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ABSTRACT   

This paper presents the development of methods for real-time fine-tuning of a high power laser welding process of 

thick steel by using a compact smart camera system. When performing welding in butt-joint configuration, the laser 

beam’s location needs to be adjusted exactly according to the seam line in order to allow the injected energy to be 

absorbed uniformly into both steel sheets. In this paper, on-line extraction of seam parameters is targeted by taking 

advantage of a combination of dynamic image intensity compression, image segmentation with a focal-plane processor 
ASIC, and Hough transform on an associated FPGA. Additional filtering of Hough line candidates based on temporal 

windowing is further applied to reduce unrealistic frame-to-frame tracking variations. The proposed methods are 

implemented in Matlab by using image data captured with adaptive integration time. The simulations are performed in a 

hardware oriented way to allow real-time implementation of the algorithms on the smart camera system.  
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1. INTRODUCTION AND RELATED WORK 

Although the path of a robot guiding a laser welding head can be pre-programmed, fine-tuning of the laser beam to 
the exact seam location is essential to allow the injected energy to distribute evenly to both metal sheets. This requires 

on-line inspection of the seam position and real-time automated control of the welding robot. The high variation in 

intensity dynamics within the visible spectrum in laser welding is challenging for automated vision algorithms, which 

have to cope with visual noise, lack of detail in poorly illuminated areas and saturation in highly illuminated areas. 

Various methods have been proposed to tackle these problems for the implementation of visual weld seam tracking. 

Stereo or structured light imaging [1, 2] can be used to extract the 3D geometry of a weld seam. However, very small 

seams widths in the laser welding process can be indistinguishable from the flat metal surface, which is why analysis 

based on direct visual imaging has also been actively developed. In [3] the shape of the weld pool, which consists of the 

melt surrounding the laser beam, was captured visually with a 2D camera and used to determine the parameters of the 

weld. In [4], thermal radiation in the near-infrared spectrum was used to assist the determination of the seam and weld 

pool properties with a high-speed camera, and the authors in [5] proposed shuttering the camera in pulsed Nd:YAG 

welding in accordance to the instant changes of the laser pulses affecting the image intensity dynamics. Recently, in [6] a 
Kalman filter and a neural network was proposed for improving the seam tracking accuracy of a laser welding process 

based on 2D visual analysis. In [7], Hough transform in combination with limiting the accumulator space into specific 

interval was proposed for the tracking of the welding seam. However, the focus of that paper was to study how efficient 

pre-filtering of the Hough transform could be implemented.   

In [8], a smart camera was used to control the laser power in the welding process by monitoring the keyhole 

dynamics, resulting in improved welding quality. In this paper, we examine the application of a similar smart camera 

system for visual seam tracking, with a goal to enable real-time fine-tuning of the robot path in laser welding of thick 

steel sheets. The problem of large inter-scene illumination variation is in our case handled by the high-speed smart 

camera, which performs real-time dynamic compression by adapting the local pixel integration times according to the 

estimated average regional intensity [9]. This allows the observation of the darker plate seam even with the high intensity 

weld-pool in the same scene. Also, image preprocessing and segmentation and Hough transform based line detection and 
line tracking can be implemented directly within a single embedded smart camera device. Performing all of the necessary 

image analysis on the camera- and even on the sensor-level allows the implementation of a very high speed and small 

delay monitoring and control-loop for the welding system within a very compact platform.  



 

 
 

 

In this study the KOVA1 camera [10], which consists of a 96x96 sized CMOS sensor chip with processor-per-pixel 

functionality and an FPGA co-processor was used for capturing the welding footage as a baseline for the algorithm 

development. In previous research [11] an FPGA-based implementation of the Hough transform on the KOVA1 camera 

platform was demonstrated. In this paper, the seam-tracking analysis implementation is examined in a simulated 

environment in Matlab, however, real image data captured from laser welding tests with the smart camera was used as 

input. Hardware-realistic simulations are used for the development of the system, i.e. by using only operations which can 
be actually implemented with similar accuracy within the actual embedded camera platform. The results will give an 

indication on the feasibility of the proposed approach for real-time seam tracking and will be applied in further practical 

testing with on-line processing. 

 

2. PIXEL-PARALLEL IMAGE SEGMENTATION AND LINE FILTERING 

2.1 Pixel-parallel image segmentation 

In the targeted monitoring system the input images are segmented to reduce redundant information while preserving 

the seam features. The segmented black-and-white (BW, 1b) images are then applied to a Hough transform and 

additional higher level spatial and temporal analysis to extract the seam location and direction. In the Matlab simulations 

used for the off-line development reported here, constraints created by the embedded hardware e.g. on the accessible 

pixel neighborhood, have been taken into account and only processing operations supported by the camera hardware 

were used. The input data used in the simulations was captured with the KOVA1 camera in earlier laser welding tests, by 

using real time image intensity compression. Image segmentation can be performed within the KOVA1 smart camera 

with pixel-level analog processing circuitry based on current-mode computation and local (dynamic) current memories, 

within a locally connected pixel-processor network [9, 10].  

 

 

Figure 1. Left: Original image captured with only radiated illumination from the laser interaction area, using on-chip dynamic 
compression on the smart camera. The image scale is approximately 0.2mm/pixel. The seam is mostly visible to human eye and the 
melt pool extends the right from the bright laser interaction area. Middle: Segmented B/W image (Matlab), where the right-hand side 
of the image has been logically masked. Right: The dominant line candidate extracted by the Hough transform (Matlab).  

 

As can be seen from left side image of Fig. 1, the seam is visible as a thin dark line in the captured camera images. 

From the camera setup it is also known that the seam lies approximately in horizontal direction in the camera view. The 

segmentation algorithm was therefore optimized to extract thin dark features with a dominantly horizontal orientation. In 

KOVA1 both local 1st and 2nd pixel neighborhoods can be accessed directly in image operations by each pixel-

processor cell, depending on the type of processing operation. In this case each pixel value is processed in its second 

order neighborhood by comparing the intensity value of the center pixel IL=I(cx,cy) to its neighbors in directions 
INW=I(cx-1, cy+2), INE=I(cx+1, cy+2), ISW=I(cx-1, cy-2) and ISE=I(cx+1, cy-2).  

The intensity value of the center pixel is sequentially compared against the pixel value of each selected local 

neighbor and at the same time the absolute value of the difference between the neighborhood pixel and the local pixel is 

extracted. If the neighboring pixel has a larger value than the local pixel and the difference between the pixel values is 

larger than a programmable threshold value, the value for the local binary memory BXX for the examined direction is set 



 

 
 

 

to a logical 1. The final segmentation result is achieved by combining the separate direction results with pixel-level logic 

circuitry, so that BL=AND(AND(BNW,BNE),AND(BSW,BSE)). 

The input data used in Matlab also contains any inaccuracies and dynamic losses introduced by the on-chip A/D 

conversion (6-bit grayscale output data) used for video capture. In reality the on-chip processing is performed prior to 

A/D conversion, i.e. on the direct analog pixel values without ADC-related variation. On the other hand, the pixel-level 

analog processing on the KOVA1 is also affected by inaccuracy, noise and nonlinearity, which cannot be easily modeled 
in Matlab. As can be seen from Fig. 1, the segmented images applied to the Hough transform are allowed to be very 

noisy, as long as the real seam-related features dominate the image statistics. The sensitivity and amount of noise in the 

segmentation can be controlled on the KOVA1 with the absolute value operation threshold and other on-chip biasing. 

The middle image in Fig. 1 shows the result of the segmentation operation computed in Matlab. The area behind the 

keyhole was masked from the segmented image, because the plate seam is not visible in the melt pool area. Also, since 

the FPGA execution time per frame of the Hough transform is dependent on the number of “1” bits in the segmented 

binary image [11], reducing redundant information as much as possible helps to guarantee high frame-rate on-line 

operation. However, at the beginning of the weld, it might still be reasonable to also take the area behind the keyhole into 

consideration. Additional masking, e.g. of the top and bottom parts of the image, could also be implemented; such 

logical mask operations can be performed in a pixel-parallel fashion on the KOVA1 sensor plane.  

 

2.2 Extracting the location of the laser beam 

Since the camera is fixed to the welding head in a co-axial configuration, the position of the laser beam within the 

camera view remains at the same location during the welding sequence, however, the automatic determination of this 

position makes it easier to manage possible inaccuracies in the mounting of the camera. During the weld monitoring 
operation, the camera is operated in a triggering mode, i.e. data is read out of the image sensor only when some 

predefined activity is detected within the camera view. In this case the applied triggering condition was sufficient visual 

intensity in some part of the imaging area, in practice in the laser interaction area. Because the trigger operation is 

processed on the sensor plane, the onset of the laser beam can be captured very quickly at the beginning of the welding, 

before the actual weld pool or any spatters have formed, allowing the laser beam location to be determined.  

The location of the laser position can be determined with the pixel-level processing circuitry and used as input to the 

FPGA. The FPGA then uses this information when calculating the distance between the laser beam and the seam line. 

Since a simple threshold operation is used to determine the triggering condition, the threshold result for the first frame(s) 

can be stored into a local binary memory and used to indicate the location of the laser beam for the subsequent Hough 

operations. In the performed simulations taking a bitwise AND operation between succeeding images of the first five 

frames, resulted in correct laser position initialization; the same logical operation can also be implemented with on-chip 
processing. 

 

2.3 Description of the tracking algorithm 

The seam tracking algorithm is illustrated in Fig. 2. The input is a stream of B/W images which have been segmented 

in Matlab from a grayscale video captured earlier with the KOVA1 camera. Line extraction with the Hough transform is 

implemented in Matlab with realistically selected accumulator resolution. The significant parameters for the Hough 
transform are ρ, which is the distance of the line from the origin at the upper left corner and θ, which is the angle of the 

line, between -90° and +89°. These are both varied with a step of 1 in order to keep the simulation realistic with respect 

to the actual FPGA implementation. Two 1-dimensional histograms, for ρ and θ, within a fixed temporal window of 

N=1-100 frames are generated to utilize temporal correlation between detected line candidates. A new line candidate is 

accepted only if the distance between the predetermined location of the laser beam and the proposed line is sufficiently 

small. This is based on the assumption that the uncorrected error in the position of the welding robot with respect to the 

actual seam location is below some reasonable threshold. A threshold value of Th1 < 5 pixels was selected for the 

simulations (see Fig. 2).  

 

 



 

 
 

 

 

Figure 2. A flow diagram of the tracking algorithm. The inputs are line candidates from the Hough unit, which locate on the FPGA 
chip. If the number of correct line candidates is above some pre-defined threshold within the temporal window, the system enters into 
tracking mode. After entering into tracking mode, the change in the line orientation and location is assumed to be smooth.  

 

When first N line candidates have been obtained the system can conditionally enter into a tracking mode. The 

tracking mode is enabled if the sum of P dominant peaks (here P=4) in the temporal histogram window is above a set 

percentage threshold. The tracking mode is again disabled, if the sum of P dominant peaks falls below the threshold 

value (see Fig. 2). When the system is in the tracking mode, the highest peak (mode) within in the temporal window is 

determined. A new line candidate is then accepted as the output only if the change in ρ and θ is sufficiently small (that is, 

Δθ <Th2 and Δρ<Th3, with respect to the mode value). If the system is in the tracking mode, and the input line candidate 

does not fill the threshold criteria of the temporal window, the output is left unchanged until a line candidate fulfilling 

the criteria is found.  

 

3. ALGORITHM EVALUATION 

 

The welding system used to acquire the test data consists of a 10kW laser with the welding head attached to a robot 

arm. The camera was attached to the welding head in a coaxial configuration. The test data consists of four image 

sequences captured by the KOVA1 camera. Prepared and purified 9mm thick S355 structure steel sheets were welded 

together in a butt-joint configuration. The focal position of the laser beam was 6mm below the surface in each of the test 

sets. The laser power varied from 10kW to 6kW, welding speed was 2-2.5 m/min and the image frame difference was 

1.6ms for the first test sequence and 2ms for the three other sequences.  

The seam was located roughly in the same position and orientation with θ0= -84° in each of the test sequences, i.e. 

this was considered as the ground truth for the algorithm evaluations. An example of filtered and non-filtered θ 
histograms from Sequence 2 is shown in Fig. 3. In can be observed, that the filtering reinforces the peak at -84°, while 

effectively removing the false line candidates resulting from noise. The high spikes corresponding to  45° angles in the 
non-filtered data are a result of an artifact from the segmentation process, which can frequently create 3-pixel local 

clusters in a right angle configuration. If the actual seam is not visible in the frame, these artefacts can dominate among 

otherwise random data, leading to a preference of 45° line candidates. It should be noted that the non-filtered data shows 

the best Hough line candidate within each image frame, without any discrimination on the actual quality, robustness or 

location of the extracted line in particular.  



 

 
 

 

The robustness of the tracking was examined by comparing the raw Hough transform results to the filtered data, and 

by calculating the percentage of extracted lines from the whole sequence, which were within a small interval from the 

determined ground truth, i.e. θ0 2°. From Table I and by examining the welding videos visually, it can be observed that 
the generation of plume and spatters as well as illumination conditions decreased the recognition rate. Without filtering 

the matching rate in the four test sequences was in the range of 9.1% - 77.6%, while filtering improved this to 82.4% - 

98.7%.  

To test the adaptation of the histogram window method to gradual changes in the seam orientation and location the 

test videos were manipulated so that a cumulative rotation of 0.01-0.02°/frame was applied to the image data. A 
maximum inclination of 40° was thus achieved across the approximately 2000 frame test sequences. In order to measure 

the distance between the seam and the laser beam location similarly as without rotation, a virtual location of the laser 

beam was mapped to the location given by the same rotation transformation. In Fig. 4, the distance between the laser 

beam location and the extracted seam line is plotted for the non-rotated and rotated sequences, respectively. A temporal 

window size of N=50 was used. It can be observed, that in this case the behavior of the rotated and non-rotated output 

signals correspond well to each other. With some additional 1D filtering of the temporal data, the tracking noise could be 

further reduced.  

                                      

Figure 3. The distribution of the θ values for a normal and a filtered sequence. It was required that the distance from the seam line to 

the position of the laser was less than 5 pixels and that θ and ρ parameter values were within 2° or 2 pixels, respectively, from those of 
the dominant peak. The tracking was initiated only if the volume of four largest peaks in the θ histogram was above 35% and the 
corresponding volume of the ρ histogram above 20%. Sequence 2 was used with a window size of 50. 

  

 

Table I. Correct line detection rates in the normal and filtered operation modes. The average number of active pixels generated by the 
segmentation within all test sequences was ~560, thus enabling Hough analysis at a frame rate slightly below 400 fps on FPGA [11], 
i.e. with a ~2.5ms frame difference. Additional frame-rate improvement could be achieved by further limiting the seam search area 
below and above the keyhole. 



 

 
 

 

  

 

Figure 4, The estimated distance (in pixels) of the seam line from the laser beam. The inclined sequence was captured with cumulative 
rotation of 0.02°/frame. Sequence 4 was used with window size of 50. This figure represents the best results achieved, when the spatter 
and plume generation was the smallest. The parameters for line filtering were the same as in Fig. 3.  

 

3.1 Performance estimation 

The performance of the overall visual analysis system is expected to be affected by three factors. First, the time used 
in the segmentation step implemented on the camera sensor plane, second, the time required by the FPGA-based Hough 

unit for detecting the new line candidates and third, the time consumed for the temporal line filtering method. Because 

the B/W segmentation is performed in a fully pixel-parallel fashion and in also parallel to the Hough transform, it is 

expected to very fast, enabling processing rates of tens of kFr/s. The tracking algorithm is also expected to be very fast as 

long as the temporal window sizes remain reasonable. The Hough transform computation on the FPGA is expected to be 

the main bottleneck of the system in terms of processing delay. In an earlier research, frame-rates between 234 fps (1000 

“1” pixels in the segmented binary image) and 1000 fps (50 ”1” pixels) were tested in practice on the KOVA1 camera 

FPGA co-processor [11]. Further improvement to this could be gained by limiting the Hough accumulator space into 

only specific intervals, assuming that the seam orientation and location is not arbitrary [7].  

 

4. CONCLUSIONS 

The paper studied embedded image processing methods for the implementation of on-line monitoring and control of 

the position of the laser beam in high power laser welding of thick steel. Seam tracking in the welding of thick steel is 

challenging due to noise, lack of detail in poorly illuminated areas and saturation of the intensities in highly illuminated 

areas. Real-time control of a welding robot requires a very high speed analysis platform. The approach of this paper was 

based on embedded camera-level processing with sensor-level preprocessing and segmentation. The following 

processing steps analyzed were Hough line detection and temporal filtering which can be mapped on the FPGA. The 

proposed algorithms were tested in Matlab with real laser welding image data, in order to facilitate further on-line testing 

and taking into account the hardware-level capabilities of the embedded processing platform. The proposed temporal line 

filtering method improved the original Hough line detection rates in all test sequences and even despite of artificial 

image rotation. A major challenge in the line filtering was that most of the initial line candidates were not valid. This 
issue was confronted in this paper by assuming that the correct line candidates still dominate the ρ- and θ -histograms of 

all the line candidates. With the test data captured this assumption could be held valid. Additional 1-d filtering, which 

can also be implemented on the FPGA, could be further applied to the output signal. When all of the processing is 

performed within an embedded camera platform, any communication delays present e.g. in a camera-PC/DSP system are 

removed and the control signals for the robot system can be provided with minimal lag. 
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