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Abstract Stationary processes have been extensively studied in the literature. Their applica-
tions include modeling and forecasting numerous real life phenomena such as natural disasters,
sales and market movements. When stationary processes are considered, modeling is tradi-
tionally based on fitting an autoregressive moving average (ARMA) process. However, we
challenge this conventional approach. Instead of fitting an ARMA model, we apply an AR(1)
characterization in modeling any strictly stationary processes. Moreover, we derive consistent
and asymptotically normal estimators of the corresponding model parameter.
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1 Introduction

Stochastic processes are widely used in modeling and forecasting numerous real life
phenomena such as natural disasters, activity of the sun, sales of a company and mar-
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ket movements, to mention a few. When stationary processes are considered, model-
ing is traditionally based on fitting an autoregressive moving average (ARMA) pro-
cess. However, in this paper, we challenge this conventional approach. Instead of fit-
ting an ARMA model, we apply the AR(1) characterization in modeling any strictly
stationary processes. Moreover, we derive consistent and asymptotically normal esti-
mators of the corresponding model parameter.

One of the reasons why ARMA processes have been in a central role in modeling
of time-series data is that for every autocovariance function γ (·) vanishing at infinity
and for every n ∈ N there exists an ARMA process X such that γ (k) = γX(k)

for every k = 0, 1, .., n. For a general overview of the theory of stationary ARMA
processes and their estimation, the reader may consult for example [1] or [5].

ARMA processes, and their extensions, have been studied extensively in the liter-
ature. A direct proof of consistency and asymptotic normality of Gaussian maximum
likelihood estimators for causal and invertible ARMA processes was given in [18].
The result was originally obtained, using asymptotic properties of the Whittle estima-
tor, in [7]. The estimation of the parameters of strictly stationary ARMA processes
with infinite variances was studied in [16], again, by using Whittle estimators. Port-
manteau tests for ARMA models with stable Paretian errors with infinite variance
were introduced in [12]. An efficient method for evaluating the maximum likelihood
function of stationary vector ARMA models was presented in [14]. Fractionally inte-
grated ARMA models with a GARCH noise process, where the variance of the error
terms is also of ARMA form, was studied in [13]. Consistency and asymptotic nor-
mality of the quasi-maximum likelihood estimators of ARMA models with the noise
process driven by a GARCH model was shown in [3]. A least squares approach for
ARMA parameter estimation has been studied at least in [9] by contrasting its effi-
ciency with the maximum likelihood estimation. Also estimators of autocovariance
and their limiting behavior have been addressed in numerous papers. See for example
[2, 8, 11] and [15].

Modeling an observed time-series with an ARMA process starts by fixing the
orders of the model. This is often done by an educated guess, but there also exists
methods for estimating the orders, see e.g. [6]. After the orders are fixed, the related
parameters can be estimated, for example, by using the maximum likelihood or least
squares estimators. These estimators are expressed in terms of optimization problems
and do not generally admit closed form representations. The final step is to conduct
various diagnostic tests to determine whether the estimated model is sufficiently good
or not. These tests are often designed to recognize whether the residuals of the model
support the underlying assumptions about the error terms. Depending on whether one
considers strict or weak stationarity, the error process is usually assumed to be an IID
process or white noise, respectively. If the tests do not support the assumptions about
the noise process, then one has to start all over again. Tests for the goodness of fit of
ARMA models have been suggested e.g. in [4].

The approach taken in this paper is based on the discrete version of the main
theorem of [17] leading to an AR(1) characterization for (any) strictly stationary pro-
cesses. Note that this approach covers, but is not limited to, strictly stationary ARMA
processes. It was stated in [17] that a process is strictly stationary if and only if for
every fixed 0 < H < 1 it can be represented in the AR(1) form with φ = e−H
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and a unique, possibly correlated, noise term. Although the representation is unique
only after H is fixed, we show that in most of the cases, given just one value of the
autocovariance function of the noise, one is able to determine the AR(1) parameter
and, consequently, the entire autocovariance function of the noise process. It is worth
emphasizing that since the parameter–noise pair in the AR(1) characterization is not
unique, it is natural that some information about the noise has to be assumed. Note
that conventionally, when applying ARMA models, we have assumptions about the
noise process much stronger than being IID or white noise. That is, the autocovari-
ance function of the noise is assumed to be identically zero except at the origin. When
founding estimation on the AR(1) characterization, one does not have to select be-
tween different complicated models. In addition, there is only one parameter left to be
estimated. Yet another advantage over classical ARMA estimation is that we obtain
closed form expressions for the estimators.

The paper is organized as follows. We begin Section 2 by introducing some ter-
minology and notation. After that, we give a characterization of discrete time strictly
stationary processes as AR(1) processes with a possibly correlated noise term to-
gether with some illustrative examples. The AR(1) characterization leads to Yule–
Walker type equations for the AR(1) parameter φ. In this case, due to the correlated
noise process, the equations are of quadratic form in φ. For the rest of the section,
we study the quadratic equations and determine φ with as little information about the
noise process as possible. The approach taken in Section 2 leads to an estimator of the
AR(1) parameter. We consider estimation in detail in Section 3. The end of Section 3
is dedicated to testing the assumptions we make when constructing the estimators.
A simulation study to assess finite sample properties of the estimators is presented
in Section 4. Finally, we end the paper with three appendices containing a technical
proof, detailed discussion on some special cases and tabulated simulation results.

2 On AR(1) characterization in modeling strictly stationary processes

Throughout the paper we consider strictly stationary processes.

Definition 1. Assume that X = (Xt )t∈Z is a stochastic process. If

(Xt+n1 , Xt+n2, . . . , Xt+nk
)

law= (Xn1 , Xn2, . . . , Xnk
)

for all k ∈ N and t, n1, n2, . . . , nk ∈ Z, then X is strictly stationary.

Definition 2. Assume that G = (Gt )t∈Z is a stochastic process and denote �tG =
Gt−Gt−1. If (�tG)t∈Z is strictly stationary, then the process G is a strictly stationary
increment process.

The following class of stochastic processes was originally introduced in [17].

Definition 3. Let H > 0 be fixed and let G = (Gt )t∈Z be a stochastic process. If G

is a strictly stationary increment process with G0 = 0 and if the limit

lim
k→−∞

0∑
t=k

etH �tG (1)
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exists in probability and defines an almost surely finite random variable, then G be-
longs to the class of converging strictly stationary increment processes, and we denote
G ∈ GH .

Next, we consider the AR(1) characterization of strictly stationary processes. The
continuous time analogy was proved in [17] together with a sketch of a proof for the
discrete case. For the reader’s convenience, a detailed proof of the discrete case is
presented in Appendix A.

Theorem 1. Let H > 0 be fixed and let X = (Xt )t∈Z be a stochastic process. Then
X is strictly stationary if and only if limt→−∞ etH Xt = 0 in probability and

�tX = (
e−H − 1

)
Xt−1 + �tG (2)

for a unique G ∈ GH .

Corollary 1. Let H > 0 be fixed. Then every discrete time strictly stationary process
(Xt )t∈Z can be represented as

Xt − φ(H)Xt−1 = Z
(H)
t , (3)

where φ(H) = e−H and Z
(H)
t = �tG is another strictly stationary process.

It is worth to note that the noise Z in Corollary 1 is unique only after the pa-
rameter H is fixed. The message of this result is that every strictly stationary process
is an AR(1) process with a strictly stationary noise that may have a non-zero auto-
covariance function. The following examples show how some conventional ARMA
processes can be represented as an AR(1) process.

Example 1. Let X be a strictly stationary AR(1) process defined by

Xt − ϕXt−1 = εt , (εt ) ∼ IID
(
0, σ 2)

with ϕ > 0. Then we may simply choose φ(H) = ϕ and Z
(H)
t = εt .

Example 2. Let X be a strictly stationary ARMA(1, q) process defined by

Xt − ϕXt−1 = εt + θ1εt−1 + · · · + θqεt−q, (εt ) ∼ IID
(
0, σ 2)

with ϕ > 0. Then we may set φ(H) = ϕ, and Z
(H)
t then equals to the MA(q) process.

Example 3. Consider a strictly stationary AR(1) process X with ϕ < 0. Then X

admits an MA(∞) representation

Xt =
∞∑

k=0

ϕkεt−k.

From this it follows that

Z
(H)
t = εt +

∞∑
k=0

ϕk
(
ϕ − φ(H)

)
εt−1−k
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and

cov
(
Z

(H)
t , Z

(H)
0

) = ϕt−2(ϕ − φ(H))σ 2
(

ϕ + (
ϕ − φ(H)

) ∞∑
n=1

(
ϕ2)n).

Hence in the case of an AR(1) process with a negative parameter, the autocovariance
function of the noise Z of the representation (3) is non-zero everywhere.

Next we show how to determine the AR(1) parameter φ(H) in (3) provided that
the observed process X is known. In what follows, we omit the superindices in (3).
We assume that the second moments of the considered processes are finite and that
the processes are centered. That is, E(Xt ) = E(Zt ) = 0 for every t ∈ Z. Throughout
the rest of the paper, we use the notation cov(Xt ,Xt+n) = γ (n) and cov(Zt , Zt+n) =
r(n) for every t, n ∈ Z.

Lemma 1. Let centered (Xt )t∈Z be of the form (3). Then

φ2γ (n) − φ
(
γ (n + 1) + γ (n − 1)

)+ γ (n) − r(n) = 0 (4)

for every n ∈ Z.

Proof. Let n ∈ Z. By multiplying both sides of

Xn − φXn−1 = Zn

with Z0 = X0 − φX−1 and taking expectations, we obtain

E
(
Xn(X0 − φX−1)

)− φE
(
Xn−1(X0 − φX−1)

)
= φ2γ (n) − φ

(
γ (n + 1) + γ (n − 1)

)+ γ (n) = r(n).

Corollary 2. Let centered (Xt )t∈Z be of the form (3) and let N ∈ N be fixed.

(1) If γ (N) �= 0, then either

φ = γ (N + 1)+ γ (N − 1)+√
(γ (N + 1)+ γ (N − 1))2 − 4γ (N)(γ (N)− r(N))

2γ (N)
(5)

or

φ = γ (N + 1)+ γ (N − 1)−√
(γ (N + 1)+ γ (N − 1))2 − 4γ (N)(γ (N)− r(N))

2γ (N)
.

(6)

(2) If γ (N) = 0 and r(N) �= 0, then

φ = − r(N)

γ (N + 1) + γ (N − 1)
.

Note that if γ (N) = r(N) = 0, then Lemma 1 yields only γ (N +1)+γ (N −1) = 0
providing no information about the parameter φ. As such, in order to determine the
parameter φ, we require that either γ (N) �= 0 or r(N) �= 0.
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Remark 1. If the variance r(0) of the noise is known, then (5) and (6) reduces to

φ = γ (1) ±√
γ (1)2 − γ (0)(γ (0) − r(0))

γ (0)
.

At first glimpse it seems that Corollary 2 is not directly applicable. Indeed, in princi-
ple it seems like there could be complex-valued solutions although representation (3)
together with (4) implies that there exists a solution φ ∈ (0, 1). Furthermore, it is not
clear whether the true value is given by (5) or (6). We next address these issues. We
start by proving that the solutions to (4) cannot be complex. At the same time we are
able to determine which one of the solutions one should choose.

Lemma 2. The discriminants of (5) and (6) are always non-negative.

Proof. Let k ∈ Z. By multiplying both sides of (3) with Xt−k , taking expectations,
and applying (3) repeatedly we obtain

γ (k) − φγ (k − 1) = E(ZtXt−k) = E
(
Zt(Zt−k + φXt−k−1)

)
= r(k) + φE(ZtXt−k−1)

= r(k) + φE
(
Zt(Zt−k−1 + φXt−k−2)

)
= r(k) + φr(k + 1) + φ2

E(ZtXt−k−2).

Proceeding as above l times we get

γ (k) − φγ (k − 1) =
l−1∑
i=0

φir(k + i) + φl
E
(
Zt(φXt−k−l−2)

)
.

Letting l approach infinity leads to

γ (k) − φγ (k − 1) =
∞∑
i=0

φir(k + i), (7)

where the series converges as r(k + i) ≤ r(0) and 0 < φ < 1. It now follows from
(7) that

γ (N) = φγ (N − 1) +
∞∑
i=0

φir(N + i)

= φγ (N − 1) + r(N) + φ

∞∑
i=1

φi−1r(N + i)

= φγ (N − 1) + r(N) + φ

∞∑
i=0

φir(N + i + 1)

= φγ (N − 1) + φ
(
γ (N + 1) − φγ (N)

)+ r(N).

Denote the discrimant of (5) and (6) by D. That is,

D = (
γ (N − 1) + γ (N + 1)

)2 − 4γ (N)
(
γ (N) − r(N)

)
.
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By using the equation above we observe that

D =
(

γ (N) + φ2γ (N) − r(N)

φ

)2

− 4γ (N)
(
γ (N) − r(N)

)
.

Denoting aN = r(N)
γ (N)

, multiplying by φ2

γ (N)2 , and using the identity

(a + b)2 − 4ab = (a − b)2

yields

φ2

γ (N)2 D = (
1 + φ2 − aN

)2 − 4φ2(1 − aN) = (
φ2 − 1 + aN

)2 ≥ 0.

This concludes the proof.

Note that if r(N) = 0, as φ < 1, the discriminant is always positive. Let aN =
r(N)
γ (N)

. The proof above now gives us the following identity

φ = 1

2φ

(
1 + φ2 − aN ± |γ (N)|

γ (N)

∣∣φ2 − 1 + aN

∣∣).

This enables us to consider the choice between (5) and (6). Assume that γ (N) > 0. If
φ2 −1+aN > 0, then φ is given by (5) (as φ ∈ (0, 1)). Similarly, if φ2 −1+aN < 0,
then φ is determined by (6). Finally, contrary conclusions hold in the case γ (N) < 0.
In particular, we can always choose between (5) and (6) provided that either aN ≤ 0
or aN ≥ 1. Moreover, from (4) it follows that

r(N)

γ (N)
= r(N + k)

γ (N + k)

if and only if

γ (N + 1) + γ (N − 1)

γ (N)
= γ (N + 1 + k) + γ (N − 1 + k)

γ (N + k)
,

provided that the denominators differ from zero. Since (5) and (6) can be written as

φ = γ (N + 1) + γ (N − 1)

2γ (N)

± 1

2
sgn

(
γ (N)

)√(γ (N + 1) + γ (N − 1)

γ (N)

)2

− 4

(
1 − r(N)

γ (N)

)
, (8)

we observe that one can always rule out one of the solutions (5) and (6) provided that
aN �= aN+k . Therefore, it always suffices to know two values of the autocovariance
r such that aN �= aN+k , except the worst case scenario where aj = a ∈ (0, 1) for
every j ∈ Z. A detailed analysis of this particular case is given in Appendix B.
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Remark 2. Consider a fixed strictly stationary process X. If we fix one value of the
autocovariance function of the noise such that Corollary 2 yields an unambiguous
AR(1) parameter, then the quadratic equations (4) will unravel the entire autoco-
variance function of the noise process. In comparison, conventionally, the noise is
assumed to be white — meaning that the entire autocovariance function of the noise
is assumed to be known a priori.

We end this section by observing that in the case of vanishing autocovariance
function of the noise, we get the following simplified form for the AR(1) parameter.

Theorem 2. Let centered (Xt )t∈Z be of the form (3) and let N ∈ N be fixed. Assume
that r(m) = 0 for every m ≥ N . If γ (N − 1) �= 0, then for every n ≥ N , we have

φ = γ (n)

γ (n − 1)
.

In particular, γ admits an exponential decay for n ≥ N .

Proof. Let γ (N − 1) �= 0. It follows directly from (7) and the assumptions that

γ (n) = φγ (n − 1) for every n ≥ N.

The condition γ (N − 1) �= 0 now implies the claim.

Recall that the representation (2) is unique only after H is fixed. As a simple
corollary for Theorem 2 we obtain the following result giving some new information
about the uniqueness of the representation (2).

Corollary 3. Let X be a strictly stationary process with a non-vanishing autocovari-
ance. Then there exists at most one pair (H,G) satisfying (2) such that the non-zero
part of the autocovariance function of the increment process (�tG)t∈Z is finite.

Proof. Assume that there exists H1,H2 > 0, and G1 ∈ GH1 and G2 ∈ GH2 such that
the pairs (H1,G1) and (H2,G2) satisfy (2) and the autocovariances of (�tG1)t∈Z
and (�tG2)t∈Z have cut-off points. From Theorem 2 it follows that H1 = H2 and
since for a fixed H the process G in (2) is unique, we get G1 = G2.

3 Estimation

Corollary 2 gives natural estimators for φ provided that we have been able to choose
between (5) and (6), and that a value of r(n) is known. We emphasize that in our
model it is sufficient to know only one (or in some cases two) of the values r(n),
whereas in conventional ARMA modeling much stronger assumptions are required.
(In fact, in conventional ARMA modeling the noise process is assumed to be white
noise.) It is also worth to mention that, generally, estimators of the parameters of
stationary processes are not expressible in a closed form. For example, this is the
case with the maximum likelihood and least squares estimators of conventionally
modeled ARMA processes, see [1]. Within our method, the model fitting is simpler.
Finally, it is worth to note that assumption of one known value of r(n) is a natural one
and cannot be avoided. Indeed, this is a direct consequence of the fact that the pair
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(φ, Z) in representation (3) is not unique. In fact, for practitioner, it is not absolutely
necessary to know any values of r(n). The practitioner may make an educated guess
and proceed in estimation. If the obtained estimate then turns out to be feasible, the
practitioner can stop there. If the obtained estimate turns out to be unreasonable (not
on the interval (0, 1)), then the practitioner have to make another educated guess. The
process is similar to selecting p and q in traditional ARMA(p, q) modeling.

Throughout this section, we assume that (X1, . . . , XT ) is an observed series from
a centered strictly stationary process that is modeled using the representation (3).
We use γ̂T (n) to denote an estimator of the corresponding autocovariance γ (n). For
example, γ̂T (n) can be given by

γ̂T (n) = 1

T

T −n∑
t=1

XtXt+n,

or more generally

γ̂T (n) = 1

T

T −n∑
t=1

(Xt − X̄)(Xt+n − X̄),

where X̄ is the sample mean of the observations. For this estimator the correspond-
ing sample covariance (function) matrix is positive semidefinite. On the other hand,
the estimator is biased while it is asymptotically unbiased. Another option is to use
T − n − 1 as a denominator. In this case one has an unbiased estimator, but the
sample covariance (function) matrix is no longer positive definite. Obviously, both
estimators have the same asymptotic properties. Furthermore, for our purposes it is
irrelevant how the estimators γ̂T (n) are defined, as long as they are consistent, and
the asymptotic distribution is known.

We next consider estimators of the parameter φ arising from characterization (3).
In this context, we pose some assumptions related to the autocovariance function of
the observed process X. The justification and testing of these assumptions are dis-
cussed in Section 3.1. From a priori knowledge that φ ∈ (0, 1) we enforce also the
estimators to the corresponding closed interval. However, if one prefers to use un-
bounded versions of the estimators, one may very well do that. The asymptotic prop-
erties are the same in both cases. We begin by defining an estimator corresponding to
the second part (2) of Corollary 2.

Definition 4. Assume that γ (N) = 0. Then we define

φ̂T = − r(N)

γ̂T (N + 1) + γ̂T (N − 1)
1γ̂T (N+1)+γ̂T (N−1)�=0 (9)

whenever the right-hand side lies on the interval [0, 1]. If the right-hand side is below
zero, we set φ̂T = 0 and if the right-hand side is above one, we set φ̂T = 1.

Theorem 3. Assume that γ (N) = 0 and r(N) �= 0. If the vector-valued estimator
[γ̂T (N + 1), γ̂T (N − 1)]
 is consistent, then φ̂T is consistent.

Proof. Since γ (N) = 0 and r(N) �= 0, Equation (4) guarantees that γ (N + 1) +
γ (N − 1) �= 0. Therefore consistency of φ̂T follows directly from the continuous
mapping theorem.
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Theorem 4. Let φ̂T be given by (4), and assume that γ (N) = 0 and r(N) �= 0. Set
γγγ = [γ (N + 1), γ (N − 1)]
 and γ̂γγ T = [γ̂T (N + 1), γ̂T (N − 1)]
. If

l(T )(γ̂γγ T − γγγ )
law−→ N (000,Σ)

for some covariance matrix Σ and some rate function l(T ), then

l(T )(φ̂T − φ)
law−→ N

(
000,∇f (γγγ )
Σ∇f (γγγ )

)
,

where ∇f (γγγ ) is given by

∇f (γγγ ) = − r(N)

(γ (N + 1) + γ (N − 1))2 ·
[

1
1

]
. (10)

Proof. For the simplicity of notation, in the proof we use the unbounded version of
the estimator φ̂T . Since the true value of φ lies strictly between 0 and 1, the very
same result holds also for the bounded estimator of Definition 2. Indeed, this is a
simple consequence of the Slutsky’s theorem. To begin with, let us define an auxiliary
function f by

f (xxx) = f (x1, x2) = r(N)

x1 + x2
1x1+x2 �=0.

If x1 + x2 �= 0, the function f is smooth in a neighborhood of xxx. Since γ (N) = 0
together with r(N) �= 0 implies that γ (N + 1) + γ (N − 1) �= 0, we may apply the
delta method at xxx = γγγ to obtain

l(T )(φ̂T − φ) = −l(T )
(
f (γ̂γγ T ) − f (γγγ )

) law−→ N
(
000,∇f (γγγ )
Σ∇f (γγγ )

)
,

where ∇f (γγγ ) is given by (10). This concludes the proof.

Remark 3. By writing

Σ =
[

σ 2
X σXY

σXY σ 2
Y

]
the variance of the limiting random variable reads

r(N)2

(γ (N + 1) + γ (N − 1))4

(
σ 2

X + 2σXY + σ 2
Y

)
.

Remark 4. In many cases the convergency rate is the best possible, that is l(T ) =√
T . However, our results are valid with any rate function. One might, for example

in the case of many long memory processes, have other convergency rates for the
estimators γ̂T (n).

We continue by defining an estimator corresponding to the first part (1) of the
Corollary 2. For this we assume that, for reasons discussed in Section 2, we have
chosen the solution (5) (cf. Remark 5 and Section 3.1). As above, we show that con-
sistency and asymptotic normality follow from the same properties of the autocovari-
ance estimators. In the sequel we use a short notation

g(xxx) = g(x1, x2, x3) = (x1 + x3)
2 − 4x2

(
x2 − r(N)

)
. (11)
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In addition, we denote

γγγ = [
γ (N + 1), γ (N), γ (N − 1)

]

and

γ̂γγ T = [
γ̂T (N + 1), γ̂T (N), γ̂T (N − 1)

]

.

Definition 5. Assume that γ (N) �= 0. We define an estimator for φ associated to (5)
by

φ̂T = γ̂T (N + 1) + γ̂T (N − 1) +√
g(γ̂γγ T )1g(γ̂γγ T )>0

2γ̂T (N)
1γ̂T (N)�=0 (12)

whenever the right-hand side lies on the interval [0, 1]. If the right-hand side is below
zero, we set φ̂T = 0 and if the right-hand side is above one, we set φ̂T = 1.

Theorem 5. Assume that γ (N) �= 0 and g(γγγ ) > 0. Furthermore, assume that φ is
given by (5). If γ̂γγ T is consistent, then φ̂T is consistent.

Proof. As g(γγγ ) > 0, the result is again a simple consequence of the continuous
mapping theorem.

Before proving the asymptotic normality, we present some short notation. We set

CN = γ (N + 1) + γ (N − 1) + √
g(γγγ )

γ (N)
(13)

and

Σφ = 1

4γ (N)2

⎛
⎜⎝(∇√g(γγγ )

)

Σ∇√g(γγγ ) + 2

⎡
⎣ 1

−CN

1

⎤
⎦



Σ∇√g(γγγ )

+
⎡
⎣ 1

−CN

1

⎤
⎦



Σ

⎡
⎣ 1

−CN

1

⎤
⎦
⎞
⎟⎠ ,

(14)

where

∇√g(γγγ ) = 1√
g(γγγ )

⎡
⎣γ (N + 1) + γ (N − 1)

2(r(N) − 2γ (N))

γ (N + 1) + γ (N − 1)

⎤
⎦ .

Theorem 6. Let the assumptions of Theorem 5 prevail. If

l(T )(γ̂γγ T − γγγ )
law−→ N (000,Σ)

for some covariance matrix Σ and some rate function l(T ), then l(T )(φ̂T − φ) is
asymptotically normal with zero mean and variance given by (14).

Proof. The proof follows the same lines as the proof of Theorem 4 but for the reader’s
convenience, we present the details. Furthermore, as in the proof of Theorem 4, since
the true value of φ lies strictly between 0 and 1, for the notational simplicity, we may
and will use the unbounded version of the estimator. Indeed, the asymptotics for the
bounded version then follow directly from the Slutsky’s theorem. We have



392 M. Voutilainen et al.(
γ̂T (N + 1)1γ̂T (N)�=0

γ̂T (N)
− γ (N + 1)

γ (N)

)

= 1

γ̂T (N)

(
γ̂T (N + 1)1γ̂T (N)�=0 − γ (N + 1)

)+
(

γ (N + 1)

γ̂T (N)
− γ (N + 1)

γ (N)

)

= 1

γ̂T (N)

(
γ̂T (N + 1)1γ̂T (N)�=0 − γ (N + 1) − γ (N + 1)

γ (N)

(
γ̂T (N) − γ (N)

))
.

Similarly(
γ̂T (N − 1)1γ̂T (N)�=0

γ̂T (N)
− γ (N − 1)

γ (N)

)

= 1

γ̂T (N)

(
γ̂T (N − 1)1γ̂T (N)�=0 − γ (N − 1) − γ (N − 1)

γ (N)

(
γ̂T (N) − γ (N)

))

and

(√
g(γ̂γγ T )1g(γ̂γγ T )>01γ̂T (N)�=0

γ̂T (N)
−

√
g(γγγ )

γ (N)

)

= 1

γ̂T (N)

(√
g(γ̂γγ T )1g(γ̂γγ T )>01γ̂T (N)�=0 −√

g(γγγ ) −
√

g(γγγ )

γ (N)

(
γ̂T (N) − γ (N)

))
.

For CN given in (13) we have

l(T )(φ̂T − φ) = l(T )

2γ̂ (N)

(
γ̂T (N + 1)1γ̂T (N)�=0 − γ (N + 1)

+ γ̂T (N − 1)1γ̂T (N)�=0 − γ (N − 1) − CN

(
γ̂T (N) − γ (N)

)
+
√

g(γ̂γγ T )1g(γ̂γγ T )>01γ̂T (N)�=0 −√
g(γγγ )

)
.

By defining

h(xxx) = h(x1, x2, x3) = (
x1 + x3 +√

g(xxx)1g(xxx)>0
)
1x2 �=0 − CNx2

we have

l(T )(φ̂T − φ) = l(T )

2γ̂T (N)

(
h(γ̂γγ T ) − h(γγγ )

)
. (15)

If x2 �= 0 and g(xxx) > 0, the function h is smooth in a neighborhood of xxx. Therefore
we may apply the delta method at xxx = γγγ to obtain

l(T )
(
h(γ̂γγ T ) − h(γγγ )

) law−→ N
(
000,∇h(γγγ )
Σ∇h(γγγ )

)
,

where

∇h(γγγ )
Σ∇h(γγγ ) =
⎛
⎝
⎡
⎣ 1

−CN

1

⎤
⎦+ ∇√g(γγγ )

⎞
⎠



Σ

⎛
⎝
⎡
⎣ 1

−CN

1

⎤
⎦+ ∇√g(γγγ )

⎞
⎠
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= (∇√g(γγγ )
)


Σ∇√g(γγγ ) + 2

⎡
⎣ 1

−CN

1

⎤
⎦



Σ∇√g(γγγ )

+
⎡
⎣ 1

−CN

1

⎤
⎦



Σ

⎡
⎣ 1

−CN

1

⎤
⎦ .

Hence (15) and Slutsky’s theorem imply that l(T )(φ̂T − φ) is asymptotically normal
with zero mean and variance given by (14).

Remark 5. One straightforwardly observes the same limiting behavior as in Theo-
rems 5 and 6 for the estimator related to (6). This fact also can be used to determine
which one of Equations (5) and (6) gives the correct φ (cf. Section 3.1).

Remark 6. If γ (N) �= 0 and g(γγγ ) = 0 we may define an estimator

φ̂T = γ̂T (N + 1) + γ̂T (N − 1)

2γ̂T (N)
1γ̂T (N)�=0.

Assuming that

l(T )(γ̂γγ T − γγγ )
law−→ N (000,Σ)

it can be shown similarly as in the proofs of Theorems 4 and 6 that

l(T )(φ̂T − φ)
law−→ N

⎛
⎜⎝0,

1

4γ (N)2

⎡
⎣ 1

− γ (N+1)+γ (N−1)
γ (N)

1

⎤
⎦




Σ

⎡
⎣ 1

− γ (N+1)+γ (N−1)
γ (N)

1

⎤
⎦
⎞
⎟⎠

Remark 7. The estimator related to Theorem 2 reads

φ̂T = γ̂T (n + 1)

γ̂T (n)
1γ̂T (n)�=0,

where we assume that γ (n) �= 0. By using the same techniques as earlier, it can be
shown that if

l(T )
(
γ̂T (n + 1) − γ (n + 1), γ̂T (n) − γ (n)

) law−→ N
(

000,

[
σ 2
X

σXY

σXY σ 2
Y

])
,

then

l(T )(φ̂T − φ)
law−→ N

(
0,

σ 2
X

γ (n)2 + γ (n + 1)2

γ (n)4 σ 2
Y − 2

γ (n + 1)

γ (n)3 σXY

)
.

Note that the asymptotics given in Remarks 6 and 7 hold also if one forces the
corresponding estimators to the interval [0, 1] as we did in Definitions 4 and 5.

3.1 Testing the underlying assumptions

When choosing the estimator that corresponds the situation at hand, we have to make
assumptions related to the values of γ (N) (for some N ) and g(γγγ ). In addition, we
have to consider the question of the choice between (5) and (6).
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Let us first discuss how to test the null hypothesis that γ (N) = 0. If the null
hypothesis holds, then by asymptotic normality of the autocovariances, we have that

l(T )γ̂T (N)
law−→ N

(
0, σ 2) (16)

with some σ 2. Hence we may use

γ̂T (N) ∼a N
(

0,
σ 2

l(T )2

)

as a test statistics. A similar approach can be applied also when testing the null hy-
pothesis that g(γγγ ) = 0, where g is defined by (11). The alternative hypothesis is of
the form g(γγγ ) > 0. Assuming that the null hypothesis holds, we obtain by the delta
method that

l(T )
(
g(γ̂γγ T ) − g(γγγ )

) law−→ N
(
0, σ̃ 2)

for some σ̃ 2 justifying the use of

g(γ̂γγ T ) ∼a N
(

0,
σ̃ 2

l(T )2

)

as a test statistics. If the tests above suggest that γ (N) �= 0 and g(γγγ ) > 0, then the
choice of the sign can be based on the discussion in Section 2. Namely, if for the ratio
aN = r(N)

γ (N)
it holds that aN ≤ 0 or aN ≥ 1, then the sign is unambiguous. The sign

of γ (N) can be deduced from the previous testing of the null hypothesis γ (N) = 0.
By (16), if necessary, one can test the null hypothesis γ (N) = r(N) using the test
statistics

γ̂T (N) ∼a N
(

r(N),
σ 2

l(T )2

)
,

where the alternative hypothesis is of the form r(N)
γ (N)

< 1. Finally, assume that one
wants to test if the null hypothesis aN = ak holds. By the delta method we obtain that

l(T )(âN − âk − aN + ak)
law−→ N

(
0, σ̄ 2)

for some σ̄ 2 suggesting that

âN − âk ∼a N
(

0,
σ̄ 2

l(T )2

)

could be utilized as a test statistics.

4 Simulations

We present a simulation study to assess the finite sample performance of the estima-
tors. In the simulations, we apply the estimator corresponding to the first part (1) of
Corollary 2. We simulate data from AR(1) processes and ARMA(1, 2) processes with
θ1 = 0.8 and θ2 = 0.3 as the MA parameters. (Note that these processes correspond
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to Examples 1 and 2.) We assess the effects of the sample size T , AR(1) parameter
ϕ, and the chosen lag N . We consider the sample sizes T = 50, 500, 5000, 50000,
lags N = 1, 2, 3, . . . , 10, and the true parameter values ϕ = 0.1, 0.2, 0.3, . . . , 0.9.
For each combination, we simulate 1000 draws. The sample means of the obtained
estimates are tabulated in Appendix C.

Histograms given in Figures 1, 2 and 3 reflect the effects of the sample size T ,
AR(1) parameter ϕ, and the chosen lag N , respectively. In Figure 1, the parameter
ϕ = 0.5 and the lag N = 3. In Figure 2, the sample size T = 5000 and the lag
N = 3. In Figure 3, the parameter ϕ = 0.5 and the sample size T = 5000. The
summary statistics corresponding to the data displayed in the histograms are given in
Appendix C.

Figure 1 exemplifies the rate of convergence of the estimator as the number of
observations grows. One can see that with the smallest sample size, the lower bound
is hit numerous times due to the large variance of the estimator. In the upper series
of the histograms, the standard deviation reduces from 0.326 to 0.019, whereas in the
lower series it reduces from 0.250 to 0.008. The faster convergence in the case of
ARMA(1, 2) can be explained with the larger value of γ (3) reducing the variance in
comparison to the AR(1) case. The same phenomenon recurs also in the other two
figures.

Figure 2 reflects the effect of the AR(1) parameter on the value of γ (3) and con-
sequently on the variance of the estimator. The standard deviation reduces from 0.322
to 0.020 in the case of AR(1) and from 0.067 to 0.009 in the case of ARMA(1, 2).

In Figure 3 one can see how an increase in the lag increases the variance of the
estimator. In the topmost sequence, the standard deviation increases from 0.014 to
0.326 and in the bottom sequence from 0.015 to 0.282.

We wish to emphasize that in general smaller lag does not imply smaller variance,
since the autocovariance function of the observed process is not necessarily decreas-
ing. In addition, although the autocovariance γ (N) appears to be the dominant factor
when it comes to the speed of convergence, there are also other possibly significant
terms involved in the limit distribution of Theorem 6.

A Proof of Theorem 1

We provide here a detailed proof of Theorem 1. The continuous time version of the
theorem was recently proved in [17] and we loosely follow the same lines in our proof
for the discrete time version.

Definition 6. Let H > 0. A discrete time stochastic process Y = (Yet )t∈Z with
limt→−∞ Yet = 0 is H-self-similar if

(Yet+s )t∈Z
law= (

esH Yet

)
t∈Z

for every s ∈ Z in the sense of finite-dimensional distributions.

Definition 7. Let H > 0. In addition, let X = (Xt )t∈Z and Y = (Yet )t∈Z be stochas-
tic processes. We define the discrete Lamperti transform by

(LH X)et = etH Xt



396 M. Voutilainen et al.

Fig. 1. The effect of the sample size T on the estimates ϕ̂ = φ̂. The true parameter value
ϕ = 0.5 and the lag N = 3. The number of iterations is 1000
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Fig. 2. The effect of the true parameter value ϕ on the estimates ϕ̂ = φ̂. The sample size
T = 5000 and the lag N = 3. The number of iterations is 1000
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Fig. 3. The effect of the lag N on the estimates ϕ̂ = φ̂. The sample size T = 5000 and the true
parameter value ϕ = 0.5. The number of iterations is 1000
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and its inverse by (
L−1

H Y
)
t
= e−tH Yet .

Theorem 7 (Lamperti [10]). If X = (Xt )t∈Z is strictly stationary, then (LH X)et is
H-self-similar. Conversely, if Y = (Yet )t∈Z is H-self-similar, then (L−1

H Y)t is strictly
stationary.

Lemma 3. Let H > 0 and assume that (Yet )t∈Z is H-self-similar. Let us denote
�tYet = Yet − Yet−1 . Then the process (Gt )t∈Z defined by

Gt =
⎧⎨
⎩
∑t

k=1 e−kH �kYek , t ≥ 1
0, t = 0
−∑0

k=t+1 e−kH �kYek , t ≤ −1
(17)

belongs to GH .

Proof. By studying the cases t ≥ 2, t = 1, t = 0 and t ≤ −1 separately, it is
straightforward to see that

�tG = e−tH �tYet for every t ∈ Z. (18)

Now

lim
k→−∞

0∑
t=k

etH �tG = lim
k→−∞

0∑
t=k

�tYet = Ye0 − lim
k→−∞ Yek

and since Y is self-similar, we have

Yek
law= ekH Ye0 .

Thus
lim

k→−∞ Yek = 0

in distribution, and hence also in probability. This implies that

0∑
t=−∞

etH �tG

is an almost surely finite random variable. Next we show that G has strictly stationary
increments. For this, assume that t, s, l ∈ Z with t > s are arbitrary. Then

Gt − Gs =
t∑

k=s+1

�kG =
t∑

k=s+1

e−kH �kYek =
t+l∑

j=s+l+1

e−(j−l)H �j−lYej−l

law=
t+l∑

j=s+l+1

e−jH �jYej = Gt+l − Gs+l ,

where the equality in law follows from H -self-similarity of (Yet )t∈Z. Treating n-
dimensional vectors similarly concludes the proof.
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Proof of Theorem 1. Assume first that X is strictly stationary. In this case X clearly
satisfies the limit condition. In addition, there exists a H-self-similar Y such that

�tX = e−tH Yet − e−(t−1)H Yet−1

= (
e−H − 1

)
e−(t−1)H Yet−1 + e−tH (Yet − Yet−1)

= (
e−H − 1

)
Xt−1 + e−tH �tYet .

Defining the process G as in Lemma 3 completes the proof of the ‘if’ part. For the
proof of the ‘only if’ part, assume that G ∈ GH . From (2) it follows that

Xt = e−H Xt−1 + �tG = e−2H Xt−2 + e−H �t−1G + �tG

=
n∑

j=0

e−jH �t−jG + e−(n+1)H Xt−n−1

= e−tH

( t∑
k=t−n

ekH �kG + e(t−n−1)H Xt−n−1

)

for every n ∈ N. Since G ∈ GH and limm→−∞ emH Xm = 0 in probability, we obtain
that

Xt = e−tH
t∑

k=−∞
ekH �kG

for every t ∈ Z. Now, by strictly stationary increments of G, we have

e−tH
t∑

j=−M

ejH �j+sG
law= e−tH

t∑
j=−M

ejH �jG.

for every t,M ∈ Z such that −M ≤ t . Since the sums above converge as M tends to
infinity, we obtain

Xt+s = e−(t+s)H
t∑

j=−∞
e(j+s)H �j+sG

law= e−tH
t∑

j=−∞
ejH �jG = Xt .

Treating multidimensional distributions similarly we thus observe that X is strictly
stationary. Finally, to prove the uniqueness assume there exist G1,G2 ∈ GH such
that

etH Xt =
t∑

k=−∞
ekH �kG1 =

t∑
k=−∞

ekH �kG2

for every t ∈ Z. Then

etH Xt − e(t−1)H Xt−1 = etH �tG1 = etH �tG2.

Hence �tG1 = �tG2 for every t ∈ Z implying that G1 = G2 + c. Since both
processes are zero at t = 0, it must hold that c = 0.

Remark 8. Corollary 1 is almost trivial. However, it is well motivated by Theorem
1. On the other hand, Theorem 1 is far away from trivial as it states both sufficient
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and necessary conditions. We prove Theorem 1 using discrete Lamperti transform.
In principle, one could consider proving Theorem 1 by starting from Corollary 1.
However, at this point, we have not assumed any moment conditions, and thus it is
not clear whether a process G constructed from Z(H) of Corollary 1 would satisfy
G ∈ GH . Indeed, a counter example is provided in [17, Proposition 2.1.]. See also
[17, Theorem 2.2.], where moment conditions are discussed.

B Discussion on special cases

In this appendix we take a closer look at “worst case scenario” processes related to
the choice between (5) and (6). These are such processes that, for some 0 < a < 1,
aj = a for every j ∈ Z. By (4) this is equivalent to

γ (j + 1) + γ (j − 1)

γ (j)
= b (19)

for every j ∈ Z, where φ < b < φ + 1
φ

. In order to study processes of this form, we
consider formal power series.

Definition 8. Let

f (x) =
∞∑

n=0

cnx
n

be a formal power series in x. We now define the coefficient extractor operator [·]{∗}
by [

xm
]{

f (x)
} = cm

Setting j = 0 in (19) we obtain that γ (1) = b
2γ (0). This leads to the following

recursion.
γ (n) = bγ (n − 1) − γ (n − 2) for n ≥ 2. (20)

It follows immediately from the first step of the recursion that b > 2 does not define
an autocovariance function of a stationary process. Note also that for b = 2 Equation
(20) implies that γ (n) = γ (0) for every n ∈ Z. This corresponds to the completely
degenerate process Xn = X0. We next study the case 0 < b < 2. For this, we define
a generating function regarded as a formal power series by

f (x) =
∞∑

n=0

γ (n)xn. (21)

Then the coefficients of f (x) satisfy[
xn
]{

f (x)
} = b

[
xn−1]{f (x)

}− [
xn−2]{f (x)

}
= [

xn
]{

bxf (x)
}− [

xn
]{

x2f (x)
}

= [
xn
]{

bxf (x) − x2f (x)
}

for n ≥ 2. For simplicity, we assume that γ (0) = 1. By taking the constant and the
first order terms into account we obtain

f (x) = bxf (x) − x2f (x) − bx + 1 + b

2
x,
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which implies

f (x) = 1 − b
2x

x2 − bx + 1
.

Since the function above is analytic at x = 0, the corresponding power series expan-
sion is (21). Furthermore, since the recursion formula is linear, for a general γ (0) it
holds that

γ (n) = γ (0)
[
xn
]{(

1 − b

2
x

) ∞∑
n=0

(
bx − x2)n}.

C Tables

The simulation results highlighted in Section 4 are chosen from a more extensive
set of simulations. All the simulation results are given in a tabulated form in this ap-
pendix. The two processes considered in the simulations are AR(1) and ARMA(1, 2).
The used MA parameters are θ1 = 0.8 and θ2 = 0.3. The tables represent the effi-
ciency dependence of the estimator on the AR(1) parameter ϕ and the used lag N .
We have varied the column variable AR(1) parameter from 0.1 to 0.9 and the row
variable lag from 1 to 10. The tables display the sample means of the estimates from
1000 iterations with different sample sizes. At the end of this appendix, we provide
summary statistics tables corresponding to the histograms presented in Section 4.

N/ϕ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 0.10 0.18 0.27 0.38 0.48 0.57 0.67 0.77 0.85
2 0.25 0.26 0.30 0.35 0.45 0.54 0.64 0.74 0.82
3 0.32 0.35 0.35 0.40 0.41 0.48 0.57 0.69 0.80
4 0.30 0.37 0.42 0.47 0.50 0.52 0.55 0.66 0.77
5 0.33 0.39 0.42 0.50 0.53 0.57 0.61 0.65 0.75
6 0.34 0.37 0.42 0.47 0.56 0.60 0.66 0.69 0.74
7 0.32 0.37 0.43 0.49 0.57 0.60 0.68 0.69 0.75
8 0.32 0.34 0.45 0.51 0.57 0.64 0.69 0.72 0.76
9 0.31 0.37 0.44 0.50 0.59 0.64 0.70 0.73 0.78

10 0.34 0.35 0.43 0.51 0.58 0.64 0.70 0.75 0.78

Table 1. The sample means of the parameter estimates ϕ̂ = φ̂ for AR(1) processes with differ-
ent parameter values ϕ using lags N = 1, 2, 3, . . . , 10. The sample size is 50 and the number
of iterations is 1000

N/ϕ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
2 0.23 0.24 0.30 0.40 0.51 0.60 0.70 0.80 0.91
3 0.29 0.31 0.34 0.40 0.50 0.61 0.71 0.81 0.91
4 0.32 0.37 0.40 0.40 0.49 0.61 0.70 0.81 0.90
5 0.30 0.37 0.42 0.48 0.50 0.58 0.70 0.81 0.90
6 0.30 0.36 0.44 0.47 0.53 0.58 0.68 0.80 0.90
7 0.30 0.37 0.44 0.49 0.53 0.57 0.65 0.79 0.90
8 0.32 0.39 0.44 0.51 0.57 0.61 0.68 0.76 0.90
9 0.30 0.38 0.45 0.51 0.59 0.63 0.68 0.75 0.89

10 0.32 0.39 0.46 0.52 0.58 0.64 0.70 0.75 0.89

Table 2. The sample means of the parameter estimates ϕ̂ = φ̂ for AR(1) processes with differ-
ent parameter values ϕ using lags N = 1, 2, 3, . . . , 10. The sample size is 500 and the number
of iterations is 1000
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N/ϕ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
2 0.13 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
3 0.26 0.27 0.32 0.40 0.50 0.60 0.70 0.80 0.90
4 0.30 0.32 0.34 0.42 0.51 0.61 0.70 0.80 0.90
5 0.29 0.37 0.38 0.43 0.51 0.62 0.71 0.80 0.90
6 0.31 0.37 0.41 0.45 0.49 0.62 0.71 0.81 0.90
7 0.29 0.38 0.40 0.47 0.52 0.59 0.72 0.81 0.90
8 0.29 0.40 0.45 0.51 0.54 0.58 0.71 0.81 0.91
9 0.32 0.37 0.41 0.50 0.54 0.60 0.68 0.82 0.91

10 0.29 0.37 0.41 0.51 0.57 0.61 0.68 0.82 0.91

Table 3. The sample means of the parameter estimates ϕ̂ = φ̂ for AR(1) processes with dif-
ferent parameter values ϕ using lags N = 1, 2, 3, . . . , 10. The sample size is 5000 and the
number of iterations is 1000

N/ϕ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
2 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
3 0.21 0.21 0.30 0.40 0.50 0.60 0.70 0.80 0.90
4 0.28 0.30 0.33 0.40 0.50 0.60 0.70 0.80 0.90
5 0.29 0.34 0.36 0.41 0.51 0.60 0.70 0.80 0.90
6 0.29 0.37 0.39 0.42 0.52 0.60 0.70 0.80 0.90
7 0.29 0.37 0.44 0.45 0.51 0.61 0.70 0.80 0.90
8 0.31 0.37 0.43 0.48 0.49 0.62 0.70 0.80 0.90
9 0.31 0.35 0.43 0.49 0.53 0.60 0.71 0.80 0.90

10 0.32 0.37 0.42 0.48 0.53 0.58 0.72 0.80 0.90

Table 4. The sample means of the parameter estimates ϕ̂ = φ̂ for AR(1) processes with dif-
ferent parameter values ϕ using lags N = 1, 2, 3, . . . , 10. The sample size is 50000 and the
number of iterations is 1000

N/ϕ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 0.08 0.14 0.22 0.32 0.41 0.52 0.61 0.72 0.81
2 0.09 0.13 0.20 0.30 0.39 0.50 0.60 0.72 0.82
3 0.32 0.33 0.32 0.34 0.40 0.46 0.58 0.71 0.81
4 0.65 0.66 0.62 0.60 0.60 0.56 0.60 0.68 0.78
5 0.64 0.67 0.69 0.70 0.69 0.69 0.69 0.70 0.77
6 0.64 0.68 0.69 0.72 0.74 0.75 0.76 0.75 0.78
7 0.64 0.67 0.70 0.72 0.77 0.78 0.79 0.79 0.80
8 0.65 0.67 0.71 0.72 0.76 0.79 0.81 0.80 0.83
9 0.63 0.68 0.72 0.74 0.78 0.80 0.82 0.83 0.84

10 0.65 0.68 0.70 0.74 0.78 0.80 0.83 0.85 0.85

Table 5. The sample means of the parameter estimates ϕ̂ = φ̂ for ARMA(1, 2) processes with
different parameter values ϕ using lags N = 1, 2, 3, . . . , 10. The MA parameters θ1 = 0.8 and
θ2 = 0.3, the sample size is 50 and the number of iterations is 1000
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N/ϕ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 0.09 0.19 0.29 0.39 0.49 0.59 0.69 0.80 0.90
2 0.09 0.19 0.28 0.39 0.49 0.59 0.69 0.79 0.90
3 0.12 0.18 0.26 0.37 0.48 0.59 0.69 0.79 0.90
4 0.58 0.49 0.38 0.37 0.45 0.57 0.69 0.79 0.90
5 0.64 0.65 0.62 0.57 0.52 0.56 0.68 0.79 0.90
6 0.65 0.68 0.67 0.68 0.66 0.61 0.67 0.79 0.90
7 0.66 0.68 0.69 0.71 0.72 0.69 0.69 0.78 0.90
8 0.66 0.68 0.71 0.72 0.75 0.73 0.72 0.78 0.90
9 0.66 0.68 0.71 0.74 0.76 0.75 0.76 0.77 0.90

10 0.65 0.68 0.71 0.74 0.77 0.78 0.78 0.78 0.89

Table 6. The sample means of the parameter estimates ϕ̂ = φ̂ for ARMA(1, 2) processes with
different parameter values ϕ using lags N = 1, 2, 3, . . . , 10. The MA parameters θ1 = 0.8 and
θ2 = 0.3, the sample size is 500 and the number of iterations is 1000

N/ϕ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
2 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
3 0.10 0.19 0.30 0.40 0.50 0.60 0.70 0.80 0.90
4 0.34 0.21 0.27 0.39 0.50 0.60 0.70 0.80 0.90
5 0.61 0.55 0.40 0.37 0.48 0.60 0.70 0.80 0.90
6 0.65 0.65 0.62 0.50 0.48 0.59 0.70 0.80 0.90
7 0.63 0.68 0.67 0.63 0.58 0.57 0.70 0.80 0.90
8 0.64 0.68 0.68 0.71 0.69 0.60 0.69 0.80 0.90
9 0.65 0.69 0.69 0.73 0.71 0.67 0.68 0.80 0.90

10 0.64 0.67 0.71 0.75 0.74 0.74 0.69 0.80 0.90

Table 7. The sample means of the parameter estimates ϕ̂ = φ̂ for ARMA(1, 2) processes with
different parameter values ϕ using lags N = 1, 2, 3, . . . , 10. The MA parameters θ1 = 0.8 and
θ2 = 0.3, the sample size is 5000 and the number of iterations is 1000

N/ϕ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
2 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
3 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
4 0.13 0.19 0.30 0.40 0.50 0.60 0.70 0.80 0.90
5 0.56 0.30 0.28 0.39 0.50 0.60 0.70 0.80 0.90
6 0.62 0.60 0.41 0.37 0.50 0.60 0.70 0.80 0.90
7 0.63 0.65 0.63 0.46 0.47 0.60 0.70 0.80 0.90
8 0.64 0.66 0.68 0.63 0.49 0.59 0.70 0.80 0.90
9 0.62 0.67 0.69 0.71 0.60 0.58 0.70 0.80 0.90

10 0.65 0.67 0.71 0.73 0.70 0.59 0.70 0.80 0.90

Table 8. The sample means of the parameter estimates ϕ̂ = φ̂ for ARMA(1, 2) processes with
different parameter values ϕ using lags N = 1, 2, 3, . . . , 10. The MA parameters θ1 = 0.8 and
θ2 = 0.3, the sample size is 50000 and the number of iterations is 1000

T max min mean median sd mad skewness
50 1.00 0.00 0.413 0.409 0.326 0.436 0.222
500 0.999 0.00 0.502 0.495 0.218 0.187 0.207
5000 0.726 0.319 0.501 0.497 0.058 0.056 0.456
50000 0.561 0.443 0.501 0.502 0.019 0.019 -0.058

Table 9. The effect of the sample size T on the estimates ϕ̂ = φ̂ for an AR(1) process. The
true parameter value ϕ = 0.5 and the lag N = 3. The number of iterations is 1000
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T max min mean median sd mad skewness
50 0.999 0.00 0.399 0.425 0.250 0.264 -0.062
500 0.681 0.00 0.481 0.491 0.086 0.078 -1.020
5000 0.570 0.395 0.499 0.500 0.024 0.023 -0.201
50000 0.527 0.474 0.500 0.500 0.008 0.007 0.036

Table 10. The effect of the sample size T on the estimates ϕ̂ = φ̂ for an ARMA(1, 2) process.
The MA parameters θ1 = 0.8 and θ2 = 0.3, the true parameter value ϕ = 0.5 and the lag
N = 3. The number of iterations is 1000

ϕ max min mean median sd mad skewness
0.1 1.00 0.00 0.257 0.097 0.322 0.144 1.056
0.4 0.989 0.111 0.396 0.395 0.096 0.083 0.500
0.6 0.738 0.476 0.602 0.601 0.041 0.043 0.211
0.9 1.00 0.852 0.901 0.899 0.020 0.018 0.943

Table 11. The effect of the true parameter value ϕ on the estimates ϕ̂ = φ̂ for AR(1) processes.
The sample size T = 5000 and the lag N = 3. The number of iterations is 1000

ϕ max min mean median sd mad skewness
0.1 0.273 0.00 0.096 0.098 0.067 0.082 0.144
0.4 0.496 0.254 0.396 0.397 0.032 0.032 -0.198
0.6 0.650 0.540 0.600 0.600 0.018 0.019 -0.061
0.9 0.929 0.868 0.899 0.899 0.009 0.009 -0.076

Table 12. The effect of the true parameter value ϕ on the estimates ϕ̂ = φ̂ for ARMA(1, 2)

processes. The MA parameters θ1 = 0.8 and θ2 = 0.3, the sample size T = 5000 and the lag
N = 3. The number of iterations is 1000

N max min mean median sd mad skewness
1 0.550 0.457 0.501 0.501 0.014 0.015 0.017
3 0.726 0.319 0.501 0.497 0.058 0.056 0.456
5 1.00 0.00 0.513 0.493 0.246 0.226 0.098
7 1.00 0.00 0.525 0.558 0.326 0.395 -0.216

Table 13. The effect of the lag N on the estimates ϕ̂ = φ̂ for an AR(1) process. The sample
size T = 5000 and the true parameter value ϕ = 0.5. The number of iterations is 1000

N max min mean median sd mad skewness
1 0.548 0.455 0.500 0.500 0.015 0.016 0.134
3 0.570 0.395 0.499 0.500 0.024 0.023 -0.201
5 0.710 0.00 0.482 0.499 0.112 0.092 -1.456
7 1.00 0.00 0.576 0.613 0.282 0.275 -0.488

Table 14. The effect of the lag N on the estimates ϕ̂ = φ̂ for an ARMA(1, 2) process. The MA
parameters θ1 = 0.8 and θ2 = 0.3, the sample size T = 5000 and the true parameter value
ϕ = 0.5. The number of iterations is 1000

References

[1] Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, New
York (1991). MR1093459

http://www.ams.org/mathscinet-getitem?mr=1093459


406 M. Voutilainen et al.

[2] Davis, R., Resnick, S.: Limit theory for the sample covariance and correlation functions
of moving averages. The Annals of Statistics 14(2), 533–558 (1986). MR0840513

[3] Francq, C., Zakoïan, J.-M.: Maximum likelihood estimation of pure GARCH and
ARMA-GARCH processes. Bernoulli 10(4), 605–637 (2004)

[4] Francq, C., Roy, R., Zakoïan, J.-M.: Diagnostic checking in ARMA models with uncor-
related errors. Journal of the American Statistical Association 100(470), 532–544 (2005)

[5] Hamilton, J.D.: Time Series Analysis, 1st edn. Princeton university press, Princeton
(1994). MR1278033

[6] Hannan, E.J.: The estimation of the order of an ARMA process. The Annals of Statistics
8(5), 1071–1081 (1980). MR0585705

[7] Hannan, E.J.: The asymptotic theory of linear time-series models. Journal of Applied
Probability 10(1), 130–145 (1973)

[8] Horváth, L., Kokoszka, P.: Sample autocovariances of long-memory time series.
Bernoulli 14(2), 405–418 (2008). MR2544094

[9] Koreisha, S., Pukkila, T.: A generalized least-squares approach for estimation of autore-
gressive moving-average models. Journal of Time Series Analysis 11(2), 139–151 (1990)

[10] Lamperti, J.: Semi-stable stochastic processes. Transactions of the American mathemati-
cal Society 104(1), 62–78 (1962)

[11] Lévy-Leduc, C., Boistard, H., Moulines, E., Taqqu, M.S., Reisen, V.A.: Robust estima-
tion of the scale and of the autocovariance function of Gaussian short-and long-range
dependent processes. Journal of Time Series Analysis 32(2), 135–156 (2011)

[12] Lin, J.-W., McLeod, A.I.: Portmanteau tests for ARMA models with infinite variance.
Journal of Time Series Analysis 29(3), 600–617 (2008)

[13] Ling, S., Li, W.: On fractionally integrated autoregressive moving-average time series
models with conditional heteroscedasticity. Journal of the American Statistical Associa-
tion 92(439), 1184–1194 (1997)

[14] Mauricio, J.A.: Exact maximum likelihood estimation of stationary vector ARMA mod-
els. Journal of the American Statistical Association 90(429), 282–291 (1995)

[15] McElroy, T., Jach, A.: Subsampling inference for the autocovariances and autocorrela-
tions of long-memory heavy-tailed linear time series. Journal of Time Series Analysis
33(6), 935–953 (2012)

[16] Mikosch, T., Gadrich, T., Kluppelberg, C., Adler, R.J.: Parameter estimation for ARMA
models with infinite variance innovations. The Annals of Statistics 23(1), 305–326 (1995)

[17] Viitasaari, L.: Representation of stationary and stationary increment processes via
Langevin equation and self-similar processes. Statistics & Probability Letters 115, 45–
53 (2016)

[18] Yao, Q., Brockwell, P.J.: Gaussian maximum likelihood estimation for ARMA models. I.
time series. Journal of Time Series Analysis 27(6), 857–875 (2006)

http://www.ams.org/mathscinet-getitem?mr=0840513
http://www.ams.org/mathscinet-getitem?mr=1278033
http://www.ams.org/mathscinet-getitem?mr=0585705
http://www.ams.org/mathscinet-getitem?mr=2544094

	Introduction
	On AR(1) characterization in modeling strictly stationary processes
	Estimation
	Testing the underlying assumptions

	Simulations
	Proof of Theorem 1
	Discussion on special cases
	Tables

