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Abstract—In this paper, we propose an effective object detec-
tion framework based on proposal fusion of multiple sensors
such as infrared camera, RGB cameras, radar and LiDAR.
Our framework first applies the Selective Search (SS) method
on RGB image data to extract possible candidate proposals
which likely contain the objects of interest. Then it uses the
information from other sensors in order to reduce the number of
generated proposals by SS and find more dense proposals. Finally,
the class of objects within the final proposals are identified by
Convolutional Neural Network (CNN). Experimental results on
real dataset demonstrate that our framework can precisely detect
meaningful object regions using a smaller number of proposals
than other object proposals methods. Further, our framework
can achieve reliable object detection and classification results in
maritime environments.

Keywords—autonomous vehicles, object detection, proposal gen-
eration, deep neural networks, maritime environment.

I. INTRODUCTION

Most of state-of-the-art object detectors employ object
proposals methods for guiding the search for object instances
across images [1], [2], [3]. These methods can improve de-
tection accuracy by extracting reliable proposals that contain
objects of interest. Moreover, they can considerably reduce
computation compared with a dense detection approach such as
sliding window by avoiding exhaustive sliding window search
across images. Region-based Convolutional Neural Network
(R-CNN) [1] is one of the most popular proposal methods
that has been extended to a variety of new tasks and datasets.
Although it is computationally expensive because of passing
all the proposals by Selective Search (SS) [4] (usually several
thousand) separately to CNN. Fast R-CNN [2] and Faster R-
CNN [3] achieves lower computational time and cost with a
deep convolutional neural network.

In this paper, we present a robust object detection frame-
work based on proposal fusion of multi-sensor. Fig. 1 shows an
overview of the proposed framework. Firstly, our framework
generate initial proposals (i.e. regions of interest that are likely
to contain objects) using SS. SS is a famous object proposals
methods in generating well-localized proposals in the last few
years. Then, the framework finds more dense and reliable
proposals from the initial proposals based on the information
from various sensors. For this purpose, the framework fuses
the object proposals extracted from other sensors such as IR
cameras, radar and LiDAR using a bounding box matching
metric. The reduced number of proposals compared to SS
enables the use of stronger models for object identification.

Therefore, the final proposals are feed to CNN as a classifier.
CNN computes features for a proposal by identifying the object
within the proposal. As the performance of CNN strongly
depends on the network topology, we investigate the effect of
both number of layers and neurons on CNN performance. The
obtained results show that CNN can achieve better detection
accuracy when it has six convolutional layers, three max-
pooling layers, two fully connected layers, and a softmax layer.

To the best of our knowledge, currently there are no
existing works on using real data from four sensors to detect
and classify the objects in maritime environment. Moreover,
the existing object proposal generation methods extract pro-
posals based on grouping pixels or window scoring. Our
framework generate more reliable and dense proposals based
on fusing the detection results of multiple sensor. We demon-
strate the efficiency of our framework on a real dataset
which was collected in the Finnish archipelago by a ferry
equipped with four kinds of sensors. The data was collected for
the Advanced Autonomous Waterborne Applications Initiative
(AAWA) project [5]. This project tested sensor arrays in a
range of operating and climatic conditions in Finland and has
created a simulated autonomous ship control system which
allows the behaviour of the complete communication system
to be explored after surrounding object detections. We focus
on three main objects in maritime environment: boat, seamark
and land. Moreover, our framework is evaluated on the real
dataset for three main tasks of proposals generation, detection
and classification. Experiment results show that our framework
significantly outperforms recent well-known proposal methods
selective search [4] and EdgeBoxes [6]. In addition, our
framework achieves around 76.5% and 97.5% total accuracy in
tasks of object detection and classification with few proposals,
respectively. It also outperforms all other methods based on
individual sensor when we fused the proposals of the detec-
tion results of four sensors. The remainder of the paper is
organized as follows. Section II discusses some of the most
important related works. The proposed framework is presented
in Section III. Section IV describes the implementation issue
of our framework and pre-processing tasks on the dataset.
The experimental results are shown in Section V. Finally, we
present our conclusions in Section VI.

II. RELATED WORK

Recent advances in object detection have been driven by the
success of object proposals methods. These methods generate
relatively set of candidate proposals that likely contains the
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Fig. 1. Overview of the proposed framework. Initial proposals with 933 candidates are first generated by SS and are then filtered using proposal fusion of
multiple sensors. After that, the final proposals are classified using CNN.

objects of interest. Sliding window [7] has been employed in
a wide range of object detectors as it captures all possible
locations by using windows with varied scales and ration to
scan through the image. However, it has high computation
and time complexity by searching whole image regions. To
considerably reduce computation, object proposals methods
have been proposed to avoid exhaustive sliding window search
across images. These methods can generally be divided into
two main categories: grouping methods and window scoring
methods [8]. Grouping methods aim to produce multiple
segments that are likely to corresponds to objects. The window
scoring methods indicate score for each candidate window
according to how likely is contained an object. Among these
methods, Selective Search (SS), EdgeBoxes and Region Pro-
posal Network (RPN) have made impressive performance.
SS [4] is a well-known grouping proposal method that captures
all possible object locations by combining exhaustive search
and segmentation. It can efficiently reduce the number of
object proposals with high detection accuracy. For instance, SS
approximately generates only ∼2k proposals in 640× 480 im-
age data while sliding window generates ∼100k. However, SS
extract a smaller number of proposals than the sliding window
but ∼2k proposals is still is a large number. EdgeBoxes [6]
has been broadly used as one of the window scoring proposal
methods. It generates region proposals form edges as they
can sparse informative representation of an image. Moreover,
EdgeBoxes can provide the best trade-off between running
time and proposal quality. However, it consumes much running
time in the region proposal step than the detection network.
RPN utilizes supervision information to obtain more dense
proposals. These extracted proposals can represent different
and complementary information on images. Therefore, fusion
of these proposals can provide more information in order to
avoid the risk of object missing.

An efficient object proposals method able to provide pos-
sibility for using an expensive classifier such as deep models
for each region by pruning away false positive before classifi-
cation. Convolutional Neural Networks (CNNs) [9] have been
recently used in the development of object detection and classi-
fication as a popular deep learning model. Inspired by the suc-
cess of applying CNN in many number of challenging image
classification problems [1], [3], our framework employed CNN
for this purpose. In particular, the series of methods based
on R-CNN [1] push forward the progress of object detection
significantly. R-CNN [1] first identify region proposals by SS
method and then classify ∼2k proposals into object categories
or background using a CNN. One disadvantage of R-CNN
is that it computes the CNN independently on each region

proposal, leading to time-consuming and energy-inefficient
computation. In order to reduce running time of R-CNN, Faster
R-CNN [3] ignores the time spent on region proposals by
using CNN for region proposals instead of running a separate
SS. Faster R-CNN proposes a region proposal network (RPN)
that mainly employs the supervised information to generate
proposals.

III. PROPOSED FRAMEWORK

A. Object Proposals Generation

To find all possible object locations, this module generate
high-quality region proposals by combining data from multiple
sensors. The proposed object proposals pipeline consists of
two steps: generating initial proposals and filtering. To get
initial proper proposals, this module uses Selective Search
(SS) [4], which found well-studied for such purpose. SS
greedily combines superpixels based on engineered low-level
features to generate initial proposals in RGB image data.
However, some of these proposals that are most likely to
contain objects of interest. The final goal of this module is
to yield a set of possible object locations for use in a practical
object detection framework. To achieve this, our framework
requires to find more dense and reliable proposals from the
initial proposals. For this purpose, it uses the data from other
three common sensors such for filtering the initial proposals
based on detection results of each individual sensor as follows:

IR camera: we applied a feature segmentation on gray-
scale images from IR camera. The feature segmentation is
based on both gradient and intensity-based feature extrac-
tion. Image areas with significant and uniform horizontal
gradients, which are not typical for the water surface are
extracted with gray-scale convolution and threshold operations.
Moreover, high-intensity features (hot objects) are extracted
with a threshold operation. The results of the gradient and
intensity evaluation are combined into a single binary feature
image. After IR camera images have been segmented, they
are stitched into a single binary image and a Connected-
Component-Labeling (CCL) operation is applied to extract
rectangle bounding boxes for each binary object. The bounding
boxes are then given to a standard Kalman filter to remove
temporal noise, such as blinking or very short-lived features.

Radar: first the marine radar data frames is mapped from
polar to 2D cartesian coordinates. Radar data contains level
of echo signal strength for each determined angle and radius.
Then an intensity threshold filtering is applied to remove weak
echos and extract the objects from radar data that is a bunch



of points wherein the signal strength has been high enough.
The intensity threshold is determined through empirical ex-
periments. After that the extracted objects are mapped into
its corresponding RGB image via Perspective Mapping (PM)
method. A morphological dilation technique is applied on the
mapped data points to cluster the detected objects into more
coherent groups. Finally, the boundary of the set of points for
each obtained group is extracted that is called bounding boxes
for objects.

LiDAR: the same process is applied to extract the bounding
boxes from LiDAR data. After applying a low-pass/median
filter on LiDAR data, the height component of LiDAR data is
discarded and the x/y-coordinates of the LiDAR point cloud
features are similarly mapped to RGB image via PM method.
The mapped points are clustered and boundary of the set of
points is extracted.

The generated bounding boxes proposals by all sensors are
mapped on RGB input image for filtering out initial proposals
via SS. Then, the final set of proposals is extracted from the
RGB image and other three sensors is organized by considering
the overlap between each two data modalities. Each initial
proposal pi by SS is assumed as a final proposal if it is
overlapped by at least one of the neighboring sensor proposal
pj according to the following function:

f(pi, pj) =

{
0, if IoU < α

1, if IoU >= α
(1)

where α is Intersection of Unit (IoU) threshold between
two proposals (bounding boxes) and is determined experimen-
tally. IoU is intersection of two proposals divided by their
union.

IoU(pi, pj) =
Spi
⋂
Spj

Spi
⋃
Spj

(2)

where Sp represents the area of proposal p.

The pseudocode in Algorithm 1 creates a final set of object
proposals finalPros from initPros based on information
from four sensors. First, the SS method is employed to
create a set of initial proposals initPros (Lines 1). Then, the
proposals are extracted by each sensor based on individual
object detection method and then are mapped on the RGB
input image (Lines 2-4). After that, the algorithm iterates
over initPros to find neighbouring sensor proposals of the
initial proposal pi (Lines 6-9). Finally, the algorithm added
only the proposal pi to the final set of proposals finalPros
if it is nearby at least one proposal generated by a sensor
(Line 10-25). We implement ”nearness” by assigning pi to
one of sensor proposal if the IoU overlap is greater than a
threshold α (which we set to 0.6 using a validation set). All
unassigned proposals are discarded. The algorithm outputs the
final reliable proposals finalPros.

B. Object Proposals Classification

This module is dedicated to the development of a classifica-
tion method which can classify the objects within the extracted
final proposals by the object proposal generation module. It
takes a set of object proposals as input and outputs are an

Algorithm 1 Object Proposals Algorithm
Input: RGB image
Output: Final set of obejct proposals finalPros

1: Obtain initial proposals initPros = {p1, ..., pn} using SS [4]
2: Obtain IR camera proposals irPros
3: Obtain radar proposals radarPros
4: Obtain LiDAR proposals lidarPros
5: finalPros = ∅
6: for pi ∈ initPros do
7: nearIrPros ←neighbouring proposal pair (pi, irPros)
8: nearRadarPros ←neighbouring proposal pair (pi, radarPros)
9: nearLidarPros ←neighbouring proposal pair(pi, lidarPros)

10: for pj ∈ nearIrPros do
11: if IoU(pi, pj) >= α
12: finalPros = finalPros ∪ {pi} then
13: end if
14: end for
15: for pj ∈ nearRadarPros do
16: if IoU(pi, pj) >= α
17: finalPros = finalPros ∪ {pi} then
18: end if
19: end for
20: for pj ∈ nearLidarPros do
21: if IoU(pi, pj) >= α
22: finalPros = finalPros ∪ {pi} then
23: end if
24: end for
25: end for

objectness score and the class corresponding to the proposals.
For this purpose, a Convolutional Neural Network (CNN)
extract a fixed-length feature vector from each proposal. Based
on the preliminary experiments, we develop a CNN consists of
an input layer, six convolutional layers, three pooling layers,
two fully-connected layers, and an output layer (Fig. 2). The
input to the CNN is the warped regions of extracted final
proposals. Each region is passed through a set of convolutional
layer, each of which activates certain features (features maps)
from the images. Finally, the feature map is obtained by
operation of nonlinear activation function such as Rectified
Linear Unit (ReLU). Each convolutional layer is followed by
a pooling (down-sampling) layer to reduce the dimensionality
of feature maps and computation in the network based on a
fixed rule. Our CNN uses one of the most common rule that is
called max-pooling. At the end of CNN, there are two fully-
connected layers. These layers take the feature maps of images
from the last max-pooling layer and generate an n dimensional
vector where n is the number of class. This vector contains
the probabilities for each class of any image being classified.
In order to reduce overfitting in the fully-connected layers, we
employed a popular regularization method called dropout that
proved to be very effective [10]. To update network weights,
we use Adam as a popular optimization algorithm instead of
classical stochastic gradient descent. The main benefit of Adam
is a little memory requirement as it only require first-order
gradient. The main goal of training CNN is to minimize the
mean square error. After scoring each final proposal by CNN,
we predict a new bounding box coordinate for the object in
each region proposal based on a simple linear regression. In
fact, adjusting a tighter bounding boxes can improve object
detection performance. We used the similar way by RCNN
that regress the computed features by the CNN [1]. A set of
class-specific bounding box regresses is learned to predict the
bounding box for each class.



Fig. 2. Proposed CNN architecture for object proposals classification, see text for details.

IV. EXPERIMENTAL SETUP

A. Dataset Description

To evaluate our proposed framework, we collected a real
dataset with a ferry operating in the Finnish archipelago [5].
The deployment locations included the open sea. This dataset
represent various weather conditions from 4th October 2016
to 25th July 2017. The dataset represents the measurements of
four sensors: RGB camera, IR camera, LiDAR and radar. Two
RGB cameras and IR cameras installed at the front right and
left of the ferry. These HD visual range RGB cameras capture
videos via 5MP image sensor with 92◦ lens angle. Image
resolution was full-HD (1920x1080). Moreover, we recorded
videos by two low resolution thermal IR cameras. The images
resolution that we can get from the IR camera is 512×640
working between -50◦C to 70◦C temperature. Frame rate for
RGB and IR cameras is 2 and 4 frames/sec, respectively. The
radar range is upto 1.2KM with angular sampling interval of
0.4◦. To collect 3D point cloud data, we use OPAL 3D LiDAR
scanner from Neptec technologies.

B. Pre-processing

To train the proposed CNN for object classification, we
use images of three interest objects from RGB cameras.
These images are automatically generated by creating minimal
bounding boxes around an object that is detected based on
RGB camera. To detect objects based on RGB camera, we
extract local (horizontal) gradients clusters differing from the
typical water surface. Large high- intensity features (discarding
image saturation) are also extracted with a threshold operation
and combined logically with the gradient data. As the intensity
gradients approach cannot efficiently detect and track some
small objects such as seamark that hardly is distinguishable
from the water, a red/green feature segmentation approach
is employed. In addition, the image-based evaluation and
processing tasks are applied on RGB camera data in order
to take into account environmental issues such as day or night
conditions and sun glare induced sensor saturation. Finally, the
object detection is performed by extracting the binary features
from RGB cameras. In order to use the obtained images by
the CNN, we first convert the image data into a form that is
compatible with the CNN (its architecture requires inputs of a
fixed 32 by 32 pixel size). According to the input size of the
CNN, we wrap all pixels in the tight bounding box around it
to the required size (32). On the other hand, we anisotropically

scales each object proposal to the CNN input size. Finally, the
following pre-processing steps were performed on the images:

1) Feature Normalization: the numeric features must be
normalized for removing the effect of original feature value
scales. The pixel values are in the range of 0 to 255 for each
of the red, green and blue channels. The pixel values were
normalized into the range 0 to 1.

2) Class encoding: the non-numerical class types are con-
verted into the numeric categorizes. We used one hot encoding
to convert three categorical classes into three binary classes,
with only one active.

3) Data augmentation: we create more images from the
original images via a number of random transformations.
Random transformations were applied on the original training
images including rotation, cropping, swirl, vertical flip and
horizontal flip. The number of images for each class after data
augmentation is 4572, 3759 and 4757 for seamark, boat and
land, respectively.

C. Choice of Hyperparameters

The performance of CNN strongly depends on the value of
hyperparameter. For this reason, we tune different hyperparam-
eter to select the best value of them. We utilize 10-fold cross-
validation approach subjected to the dataset of 13,088 images.
After the best value of hyperparameters are selected, the final
model is trained with all 13,088 images. The performance
of CNNs highly depends on the network topology. For this
reason, we tried to find the network topology that is optimal
to our object detection problem. The number of convolutional
layers is varied from 2 to 6 in steps of 2. The layers’ structure
of proposed CNNs is described in Table I. On the other hand,
Table I shows that which layers of CNN3 are utilized in
CNN1 and CNN2. Experimental results demonstrate that we
can get 91.6%, 94.5% and 96.2% test accuracy for CNN1,
CNN2 and CNN3, respectively. Therefore, CNN with six
convolutional layers is the optimal model (CNN3). In order
to avoid overfitting, we use dropout in each fully-connected
layers of CNN. The value of the dropout ranges from 0.0 to
0.9. We see that as dropout is 0.5, the model can get better
accuracy. Moreover, the value of batch size and epochs are
25 and 10, respectively. In addition, the best optimizer for
our neural network model in order to learn properly and tune
the internal parameter is the Adam based on our experiments.
Moreover, we tune the learning rate parameter that is used



TABLE I. PROPOSED CNNS FOR IMAGE CLASSIFICATION

Name Conv1 Conv2 Pooling1 Conv3 Conv4 Pooling2 Conv5 Conv6 Pooling3 FC1 FC2

CNN1

CNN2

CNN3

in the Adam with the grid search. Learning rate controls the
speed of wight updating at the end We tried a suite small
standard learning rate from 0.001 to 0.3 in steps of 0.1. The
best performance of the model is achieved when the learning
rate is 0.001.

V. EXPERIMENTAL RESULTS

Our framework is evaluated on a real test dataset which is
collected by a ferry operating in the Finnish archipelago [5].
The number of three main interest objects in the test dataset
for seamark, boat and land are 266, 103 and 1800, respectively.
For a given RGB test image, our proposed framework firstly
performed SS or EdgeBox to obtain initial object proposals.
Then, it finds more dense and reliable proposals based on the
information from other three sensors. After that, each proposal
is warped and passed into the pre-trained CNN in order to
classify the object within the proposals. In addition, the RGB
images of test data set was manually tagged in order to provide
a ground truth reference.

Several experiments have been done to evaluate our frame-
work based on the real test dataset. In the first experiment,we
investigate the effect of different region proposal methods in
our framework performance in terms of number of proposals
and running time. The benchmark proposal methods include
fast selective search, quality selective search, single best strat-
egy, EdgeBoxes, our framework based on SS and EdgeBoxes
proposals and RGB-based detection. Table II shows the result
of benchmark methods and our framework on 1000 RGB
images with size 1080×1860. The results show that our frame-
work extracts 9,717 proposals by filtering initial proposals by
SS based on detection results of multiple sensors. It means it
can reduce the number of proposals 386, 1046, 97 and 242
times less than fast selective search, quality selective search,
single best strategy and EdgeBoxes. Our framework can reduce
the number of proposals 1.5 times if it uses SS (single best
strategy) instead of EdgeBoxes. The result shows that RGB-
based detection is computationally efficient than SS. However,
it has less detection accuracy (see Table III) in comparison
with our framework.

TABLE II. COMPARISON BETWEEN PROPOSAL GENERATION METHODS
AND OUR FRAMEWORK

Method Sensor # Proposals
Selective Search ”Fast” RGB 3,756,388

Selective Search ”Quality” RGB 10,170,585
Single Strategy RGB 2,305

EdgeBoxes RGB 1,447
Ours (based on SS) R+L+IR+RGB 9,717

Ours (based on EdgeBoxes) R+L+IR+RGB 13,850
RGB-based detecion RGB 634

In the second experiment, we demonstrate the impact of
proposal fusion of multiple sensor on the detection accuracy.
The goal is to ensure that those proposals that accurately cover
the desired objects. Table III shows that the detection results

based on generated proposals from each sensor, fusion of SS
proposals, fusion of EdgeBoxes proposals, R-CNN, Fast R-
CNN and Faster R-CNN. The correct detection determines how
many of each object is detected correctly. The false detection
represents how many of all objects are not detected. The
first row of each method shows that how many of objects
are detected in each class. For clarity sake, the number of
detections is also represented by percentages at the second
row. The results show that the detection rate of three objects
is improved by our framework based on proposal fusion of
multi-sensor in comparison with other methods. We achieved
94.7% , 69.9% and 74.2% for three classes Seamark, Boat and
Land, respectively. The false detection rates (23.4%) is due
mainly to the noisy radar target detection and the reflection in
raw LiDAR data which creates ghost objects. Moreover, our
framework can achieve 3.9% higher detection accuracy if it
employs SS instead of EdgeBoxes. In the third experiment, we
collected the result after testing our trained CNN with on-line
test data based on 10-fold cross-validation approach (Table IV
). Correct classifications represent well classified objects of
three classes when the region proposals obtained from each
sensor and our framework based on proposal fusion. False
classifications show the number of percentage of object that
are miss-classified for each class. When the CNN is applied
on the regions obtained by our framework, the classification
accuracy is 88.8%, 100% and 99% for seamark, boat and land,
respectively. Moreover, we can achieve a high classification
accuracy from CNN on region proposals obtained by each
sensor. Therefor, the classification rate of all objects by the
proposed CNN are nearly perfect (86-100%).

TABLE IV. CLASSIFICATION RESULTS IN REAL TEST DATASET

Method Correct False Total accuracy
Seamark Boat Land All All

Radar based detection 81 n/a 1107 23 1188
83.5% n/a 99.3% 1.9% 98.1%

Lidar based detection 17 n/a 141 2 158
100% n/a 98.6% 0.0% 98.7 %

IR based detection 140 37 515 158 692
77.7% 100% 81.3% 18.5% 81.4%

RGB based detection 158 53 343 80 554
87.7% 100% 85.5% 12.6% 87.3%

Ours 224 72 1324 41 1620
88.8% 100% 99.0 % 2.4% 97.5%

Fig. 3 shows an example of detection using SS, EdgeBoxes
and our framework on the input image illustrated in Fig. 1.
The total number of generated proposals by SS, EdgeBoxes
and our framework is 933, 1989 and 4 in 1080×1860 image,
respectively. Beside reducing the number of proposals, we can
get more accurate region proposals (bounding boxes) of the
image corresponding to objects by comparing between SS and
our framework (see right figures in each row). Meanwhile, the
running time for generating proposals by SS, EdgeBoxes and
our framework is 2.49, 1.72 and 0.13 seconds for the image
illustrated in Fig. 3.



TABLE III. DETECTION RESULTS IN REAL TEST DATASET

Method Sensor Correct False
Seamark Boat Land All

Radar based detection R 97 0 1114 958
36.4% 0.0% 61.8 % 44.1%

Lidar based detection L 17 0 143 2009
6.3% 0.0% 7.9% 92.6%

IR based detection IR 180 37 633 1319
67.6% 35.9% 35.1% 70.7 %

RGB based detection RGB 180 53 401 1535
67.6% 51.4% 22.2% 60.8 %

Ours (based on SS) R+L+IR+RGB 252 72 1337 508
94.7% 69.9% 74.2% 23.4%

Ours (based on EdgeBoxes) R+L+IR+RGB 228 46 1302 593
85.7% 44.6% 72.3% 27.3%

VI. CONCLUSION

In this paper, we proposed an efficient object detection
framework that can successfully identify the location and
type of interest objects surrounding autonomous vehicles in
maritime environment. The framework first employs SS to
generate object proposals in RGB images. Then, the proposals
are filtered based on the multiple sensor data in order to
improve the robustness and accuracy of object localization.
Moreover, we can greatly reduced computational cost by
reducing the number of proposals. Finally, the framework
uses a convolutional neural network to classify the objects
within the final obtained proposals. The performance of our
proposed framework is evaluated by conducting experiments
with real data obtained by testing sensor arrays in a range
of operating and climatic conditions in Finland. The obtained
results show that our framework can precisely localize and
identify interesting objects using a smaller number of proposals
than other methods.
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