∈ T ∗.

Consider first the case where |σ| = 3. After each wi = aba with T = {a, b, c},
the next permutation wi+1 is uniquely determined to be cbc to avoid the square
acac. Therefore w repeats itself periodically, and it cannot be square-free.

Assume then that |σ| ≥ 4. In order for w not to be ultimately periodic, there
must be indices i < j such that wi = wj but wi+1 6= wj+1, say without loss of
generality that wi+1 = 0102πi+1(ρ) and wj+1 = dedfπj+1(ρ) for T = {d, e, f}.
Now wi does not end with 0 or 1 nor d or e to avoid a square in wiwi+1

and wjwj+1, respectively, and hence wi ends with the letter f = 2. Since
πi+1 6= πj+1, we have wj+1 = 1012πj+1(ρ). However, one can check that there
does not exist any common predecessor of length four for wi+1 and wj+1. Indeed,
let x be a square-free word of length |x| = 4 with a suffix 2, then we have

x = 0102 : x0102 = (0102)2 ,

x = 0212 : x1012 = 0(21)2012 ,

x = 1012 : x1012 = (1012)2 ,

x = 1202 : x0102 = 1(20)2102 ,

x = 2012 : x0102 = (201)202 ,

x = 2102 : x1012 = (210)212 .

This contradiction proves the claim.

3. Existence of 3-stems

We fix first the order of the permutations on T = {0, 1, 2}: let

π0 = (0)(1)(2) , π1 = (0)(1 2) , π2 = (0 1)(2) ,

π3 = (1)(0 2) π4 = (0 1 2) , π5 = (0 2 1) .

Hence π0 is the identity permutation.
Let S = {0, 1, 2, 3, 4, 5} be a fixed alphabet of six letters.
The following construction gives an infinite square-free word having a k-stem

factorization simultaneously for k = 3 and k = 9. The proof is instructive also
for the other positive cases considered in a later section. The square-free word w
with a k-stem factorization is obtained as h(u), where u is a square-free ternary
word and h is a uniform morphism constructed using square-free words over the
six element alphabet S. Most of the checking and constructions are done by a
computer program aided by a human mind (for selecting good candidate words
for the images h(a)).

Theorem 5. There exists an infinite word w over T that has 3-stem and 9-stem
factorizations.
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Proof. Consider the morphism γ : S∗ → T ∗ defined by γ(i) = πi(σ) for σ =
012021201. Here |σ| = 9 and σ is a concatenation of permutations of 012.
Denote

s0 = 014103 , s1 = 014241 , s2 = 014253 .

Finally let h9 : T ∗ → T ∗ be defined by h9(i) = γ(si), i.e.,

h9(0) = 012021201021012102120102012021012102012021201210201021 ,

h9(1) = 012021201021012102120102012102120210120102012021012102 ,

h9(2) = 012021201021012102120102012102120210201210120210201021 ,

where the images have uniform length 54. A computer check shows that the
words h9(v), with v ∈ T ∗ square-free and of length 3, are all square-free. (In-
deed, the common prefix 0120212010 of length 10 does not occur in any h9(v)
except as a prefix of the images h9(i), i ∈ T .) Therefore by Theorem 3, the
morphism h9 is square-free. Hence, e.g., the infinite word h9(t) is square-free
for the Thue word t, and it clearly has 3-stem and 9-stem factorizations by the
definition of h9.

Remark. For k = 3 there is a simpler uniform morphism that also does the
job. The stem word is naturally σ = 012, and the new morphism h3 is defined
as follows:

h3(0) = 012021012102120102 ,

h3(1) = 012021201021012102 ,

h3(2) = 012021201210120102 .

The 18-uniform morphism h3 is square-free by Theorem 3, and hence h3(t) is
an infinite word having a 3-stem factorization. We note that although h3(0) =
012021012π2(012021012) the word 012021012 is not a 9-stem for any infinite
word as can be checked using a computer program.

4. Negative cases

Before going to other positive cases, we consider the small cases where no
k-stem factorizations exist for infinite ternary words. These cases are checked
by a computer program that systematically checks square-free words over the
six element alphabet S and determines that after some point a square is always
obtained no matter what k-stem candidate is chosen.

Proposition 6. There are no infinite square-free words over T having a k-stem
factorization for 4 ≤ k ≤ 8 and for 10 ≤ k ≤ 12.

It turns out that the cases in Proposition 6 are determined quite easily, i.e.,
the squares are found already in all words of short lengths. Table 1 shows for
which lengths |v| = kn, the square-free word v cannot have k-stem factorization.
For instance, if k = 4, then n = 6, i.e., no word of length 24 has a 4-stem
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n no k-stems
of length

3 12
4 10
6 4, 6, 8, 11
10 5, 7

Table 1: No k-stem factorizations for k = 4, 5, 6, 7, 8, 10, 11, 12.

factorization. In this case we have the word γ(02030) = 01201021012021020120
of length 20, where γ is defined in the proof of Theorem 5 for σ = 0120.

In the case for k = 5 the following square-free word of length 45

012101202120102012101202101210201021202101210

has a 5-stem factorization with σ = 01210, but it cannot be extended to
length 50.

5. k-Stems for k < 20

We divide the cases for 13 ≤ k ≤ 19 to two subcases.

Theorem 7. There exists an infinite square-free word with a k-stem factoriza-
tion for k ∈ {13, 17, 18, 19}.

Proof. In each of the following cases of the morphism hk is of Brinkhuis-type,
i.e., the images hk(i) of the letters are square-free, and permutations of each
other. Also, the infinite words hk(t) will be square-free with a k-stem factoriza-
tion. Here again t is the Thue word.

Case k = 13. As shown by J. Leech [10], see also U. Grimm [7], the morphism

h13(0) =0121021201210 ,

h13(1) =1202102012021 , (2)

h13(2) =2010210120102

consisting of palindromes, is square-free, and hence the word σ = 0121021201210
is a stem for the infinite word h13(t). The length 13 is the smallest where this
kind of case applies.

Case k = 17. In this case, we choose also palindromes as the images of the
letters,

h17(0) = 01202120102120210 ,

h17(1) = 12010201210201021 ,

h17(2) = 20121012021012102 .
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By applying Theorem 3, the morphism h17 can be shown to be square-free.
Hence the palindromic word σ = 01202120102120210 is a stem for the infinite
word h17(t).

Case k = 18. As shown by Ekhad and Zeilberger [6] the morphism defined
by

h18(0) = 012021020102120210 ,

h18(1) = 120102101210201021 ,

h18(2) = 201210212021012102 ,

is square-free. Hence the word σ = 012021020102120210 is a stem for the infinite
word h18(t).

Case k = 19. We can choose palindromic images,

h19(0) = 0120212012102120210 ,

h19(1) = 1201020120210201021 ,

h19(2) = 2012101201021012102 .

Again, by applying Theorem 3, the morphism h19 can be shown to be square-
free. Hence σ = 012021201020120210 is a stem for the infinite word h19(t).

The following cases require a different approach since for these cases no
Brinkhuis-type morphisms as in Theorem 7 exists as can be seen by a systematic
computer search.

Theorem 8. There exists an infinite square-free word with a k-stem factoriza-
tion for k ∈ {14, 15, 16}.

Proof. Case k = 14. We show that the stem σ = 01202120102012 will do. Let

s0 = 015342 , s1 = 015351 , s2 = 015102

be words over the alphabet {0, 1, 2, 3, 4, 5} of six letters, and h14 : T ∗ → T ∗ be
defined by h14(i) = γ(si), where γ(i) = πi(σ) as in the proof of Theorem 5.
Therefore

h14(0) =012021201020120210121020102120121012021201·
·210201021202101201020121012010212021012102 ,

h14(1) =012021201020120210121020102120121012021201·
·210201021202102012101202120102101210201021 ,

h14(2) =012021201020120210121020102120121012021201·
·021012102010210120212010201210212021012102 ,

where the images have length 84. Again a computer check on words of length
three reveals that h14 is square-free. Hence, for the Thue word t, the infinite
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word h14(t) is square-free and, due to the permutations πi, one detects that it
has a 14-stem factorization.

Case k = 15. In this case we show that the stem σ = 012021201210120 can
be chosen. Let

s0 = 025143 , s1 = 025152 , s2 = 025203 .

and h15 : T ∗ → T ∗ be defined by h15(i) = γ(si), where γ(i) = πi(σ) as in the
above. Then

h15(0) =012021201210120102120210201021201210120102012·
·021012102120210120102012021201210201021012102 ,

h15(1) =012021201210120102120210201021201210120102012·
·021012102120210201210120102012102120210201021 ,

h15(2) =012021201210120102120210201021201210120102012·
·102120210201021012021201210120210201021012102 ,

where the images are of length 90. Again a computer check on words of length
three reveals that h15 is square-free. Hence, for the Thue word t, the infinite
word h15(t) is square-free and it has a 15-stem factorization.

Case k = 16. We show that the stem σ = 0121021201021012 will do. Let

s0 = 024342 , s1 = 024351 , s2 = 024201 .

and h16 : T ∗ → T ∗ be defined by h16(i) = γ(si), where γ(i) = πi(σ) as in the
above. Now

h16(0) =012102120102101210201202101201021202102012102120·
·210120102120121012021020121021201020120210120102 ,

h16(1) =012102120102101210201202101201021202102012102120·
·210120102120121020102101202102010212012102012021 ,

h16(2) =012102120102101210201202101201021202102012102120·
·102012021012010201210212010210120212012102012021 ,

where the images are of length 96. Again a computer check on words of length
three reveals that h16 is square-free. Hence, for the Thue word t, the infinite
word h16(t) is square-free and it has a 16-stem factorization.

6. Open questions

There remains many open questions on the k-stem factorizations.

Problems
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1. Are there infinite square-free ternary words with a k-stem factorization
for each k ≥ 13?

Note that there are infinitely many values k for which a k-stem factoriza-
tion exists of an infinite square-free word. Indeed, consider the square-free
morphism h13 from (2). Then the power hi is also square-free and it gives
a 13i+1-stem factorization of the infinite word hi(t).

2. Does the Thue word t have a k-stem factorization for some k > 3?
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