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Abstract—In this paper, we introduce t-revealing codes in
the binary Hamming space F

n. Let C ⊆ F
n be a code and

denote by It(C;x) the set of codewords of C which are within
(Hamming) distance t from a word x ∈ F

n. A code C is t-
revealing if the majority voting on the coordinates of the words
in It(C;x) gives unambiguously x. These codes have applications,
for instance, to the list decoding problem of the Levenshtein’s
channel model, where the decoder provides a list based on several
different outputs of the channel with the same input, and to the
information retrieval problem of the Yaakobi-Bruck model of
associative memories. We give t-revealing codes which improve
some of the key parameters for these applications compared to
earlier code constructions, namely, the length of the output list L
of the decoder and the maximal number of input clues m̂ needed
for information retrieval.

I. INTRODUCTION

Let us first define mathematically the codes we are inter-

ested in and then consider the motivations and applications of

them.

Let F be the binary field and denote by F
n the Hamming

space. As usual, the Hamming distance d(x,y) between two

words is the number of coordinate places in which they differ.

The all-zero word is denoted by 0 = 00 . . .0 and the all-one

word by 1 = 11 . . . 1. The support of a word x is defined

as supp(x) = {i | xi 6= 0}. The Hamming weight w(x)
of x is the cardinality of the support of x. For x ∈ F

n we

denote the Hamming ball of radius t and centred at x by

Bt(x) = {y ∈ F
n | d(x,y) ≤ t}. The symmetric difference

A △ B of two sets A and B is, as usual, (A\B)∪(B\A). The

word ei is a word of weight one such that supp(ei) = {i}.

The complement of a word x is the word x̄ = 1+ x. A code

is a subset of Fn with at least two elements and its elements

are called codewords. The minimum distance of a code C is

defined as dmin(C) = minc1,c2∈C
c1 6=c2

d(c1, c2) and the covering

radius of C as R(C) = maxx∈Fn minc∈C d(x, c). For x =
x1x2 . . . xn, let the function πi pick the i-th coordinate, that

is, πi(x) = xi. For a subset A ⊆ F
n, we generalize this in the

following way by considering the majority voting on the i-th
coordinates of the words in A. If there are more 0’s (resp. 1’s)

among the coordinates πi(a), where a ∈ A, then πi(A) = 0
(resp. πi(A) = 1). If there is an equal amount of 0’s and 1’s,

the value πi(A) is defined to be the symbol ∗.

Let C be a code and t ≥ 1 an integer. For any x ∈ F
n, we

define the set of codewords within distance t from x as

It(x) = It(C;x) = {c ∈ C | d(x, c) ≤ t}.

We call this the I-set of x. Let It(x) be non-empty for a word

x = x1x2 . . . xn ∈ F
n. We say that the word x is accessible,

if πi(It(x)) = xi for all i = 1, 2, . . . , n. In other words,

using the majority voting on the coordinates of It(x) we get

x. Otherwise, we say that x is non-accessible (in particular,

if I-set of x is empty).

Next we define a useful function mt(x) on an accessible

word x. Let k be the smallest integer such that if we take

any subset U ⊆ It(x) of size |U | ≥ k, then πi(U) = xi for

all i = 1, . . . n. In other words, it is enough to take any k
codewords from It(x) in order to find x using the majority

voting on the coordinates of U . The smallest such k is denoted

by mt(x) = mt(C;x). We say that x is revealed from It(x)
using any mt(x) (or more) words of It(x).

Example 1. Let C = {0000, 0100, 1100, 0110, 0111, 1011}.

For x = 0100 we have I1(x) = {0000, 0100, 1100, 0110}.
Clearly, now πi(I1(x)) = xi for all i = 1, 2, 3, 4, so x is ac-

cessible. It is easy to check that any subset of three codewords

of I1(x) also reveals x using the majority voting. Hence,

m1(x) ≤ 3. Since U = {0100, 1100} gives π1(U) = ∗, we

get m1(x) = 3.

Let N = {0, 1, . . .} be the set of natural numbers. For a

word x = x1x2 . . . xn we define a vector ht(x) = ht(C;x) =
(h1, h2, . . . , hn) ∈ N

n where hi is the number of codewords

in It(x) such that their i-th coordinate differs from xi. Hence,

x is accessible, if

|It(x)| ≥ 2 max
i=1,...,n

hi + 1 (1)

and, in that case,

mt(x) = 2 max
i=1,...,n

hi + 1. (2)

Definition 2. Let t ≥ 1 and n ≥ 2 be integers. A code C ⊆ F
n

is a coordinatewise revealing code of radius t (a t-revealing

code for short) if every word x ∈ F
n is accessible. For such

a code, denote the parameter µ̂t(C) = maxx∈Fn mt(C;x).
Furthermore, let µ̂t(n) denote the minimum of µ̂t(C) over all

t-revealing codes C in F
n.

Example 3. Let C = F
3 \ {000, 111}. For the word z =

000, we get h1(z) = (1, 1, 1) and |I1(z)| = 3. Due to (1)

and (2) it follows that m1(z) = 3. For y = 001, the vector

h1(y) = (1, 1, 0) and |I1(y)| = 3. Again y is accessible

and m1(y) = 3. Similarly, one can check that m1(x) = 3



for all x ∈ F
3. Consequently, C is a 1-revealing code with

µ̂1(C) = 3. Later (in Theorem 8) we will see that µ̂1(3) = 3.

Lemma 4. Let C be a t-revealing code, and let x and y be

any distinct words in F
n.

(i) Then we have

|It(x) ∩ It(y)| ≤ max{mt(x),mt(y)} − 1. (3)

(ii) We also have

|It(x) △ It(y)| ≥ 2. (4)

Proof. (i) Because C is a t-revealing code, the values mt(x)
and mt(y) exist. Assume, without loss of generality, that

mt(y) ≥ mt(x). Suppose to the contrary that |It(x)∩It(y)| ≥
max{mt(x),mt(y)} = mt(y). Consider the codewords in

U = It(x) ∩ It(y). Since C is t-revealing, we know that any

subset of mt(y) or more codewords of It(y) — in particular,

the set U — reveals y uniquely. Also these same codewords

in U should reveal uniquely x because |U | ≥ mt(x) and

U ⊆ It(x). However, this is a contradiction, since x 6= y. For

the case (ii) see [1].

Next we consider the applications and the motivations of the

codes defined above. The first application is the list decoding

problem of Levenshtein’s channel model [2], [3], which finds

its original motivation in molecular biology and chemistry,

where the usual redundancy method is not feasible, and it is

also relevant for recent advanced storage technologies [4]. The

second application is the information retrieval in associative

memories [3], [5], [6], [7]. There are also applications in

sensor networks [8], [9].

1) The list decoding problem for the Levenshtein’s channel

model: A codeword x ∈ C is transmitted through N channels

where at most t errors can occur in each of them as illustrated

in Figure 1. It is also assumed that t > ⌊(dmin(C)− 1)/2⌋.
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Fig. 1. The channel model.

Based on the N different outputs y1, . . . ,yN of the chan-

nels, the list decoder DL gives estimations {x1, . . . ,xℓ}
(where ℓ ≤ L) on the transmitted word x. In [3], [6], a

successful decoder is considered (successful means that the

transmitted word x belongs to the outputted list) and the

maximal length of the list L is considered with respect to

the number of channels N . Naturally, we would like to have

as short output list as possible while keeping N small and the

cardinality of the code as large as possible. In [4], it is shown

that if we wish to have a unique output (that is, L = 1), then

the number of channels can be inconveniently large — see

also Remark 12.

In this paper, we will focus on the case when there are only

two channels, that is, N = 2, and we try to find large codes

giving a short output list from the decoder. For a general bound

for the size of the code see (6). Suppose that C is a t-revealing

code and N = 2. Next we see that we obtain a successful

decoder with L ≤ µ̂t(C)− 1. Two different words y1 and y2

are received from the channels and the decoder outputs all the

codewords {x1, . . . ,xℓ} of C such that d(yj ,xi) ≤ t for all

j = 1, 2 and i = 1, . . . , ℓ. In other words, the list consists of

the codewords in It(y1) ∩ It(y2). By (3), the length of this

list is at most µ̂t(C) − 1. The decoder is clearly successful,

since x ∈ It(y1)∩ It(y2) due to the fact that at most t errors

occurred in the channels.

2) Information retrieval in an associative memory: In the

model of Yaakobi and Bruck [3], an associative memory is

given as a (simple and undirected) graph G = (V,E). A vertex

in the graph corresponds to a stored information unit and if

two information units are associated, then there is an edge

between them. Moreover, two vertices are called t-associated,

if the graphical distance (that is, the number of edges) between

them is at most t. An unknown information unit x ∈ V
is retrieved from the associative memory using input clues

(provided by an information seeker) which are t-associated to

x and also belong to a reference set C ⊆ V . The reference

set should be such that given enough input clues, the sought

information unit x can be unambiguously found. Naturally,

we want the maximum number m̂ of input clues, which are

needed to retrieve any information unit from the memory, to

be as small as possible. In this paper (like in [3], [6], [7]),

we concentrate on the binary hypercube F
n. Here two words

(i.e., information units) a and b are t-associated if and only if

d(a,b) ≤ t. According to the model above, we wish to find a

sought information unit x with the aid of input clues coming

from the code C (the reference set) which are t-associated to

the unknown word x. In other words, the input clues come

from the set It(x). If the reference set C is a t-revealing

code, then we can uniquely and efficiently (due to the majority

voting) find the information unit by receiving at most µ̂t(C)
input clues. Therefore, the maximum number of needed input

clues satisfies m̂ ≤ µ̂t(C). Here it is natural to have as small

code as possible for the reference set.

Earlier in [3], [7], [6] the length L of the output of the

list decoder and the maximum number of input clues m̂ in

an associative memory was considered using codes C ⊆ F
n

which are based on limiting the size of the intersections It(x)∩
It(y) while the codes have the property that It(x) \ It(y) 6=
∅ for all x 6= y (see, for instance, Theorem 9 in [6]). In

this paper, we use the idea of majority voting on coordinates

in designing the codes and not the intersections. But as we

saw in (3), we can still estimate the intersections (needed, for

example, in the list decoding problem as explained above).

We will see that the new class of t-revealing codes provides

better results for the length L and for the number of input clues

m̂ than the earlier code constructions.

II. LINEAR CODES AND OPTIMAL RESULTS

We can often benefit from codes being linear, that is, C =
{x ∈ F

n | HxT = 0} where H = (h(1) | · · · | h(n)) is



the check matrix. The syndrome of a word y is s(y) = HyT

and a word of minimum weight in a coset x+C is the coset

leader. Let us denote the cardinality of the size of the ball of

radius t in F
n by V (n, t).

For any subset A ⊆ F
n and a word b ∈ F

n we define

d(b, A) = min{d(b, a) | a ∈ A} and b + A = {b + a |
a ∈ A}. Next we will consider useful results regarding linear

codes and the codes of type x+ C.

Theorem 5. (i) Let C ⊆ F
n be code and x ∈ F

n. We have

ht(x + C;y) = ht(C;x + y) and |It(x + C;y)| =
|It(C;x + y)| for all y ∈ F

n. If the word x + y is

accessible with respect to the code C, then y is accessible

with respect to x + C and, moreover, mt(x + C;y) =
mt(C;y + x).

(ii) Let C be a linear t-revealing code. Then s(x) = s(y)
implies that mt(x) = mt(y). In particular, all the words

in a coset have the same minimum number of revealing

codewords as the coset leader.

Proof. This can be obtained (see for details [1]) using the

observation It(x+ C;y) = It(C;x+ y) + x.

Shortening a code is a useful operation as we shall see.

Theorem 6. Let C ⊆ F
n be a t-revealing code. Then the

(p-times) shortened code Cp is also t-revealing and µ̂t(C) ≥
µ̂t(Cp) provided that for all x ∈ F

n−p we have

|It(C;x0p)| −
n
∑

i=n−p+1

hi ≥ mt(C;x0p) (5)

where ht(C;x0p) = (h1, . . . , hn).

Next we give some constructions to revealing codes.

Theorem 7. There exist codes giving

(i) µ̂1(n) ≤ 3 for all n ≥ 3,

(ii) µ̂2(n) ≤ 3 for all n = 2r − 1 − p where r ≥ 3 and

0 ≤ p ≤ 2r−1 − 3.

Proof. (i) Consider first the radius t = 1. We will show that

the linear code C with r × n check matrix H such that it

contains every non-zero column (of F
r) at least 3 times and

there are no zero-columns in H is 1-revealing. Since every

word of Fr appears as a column of H , the covering radius of

C equals one and, therefore, the weight of any coset leader is

at most one. In addition, dmin(C) = 2. By Theorem 5(ii), it is

enough to consider coset leaders when we want to calculate

the values mt(y) for all y ∈ F
n. Suppose first that the weight

of the coset leader x equals zero, so in other words x = 0.

Since dmin(C) = 2, we know that I1(0) = {0}. Trivially,

h1(0) = (0, 0, . . . , 0), so maxhi = 0 and thus, by (1) and (2),

we get m1(0) = 1. Assume then that the coset leader x has

weight one. Let the syndrome s(x) = s (where s 6= 0). Now

the I1(x) = {x+ ei | i ∈ I} where I consists of all of those

indices j for which the column h(j) = s. Since H contains as a

column each word of Fr at least three times, we get |I1(x)| ≥
3. Now the vector h1(x) = (h1, . . . , hn) is such that hi = 1
for i ∈ I and hi = 0 if i /∈ I. Therefore, by (1) and (2), we

obtain m1(x) = 3. This yields that µ̂1(C) = 3 and µ̂1(n) ≤ 3.

The case (ii) comes similarly considering the Hamming code

Hr of length 2r − 1 together with Theorem 6.

The previous constructions in (i) and (ii) are optimal ac-

cording to the next result.

Theorem 8. For t ≥ 1 and n ≥ 3 we have µ̂t(n) ≥ 3.

Proof. Let C be a t-revealing code in F
n, n ≥ 3. We show that

µ̂t(C) ≥ 3 from which the claim follows. If there exists c ∈ C
such that It(c) contains at least two codewords, say c and c′,

then they both belong to the set It(c) ∩ It(c
′) and hence,

by (3), we know that mt(c) ≥ 3 or mt(c
′) ≥ 3. Assume

therefore, that for all c ∈ C we have It(c) = {c}. Choose

any x ∈ B1(c) with x 6= c. The words c and x differ in exactly

one coordinate, say ci 6= xi. Now ht(x) = (h1, . . . , hn) has

hi ≥ 1 and hence maxj=1,2...,n hj ≥ 1. By (2), we obtain

mt(x) ≥ 3. This yields the assertion µ̂t(C) ≥ 3.

The result µ̂2(n) = 3 in Theorem 7(ii) together with

Theorem 6 gives an infinite family of codes with the bound

L = 2 for the length of the decoder list and the bound m̂ = 3
for the maximal number of input clues in information retrieval.

This improves on the earlier known constructions (see, e.g.,

[6], [7]), which provided the bounds L = 4 and m̂ = 5,

respectively.

Theorem 9. (i) If a code C ⊆ F
n is such that the in-

tersection of I-sets of any distinct words x and y satisfies

|It(x) ∩ It(y)| ≤ L′, then there we have the upper bound

|C| ≤ L′ 2n

V (n, t)−
(

n−1
t

) . (6)

If C is a t-revealing code, then this bound holds for L′ =
µ̂t(C)− 1.

(ii) If C is t-revealing, we have a lower bound

|C| ≥
3 · 2n

V (n, t) + 2
. (7)

Proof. (i) For the upper bound, choose a set S = Bt(0) ∩
Bt(e1). One obtains

∑

x∈Fn |(x + S) ∩ C| = |S||C|. Since

x+S = Bt(x)∩Bt(x+e1), and thus, (x+S)∩C = It(x)∩
It(x+e1), we get by the assumption that |(x+S)∩C| ≤ L′.
This implies that 2nL′ ≥ |S||C|. For the claim (6) it suffices

to notice that |S| = V (n, t) −
(

n−1
t

)

. By virtue of (3) we

obtain the claim with L′ = µ̂t(C)− 1 for a t-revealing code.

For (ii) see [1].

Notice that the lower bound (7) can be attained (the small

codes is what we prefer for the information retrieval). For

example, the infinite family of codes in the proof of Theo-

rem 7(i) for the lengths n = 3(2r − 1) achieve the bound

where r ≥ 1. Indeed, each non-zero column of H appears

exactly three times giving |I1(x)| = 3 for non-codewords and

|I1(x)| = 1 for the codewords.

For t = 2 the above upper bound (6) gives for L′ = 2 that

|C| ≤ 2n/n. The codes in Theorem 7(ii) give µ̂2(C) = 3, so

these codes satisfy L′ = 2. The ratio between the cardinality



of codes Hr in Theorem 7(ii) and the bound (6) approaches

to 1 when n tends to infinity. Large codes is what we prefer

for the Levenshtein’s channel problem.

III. OPTIMAL RESULTS FOR THE RADIUS t = 3

In this section, we consider the case of radius t = 3. Let

C1 ⊆ F
n and C2 ⊆ F

n be codes (not necessarily revealing).

We will utilize the following additive properties valid for all

t ≥ 1 and x ∈ F
n: if C1 ∩ C2 = ∅, then

ht(C1 ∪ C2;x) = ht(C1;x) + ht(C2;x)

and

|It(C1 ∪ C2;x)| = |It(C1;x)|+ |It(C2;x)|.

In Theorem 7(ii), we gave codes with minimum distance

three and the radius was two. Recall that for the Levenshtein’s

channel problem, we have t > ⌊(dmin(C)− 1)/2⌋. In the next

theorem, we consider codes in the case where the minimum

distance is three and the radius equals three also. These

codes provide µ̂3(n) ≤ 5, which is shown to be optimal in

Theorem 11. Moreover, the cardinality of the codes is large

as pointed out in Remark 13.

Theorem 10. We have µ̂3(n) ≤ 5 for n = 22r − 1− p where

r ≥ 2 and 0 ≤ p ≤ n/3− 5.

Proof. Let the radius t = 3. Denote by Pr the punctured

Preparata code [10, p. 51] of length n = 22r−1 where r ≥ 2.

It is well-known that dmin(Pr) = 5 and R(Pr) = 3. Let us first

determine m3(x) for those words x ∈ F
n that are accessible

(not all are). Since R(Pr) = 3, we know that d(x,Pr) ≤ 3.
Let first 2 ≤ d(x,Pr) ≤ 3. Since Pr is a nearly perfect

code [10, p. 313], we have |I3(Pr;x)| = n/3. Let us consider

h3(x) = (h1, . . . , hn). We will see that hi ≤ 1 for all i =
1, . . . , n. Indeed, suppose to the contrary that hi ≥ 2 for some

i. Consequently, there are (at least) two codewords c and c′ in

I3(Pr;x) such that they differ from x in the coordinate i. But

now d(c, c′) ≤ 4 and this is a contradiction with dmin(Pr) = 5.
Moreover, since |I3(Pr);x)| = n/3, in the vector h3(x) all

entries hi are equal to 1 or exactly one is 0 and the others are

1. Therefore, by (1) and (2), we get m3(x) = 3.
Let then 0 ≤ d(x,Pr) ≤ 1. If x ∈ Pr we obtain h3(x) =

(0, . . . , 0) and |I3(x)| = 1 due to the fact that the minimum

distance is five. Thus, m3(x) = 1. If d(x,Pr) = 1, then x is

not accessible (and m3(x) does not exist), since I3(Pr;x) =
{c} where x 6= c and h3(x) contains zeros except 1 in the

position where x and c differ.

As we saw, there are three types of words in F
n with respect

to the code Pr. Those words which have m3(x) = 3 and

|I3(x)| = n/3 we call type 3 words. The (code)words with

mt(x) = 1 and |I3(x)| = 1 are called type 1 words. The rest

of the words (the non-accessible ones) are of type 0.

In order to find a 3-revealing code we take advantage of

the additive properties mentioned above and consider the code

C = Pr ∪ (g + Pr) where g is a word of weight three such

that d(g,Pr) = 3 (for such words, see [11, p. 475]). Due to

the fact that dmin(Pr) = 5 we have Pr ∩ (g+Pr) = ∅, so we

can use the additive properties. By [11, p. 475], we know that

dmin(C) = 3.
Next we estimate m3(C;y) for y ∈ F

n by considering the

different types of the words. Using Theorem 5(i) we know

that the words in F
n have the same three types with respect

the code g + Pr as they had in the code Pr.
If a word y is of type 3 in Pr and also of type 3 in

g + Pr, then by the additive properties we get |I3(C;y)| =
|I3(Pr;y)| + |I3(g + Pr;y)| = 2n/3 and h3(C;y) =
h3(Pr;y)+h3(g+Pr;y) = (h1, . . . , hn), where the maximal

hi is equal to 2. Consequently, m3(C;y) = 5. The case where

y is of type 3 in Pr and of type 0 or 1 in g+Pr goes similarly.

Now the only possibility left to be studied is when y is of

type 0 or 1 in both of the subcodes of C. This means that

there would be codewords c ∈ Pr and g + c′ ∈ g + Pr

such that d(y, c) ≤ 1 and d(y,g + c′) ≤ 1. But then we get

d(c,g+ c′) ≤ 2, which contradicts the fact that dmin(C) = 3.
Therefore, there does not exist such a possibility for the word

y. Consequently, C is 3-revealing with the parameter µ̂3(C) ≤
5. Hence µ̂3(n) ≤ 5 for n = 22r − 1, r ≥ 2. In order to get

the result for the lengths n− p, where 0 < p ≤ n/3− 5, we

use Theorem 6.

The result µ̂3(n) ≤ 5 found in the previous theorem is

actually optimal for t = 3 as will be seen next.

Theorem 11. For t ≥ 3 and n ≥ 5 we have µ̂t(n) ≥ 5.

Remark 12. For the radius t = 3, the construction in

Theorem 10 gives an infinity family of codes with L = 4 for

the length of the list decoder and m̂ = 5 for the information

retrieval. In earlier constructions, the best results (see, e.g.,

[6]) for t = 3 are L = 6 and m̂ = 7. Recall that these results

on the list decoding are for the case when we use only two

channels, N = 2. If we would like to find the transmitted

word uniquely [2] (that is, L = 1) we would need as many as

N = 6n− 9 channels to do that when the minimum distance

is three as for the codes in Theorem 10.

Remark 13. The upper bound of Theorem 9 for the maximal

size of intersection L′ = 4 and for lengths n = 22r − 1 equals

|C| ≤
24

r+1

16r − 3 · 4r + 4
. (8)

The codes of length n = 22r − 1 in Theorem 10 give L′ =
µ̂t(C) − 1 = 4 and the ratio between the cardinality of these

codes and the bound (8) approaches to 1 as r tends to infinity.

Therefore, these codes are good also in this respect for the

Levenshtein’s list decoding problem.

IV. MORE CONSTRUCTIONS

In this section, we will study how to get (n−t−1)-revealing

codes from t-revealing ones. In addition, we discuss the use

of direct sum D = C ⊕ F when C is t-revealing.

Theorem 14. Let C ⊆ F
n be such a t-revealing code that

each coordinate has 0 in exactly half of the codewords in any

given coordinate. Then C is also (n− t− 1)-revealing with

mn−t−1(x) = |C| − 2|It(x̄)|+mt(x̄)



for all x ∈ F
n. In particular, µ̂n−4(n) ≤ 2n−4r+1 − 2(n/3 +

1) + 5 for all n = 22r − 1, r ≥ 2.

Proof. The first claim follows from In−t−1(x) = C \ It(x̄).
For t = n− 4 we use the codes from Theorem 10.

If we have a t-revealing code of length n, then we can

easily modify it into a t-revealing code of length n+ 1 when

following conditions are met.

Theorem 15. Let D = C ⊕ F where C ⊆ F
n is t-revealing.

Let further x ∈ F
n and denote ht−1(C;x) = (h′

1, . . . , h
′
n)

and ht(C;x) = (h1, . . . , hn). The word x0 is accessible with

respect to D if and only if

|It(C;x)| + |It−1(C;x)| ≥ 2 max
i=1,...,n

(hi + h′
i) + 1

and It(C;x) \ It−1(C;x) 6= ∅.

Proof. If It(C;x) \ It−1(C;x) = ∅, then πn+1(x0) = ∗,

since |It−1(C;x)0| = |It−1(C;x)1|. We have |It(D;x0)| =
|It(C;x)| + |It−1(C;x)|, ht(D;x0) = (h′′

1 , . . . , h
′′
n+1) =

(h1 + h′
1, . . . , hn + h′

n, |It−1(C;x)|) and |It(D;x0)| ≥
2|It−1(C;x)| + 1 if It(C;x) \ It−1(C;x) 6= ∅. We get

the other condition from the inequality |It(D;x0)| ≥
2maxi=1,...,n+1 h

′′
i + 1.

We can simplify the conditions of Theorem 15 into follow-

ing form.

Corollary 16. If C ⊆ F
n is both t-revealing and (t − 1)-

revealing with It(C;x) \ It−1(C;x) 6= ∅ for each x ∈ F
n,

then D = C ⊕ F is t-revealing.

We can loosen these conditions a bit for 2-revealing codes.

Theorem 17. The code D = C ⊕ F is 2-revealing if C ⊆ F
n

is a 2-revealing code, I2(C;x)\I1(C;x) 6= ∅ for each x ∈ F
n

and |I1(C;x′)| 6= 1 for each non-codeword x′ ∈ F
n.

Proof. Since I2(C;x)\I1(C;x) 6= ∅ for each x ∈ F
n, the last

coordinate is voted correctly. Let h1(C;x′) = (h′
1, . . . , h

′
n)

and h2(C;x′) = (h1, . . . , hn). Because C is a 2-revealing

code, |I2(C;x′)| ≥ 2maxi=1,...,n hi + 1. If |I1(C;x′)| ≥ 2,

then |I2(C;x′)| + |I1(C;x′)| ≥ 2maxi=1,...,n hi + 3 ≥
2maxi=1,...,n(hi+h′

i)+1 for each non-codeword x′. We have

h′
i ≤ 1 since inside a 1-radius ball at most one coordinate can

change. If |I1(C;x′)| = 0, then h1(x
′) = 0. If c ∈ C and

|I1(C; c)| = 1, then h1(x
′) = 0 and if |I1(C; c)| ≥ 2, then

situation is similar as above.

Lemma 18. The code C = Hr ∪ {Hr + e1} is a 2-revealing

code, I2(C;x) \ I1(C;x) 6= ∅ and |I1(C;x)| = 2 for each

x ∈ F
2r−1.

Proof. Hr and Hr + e1 are separate because dmin(Hr) = 3.

Their covering radius is 1 so |I1(C;x)| = 2. If x /∈ Hr, then

c, c′ ∈ I2(Hr;x). Now d(c, c′) = 3, so I2(C;x)\ I1(C;x) 6=
∅ for each x ∈ F

2r−1. The same is true for x /∈ Hr + e1.

Because Hr and Hr + e1 are separate and 2-revealing, their

union is also 2-revealing since πi(I(Hr ;x)) = πi(I(Hr +
e1;x)) = πi(I(C;x)) for each i and each x ∈ F

2r−1.

Therefore, if C = Hr ∪ {Hr + e1}, then D = C ⊕ F is

a 2-revealing code. Consequently, we get the following result

for lengths not covered in Theorem 7.

Theorem 19. We have µ̂2(2
r) ≤ 7 where r ≥ 3.

Proof. Let C = Hr ∪ {Hr + e1} and D = C ⊕ F.

Let d = c0, c ∈ C (we can assume c ∈ Hr),

h2(D;d) = (h1, . . . , h2r ), h2(C; c) = (h′
1, . . . , h

′
2r−1) and

h2(Hr + e1; c) = (h′′
1 , . . . , h

′′
2r−1). Now we have I-sets

I1(D;d) = {c0, c1, (c + e1)0} and I2(D;d) \ I1(D;d) =
{(c + e1)1, I2(C; c)0 \ I1(C; c)0}. Furthermore h2r = 2,

h1 = 2h′′
1 = 2 and hi = h′

i = h′′
i = 1 for each 2 ≤ i ≤ 2r−1,

so we have m2(D;d) = 5.
Let x0 /∈ D and h(D;x0) = (h1, . . . , h2r). Now

I1(D;x0) = I1(C;x)0 and I2(D;x0) \ I1(D;x0) =
I1(C;x)1 ∪ (I2(C;x) \ I1(C;x))0. Since |I1(C;x)| = 2, we

have h2r = 2. Because h2(Hr+e1;x) = h2(Hr;x+e1) = 1

for a non-codeword x, we have hi ≤ 2 + 1, for each

1 ≤ i ≤ 2r, since the error in 1-neighbourhood is doubled

and the same code Hr or Hr + e1 cannot also have error in

the same coordinate at distance two from x. This gives us

upper bound µ̂2(2
r) ≤ 7.

Finally we have following condition for lengthening 1-

revealing codes.

Theorem 20. The code D = C ⊕ F is a 1-revealing code if

each codeword in C ⊆ F
n is neighbouring another codeword

and C is 1-revealing.

Proof. Let x ∈ F
n. If x /∈ C, then I1(D;x0) = I1(C;x)0

and because C is 1-revealing and the last coordinate is always

0 in I1(D;x0), x0 is accessible in F
n+1. If x ∈ C, then

I1(D;x0) = I1(C;x)0 ∪ {x1}. We have |I1(C;x)0| > 1 be-

cause there is a neighbouring codeword, so the last coordinate

is voted correctly. Other coordinates are known since C is

1-revealing. We can deduce x1 similarly.
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