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Abstract 
Identification of network attacks is a matter of great concern for network operators due to extensive the number of 

vulnerabilities in computer systems and creativity of the attackers. Anomaly-based Intrusion Detection Systems (IDSs) present 
a significant opportunity to identify possible incidents, logging information and reporting attempts. However, these systems 
generate a low detection accuracy rate with changing network environment or services. To overcome this problem, we present 
a deep neural network architecture based on a combination of a stacked denoising autoencoder and a softmax classifier. Our 
architecture can extract important features from data and learn a model for detecting abnormal behaviors. The model is trained 
locally to denoise corrupted versions of their inputs based on stacking layers of denoising autoencoders in order to achieve 
reliable intrusion detection. Experimental results on real KDD-CUP'99 dataset show that our architecture outperformed 
shallow learning architectures and other deep neural network architectures. 
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1. Introduction 

	
In the past few years, there have been several attempts to tackle security problems by designing efficient Intrusion 

Detection Systems (IDSs) [1] [2]. An IDS is a security tool that monitors the network traffic and identifies malicious actions. 
Generally, IDSs can be categorized into four types: signature-based, anomaly-based, specification-based and hybrid [1]. 
Signature-based IDSs use pre-determined signatures or patterns to detect intrusions in a network. They generate an alarm if a 
system or network activity does not match with the signatures. Effective at detecting known attacks and easy understanding 
of their mechanism is the advantage of signature-based IDSs. However, they are not able to identify new attacks variants of 
known attacks. Anomaly-based IDSs are more suitable than signature-based detection systems for detecting unknown or novel 
attacks. They can capture any deviations from profiles of normal behavior. For this reason, the most of the existing IDSs in 
the Internet of Things (IoT) and general purpose computing are built based on the anomaly-based detection. However, learning 
the entire scope of normal behavior is not a simple task.  The anomaly-based IDSs identify an activity as an intrusion if it 
does not match a normal behavior and therefore generate high false alarms. Specification-based IDSs use a set of rules and 
thresholds in order to define the normal behavior of network components such as protocols, nodes and routing tables. 
Therefore, they detect an intrusion when the network behavior deviates from specification definitions. Specification-based 
IDSs have a similar idea of anomaly-based IDS as both of them identify deviations from normal behavior. However, there is 
a human expert in specification-based IDSs to manually determine the rules of each specification. Manually defining the 
specifications usually provide fewer false alarms in these systems compared with the anomaly-based IDSs [2]. Hybrid IDSs 
use concepts of three former IDSs to enhance their advantages and reduce their respective limitation. For example, Raza et 
al. [3] proposed a hybrid IDS for IoT in order to provide a solution that minimizes the storage cost of signature-based IDS 
and computing cost of anomaly-based IDS.  

The other classification is made with regard to the location where IDSs is deployed, e.g. network-based IDSs, host-based 
IDSs, and hypervisor-based IDSs. Network-based IDSs are placed in network points such as routers or gateway for analyzing 
the network traffic and detecting intrusions. Host-based IDSs are deployed between a router and Cloud host for monitoring 
physical or virtual hosts to find abnormal activities such as deletion or modification of system files or unwanted configuration 
changes in Cloud components. Hypervisor-based IDSs are placed at the hypervisors or Virtual Machine Monitors (VMMs) 
for checking the information of all VMMs and communication between VMMs to detect suspicious behaviors. 

In this paper, we present an anomaly-based IDS for identifying network traffic intrusions. Designing an accurate and 
efficient anomaly-based IDS is a challenging task as they have low detection accuracy rate when the network environments 
or services are changing over time. To address this challenge, our IDS uses a popular Machine Learning (ML) technique 
called deep learning. ML methods have gained interest recently to construct anomaly-based IDSs. These widely-used 
techniques are k-nearest neighbor [4][5],  decision tree [4],  support vector machine [5],  artificial immune system [6], genetic 
algorithm [7] and artificial neural network [8][9]. All of these techniques learn a model by using a training data and then use 
the learned model to classify unseen data. Deep learning has been chosen for its ability to discover a massive amount of 



structures by extracting inherent features from the data. The most popular deep learning models include deep belief networks 
with restricted Boltzmann machine [10], convolutional neural network [11], long short-term memory recurrent neural 
network[12] and stacked autoencoders [13]. Inspired by the success of applying stacked autoencoder in many numbers of 
challenging classification problems [10][11][12][13][13], our anomaly-based IDS uses Stacked AutoEncoders (SAEs) [13]. 
SAEs are built by multi-layer autoencoder where the output of each auto-encoder in the current layer is used as the input of 
the autoencoder in the next layer. Dimensionality reduction is another reason that we motivated to use autoencoder. In order 
to improve the generalization ability of a learned model by SAEs, our proposed IDS uses a specific kind of SAEs that is 
named Stacked Denoising AutoEncoders (SDAEs). SDAEs make the learned model robust to the partial corruption of the 
input data [13].  

Our proposed SDAEs is firstly pre-trained layer by layer based on an unsupervised fashion. The unsupervised pre-training 
fashion can help the model to avoid local optima and overfitting problem. Moreover, important features can be extracted from 
unlabeled data at different layers after pre-training. Then, a softmax classifier is added on the top of SDAEs for representing 
the desired outputs. Finally, our network is fine-tuned based on a supervised manner using labeled data. 

We had performed various experiments on the KDD-CUP'99 dataset [15] which is the most widely used as a standard 
dataset for the evaluation of IDSs. The performance of deep networks is strongly dependent on the network topology. 
Therefore, we investigate how the performance of SDAEs changes based on the breadth (number of hidden neurons per layer) 
and depth (number of hidden layers) of the network. The obtained results show that our SDAEs can achieve better detection 
accuracy when it consists of four hidden layers and 64 hidden neurons per layer. We also explore the capabilities of different 
deep networks without and with unsupervised pre-training. Experimental results show that the performance of SDAEs is 
better than the previous methods when it is pre-trained based on an unsupervised fashion. We also compared SDAEs with 
other deep architectures and shallow learning architectures for intrusion detection. The results show that SDAEs can produce 
a high detection rate (96.85%) on new data, a separate test dataset.  

To the best of our knowledge, currently there are no existing works on using the SDAE for anomaly-based IDS. Our main 
contributions are as follows: 

• We employ SDAEs to discover important feature representations from the training data and generate a model to 
detect normal and abnormal behaviors. 

• In order to improve the generalization ability of the model, training data is corrupted by noise. SDAEs can extract 
more robust features from the hidden layer by training autoencoders to construct the input data from a corrupted 
version of it. 

• Our model is pre-trained using an unsupervised learning algorithm to avoid overfitting and local optima. A softmax 
classifier is added on the top of the model to represent the desired outputs (normal or type of attack). 
• The performance of the proposed SDAEs model is evaluated by the KDD-CUP'99 dataset. The KDD-CUP'99 dataset 

is a common benchmark for network intrusion detection consisting of real network data. The results show that 
SDAEs outperform other deep architectures and sallow learning architecture in terms of detection accuracy. The 
detection accuracy is estimated by using a separate test dataset. 

• A series of experiments are conducted to explore the performance of SDAEs based on the different number of hidden 
layers and units. We also evaluate the effect of different training strategies and corruption levels on the SDAEs 
performance. 

The remainder of the paper is organized as follows. Section 2	discusses some of the most important related works. We 
briefly review the sallow learning architectures and deep architectures in Section 3. Section 4 presents our proposed deep 
neural network architecture for intrusion detection. Section 5 shows the implementation issue of our approach, pre-processing 
tasks on the dataset and experimental results. Finally, we present our conclusions in Section 6.  

 
 

2. Related works 
 

In recent years, there has been major significant research in designing Intrusion Detection Systems (IDSs) to improve 
network security. Anomaly-based IDSs is a defensive solution to model normal behaviors of network traffic and then identify 
attacks or intrusions as deviations from the normal behaviors. The main problem in designing of anomaly-based IDSs is that 
they generate low detection accuracy when the network environments or services change [6]. Another problem is most of the 
existing anomaly-based IDSs are not able to detect unknown attack types. 

 To address these problems, significant research has been focused on improving the performance of IDs by using ML 
techniques. These techniques generally divided into supervised and unsupervised learning methods. The supervised ML 
methods use a corrected labeled training dataset to learn a model and then employ the model to classify the unknown data. 
Most anomaly-based IDSs use the supervised learning algorithms in order to detect intrusions. Recent research has shown 



that Artificial Neural Network (ANN) perform efficiently for intrusion detection. Jiang et al. [16] applied Radial Basis 
function (RBF) network for both signature and anomaly detection. Because of the short training time and high accuracy of 
the RBF neural networks, their proposed IDS can monitor network traffic in a real-time environment. Moreover, Hodo et al. 
[9] presented a Multilayer Perceptron (MLP), a supervised ANN, to collect the information from different parts of IoT network 
and then detect a Denial of Service (DoS) attack on the network. However, labeled data can be extremely difficult or 
impossible to obtain in real applications. In addition, a set of labeled data may be not have been covered all possible attacks 
on a real application.  

The performance of supervised learning algorithms is significantly reduced if unknown attacks are present in the test data. 
Unsupervised learning algorithms can overcome some of the limitations of supervised learning-based IDS as they can find 
information from unlabeled data. They detect attacks by determining abnormal behaviors that statistically deviate from normal 
behaviors. Cannady [8] developed an ANN-based approach to classify and detect misuse in the network. He mentioned that 
one of the advantages of using ANN for detecting misuse is flexibility for analyzing the data from the network, even if 
the data is not completed or distorted.  

Deep Neural Networks (DNNs) are a class of ML techniques where classification is conducted by training data through 
a hierarchical ANNs. They were recently used in the development of IDS as they capable exploiting unknown structures in 
training data for discovering good representations. Farahnakian et al. [17] proposed an approach based on deep autoencoder 
to model the normal and abnormal behaviors in the KDD-CUP'99 dataset. Yuancheng et al. [18]	presented a hybrid deep 
learning technique for intrusion detection. They first used an autoencoder in order to reduce the dimensionality of data and 
extract the main features of data. Then, they utilized a Deep Belief Network (DBN) in order to train their systems using the 
KDD-CUP'99 dataset. DBN is composed of multi-layer Restricted Boltzmann Machines (RBM) where each RBM consists 
of the visible units and hidden units. Fiore et al. [18] also employed an RBM to detect intrusions by training a model with 
real workload traces from 42hour workstation traffic and they test the accuracy of RBM with the KDD-CUP'99 dataset.  

Training deep networks is a challenging task as the standard learning strategy consisting of random weights initialization 
and applying the gradient descent method empirically finds poor solutions for a network with more than two hidden layers. 
In order to overcome this challenge, Hinton et al. [20]	introduced a greedy-layer-wise algorithm for training a DBN model 
with many hidden layers. This algorithm can be extended to the stacked autoencoder networks as presented in [21]. Gao et 
al. [22] trained a DBN model for intrusion detection systems based on an unsupervised greedy learning algorithm. Their 
model learns a similarity representation over the nonlinear and high-dimensional data. It was evaluated on the KDD-CUP'99 
dataset and the results show that four-hidden-layer RBM can produce the higher accuracy in comparison with SVM and 
ANN. Alom et al. [10] also used a DBN to detect the unknown attacks on the NSL-KDD dataset. In another work [12], a 
Long Short-Term Memory (LSTM) architecture is proposed to a Recurrent Neural Network (RNN) and trained the IDS model 
using KDD-CUP'99 dataset. They found more accuracy and detection rate in comparison with other classification methods 
such as K-nearest neighbor and support vector machine. Potluri et al. [23] introduced an accelerated DNN architecture to 
identify the abnormalities in the network data. They used NSL-KDD dataset for training the proposed DNN model.  

 
3. Background 
 

This section briefly reviews all classification algorithms, both shallow and deep learning, which were used in this work 
for their performance comparison. 

 
3.1. K-nearest neighbor 

 
K-Nearest Neighbor (K-NN) is a nonparametric technique for classification. The class of an unlabeled instance is 

determined by k nearest neighbors of that instance. As the performance of the K-NN algorithm is strongly dependent on the 
parameter k, finding the best values of k is essential [24].	A large k value decreases the effect of noise and minimizes the 
prediction losses. However, a small k value allows simple implementation and efficient queries. Cross-validation is a common 
method in order to estimate the accuracy and validity of the classifier with different k values. 

 
3.2. Decision tree 

 
A Decision Tree (DT) is a tree structure which classifies an instance through a sequence of decisions. The classification 

of an instance proceeds from the root node to a suitable end leaf node, where each end leaf node represents a classification 
category. The features of the instances are assigned to each node, and the value of each branch is corresponding to the features. 
The well-known algorithms for creating a DT are C4.5 and ID3 [25].	



 
3.3. Support vector machine 
 

Support vector machines (SVM) is a supervised learning algorithm for classifying data. The goal of SVM is to find the 
optimal decision boundary, i.e. the separating hyperplane, in the higher dimensional feature space. Binary SVM classification 
categorizes two classes in such a way that the distance between the hyperplane and the nearest data examples of each class 
is maximized. As a decision boundary is determined by support vectors rather than the whole training examples, SVM is 
extremely robust to intrusions. Moreover, SVM defines a penalty factor parameter for creating a tradeoff between the width 
of a decision boundary and the number of misclassified examples. Particularly, it provides high generalization ability when 
the number of features, m, is much more than the number of data points, n, is low (m >> n). 
 
3.4. Ensemble learning 
 

Ensemble learners are proposed to improve the performance of a single learner. The term "ensemble" refers to the 
combination of multi weak learners to build a strong learner. One of the most popular ensemble algorithms is Adaptive 
Boosting (AdaBoost) [26]. The AdaBoost trains several weak learners and then combine their predictions from all of them 
by a weighted majority vote to produce the final prediction. The main advantage of AdaBoost is outlier detection when 
examples are either mislabeled in the training dataset, or they are inherently ambiguous and hard to categorize. The Random 
Forest [27] is another ensemble learning method that composed of many classifications trees. Each tree is built based on 
randomly picked data features. After the forest (collection of trees) is formed, each tree gives a vote that indicates the tree’s 
decision about the class of the instance. Finally, the class of a new instance is determined by majority voting or weighted 
voting. IsolationForest or iForest [28] as one of the ensemble learning algorithms detects intrusions based on two steps. In 
the first step, iForest builds isolation trees using sub-instances of the training dataset. The second step passes the test instances 
through isolation trees to get an anomaly score for each instance.  
 
3.5. Multilayer perceptron 
 

Multilayer perceptron (MLP) is one of ANN architecture that consists of three type of layers: input, hidden, and output 
layers. Each interconnection between neurons has associated with a scalar weight. The MLP model is trained by adjusting 
weights in order to minimize the error of misclassification. Traditional MLP typically contains one to three of hidden layers, 
whereas deeper MLP can have tens or even hundreds of hidden layers to support higher generalization capability in 
comparison to traditional MLP. However, deep neural networks require a large amount of data to train and build a general 
model. The networks generate overfitting if there is not enough quality labeled data. One of the approaches to solve this 
problem is using regularization methods. Dropout [29] is a well-known regularization method used to avoid overfitting. It 
provides a way to approximately combine many different neural networks efficiently. The key idea is to randomly drop out 
hidden and visible units (along with their connections) from the network during training. On the other hand, applying dropout 
to a deep network generate many thinned network models. At test time, a very simple approximated averaging method can 
be used to explicitly average the predictions from exponentially many thinned models.  
 
3.6. Deep belief networks 
 

Deep Belief Networks (DBN) can be constructed by stacking several Restricted Boltzmann Machines (RBMs).  RBM is 
a specific energy model that uses a hidden layer to model a distribution over visible variables. The energy function for each 
visible unit v of vector V = {v1,v2,…,vn} and for each hidden unit h of vector H = {h1,h2,…,hl} is calculated as 

 
𝐸𝑛𝑒𝑟𝑔𝑦 𝑣, ℎ = −𝑏-ℎ−𝑐-𝑣−ℎ𝑊𝑣-														(1) 

 
where b and c are offsets and biases, respectively. W is the weight matrix connecting the neurons. The joint probability of 
(v,h) is given by 

𝑃 𝑣, ℎ =
1
𝑍
𝑒6789:;< =,> 																		(2) 

 
where Z is a normalizing term or partition function. It is obtained by summing over all possible pairs of visible and hidden 
vectors as 



𝑍 = 	 𝑒67 =,> 																	(3)
=,>

 

 
 
 

 
Figure 1. Example of: (a) shallow autoencoder; (b) stacked autoencoder 

The goal of training an RBM is learning the parameter 𝜃 = (𝑏, 𝑐, 𝑤) that the likelihood probability is reached the maximum 
value. The RBM learns to extract a hierarchical representation of the training data by modeling the joint distribution between 
an input vector x and the l hidden layer hl as: 

𝑃 𝑥, ℎD, … , ℎF = 𝑃 ℎG 𝑘 + 1
F6J

GKL

𝑃 ℎF6D, ℎF 									(4) 

 
One of the main algorithms for training DBN is greedy layer-wise learning algorithm [20]. Based on this algorithm, the 

first layer of DBN is trained as an RBM. Then the first layer is used as the input data for the training of the second layer. 
After all layers are trained, all parameters of DBN are fine-tuned with respect to log-likelihood or a supervised training 
criterion. 
 
3.7. Stacked autoencoder 
 

Stacked AutoEncoder (SAE) is one of the most well-known deep learning models that is created by daisy-chaining 
autoencoders together [14]. Figure 1 (a) illustrates a shallow autoencoder that consists of one hidden layer. Autoencoder can 
encode a representation of the input layer into the hidden layer and then decode it into the output layer [11]. It includes two 
parts: encoder and decoder. For a given training dataset X = {x1,x2,…,xm} with m instances, where xi is a d-dimensional feature 
vector, the encoder part maps an input vector xi to a latent representation vector hi by deterministic mapping 𝑓O  as 

 
ℎP = 𝑓O 𝑥P = 𝑠(𝑊𝑥P + 𝑏)						(5) 

 
where W is a d×d, d is the number of hidden units, b is a bias vector,	𝜃 is the mapping parameter set 𝜃 = 𝑊, 𝑏 . s is the 
sigmoid activation function denoted as 

𝑠 𝑡 =
1

1 + 𝑒𝑥𝑝6W
																					(6) 

 
where t can affect on the shape of the function. 
The decoder part maps back the latent representation hi to a reconstructed vector zi of the same shape as x: 
 

𝑧P = 𝑔O ℎP = 𝑠(𝑊ℎP + 𝑏)						(7) 
 
where  𝑊 is a 𝑑×𝑑, 𝑏 is a bias vector and 𝜃 = 𝑊, 𝑏 . 

The goal of autoencoder training is to minimize the difference between the input vector x and the reconstruction vector z 
which is called reconstruction error. Reconstruction error can be measured in different ways such as traditional mean squared 
error as 

𝐿 𝑥, 𝑧 =
1
𝑚

𝑥P − 𝑧P J
_

PKD

											(8) 

 



  
 

 
 

 
 

Figure 2. Example of two hidden-layer models:(a) stacked denoising autoencoder; (b) ladder Network 

 
where m is the total number of the training dataset. If the input is interpreted as either bit vectors or vectors of bit probabilities, 
cross-entropy of the reconstruction is another alternative for loss calculation as: 
 

𝐿a 𝑥, 𝑧 = 𝑥P𝑙𝑜𝑔𝑧P + (1 − 𝑥P)log	(1 − 𝑧P)_
PKD 								(9) 

 
This shallow autoencoder is stacked into a multi-layer autoencoder which is named SAE. Figure 1 (b) shows an example of 
an SAE model including two autoencoders. The first layer autoencoder gets the input of the SAE, and the hidden layer of 
the last autoencoder represents the output. The hidden layer of autoencoder at layer l-1 becomes the input of the 
autoencoder at layer l. In SAE, the latent representation vector of layer l, hl, is calculated by the following formula: 
 

ℎF = 𝑓O ℎF6D = 𝑠(𝑊FℎF6D + 𝑏F)																	(10) 
   
The decoder part reconstructs the vector z l-1 at layer l-1 from the upper layer l as 

𝑧F6D = 𝑔O 𝑧F = 𝑠 𝑊F𝑧F + 𝑏F 										(11) 
 

For the last layer L, the encoder and decoder parts are connected as zL:= hL. In SAE, all information has to go through the 
highest layers to represent all details of input x. Moreover, intermediate hidden layer activations zl cannot independently 
represent information as they only receive information from the highest layer. 
 
3.8. Ladder network 
 

The model structure of a ladder network is an autoencoder with skip connections from the encoder to the decoder for 
relieving the pressure to represent details in the higher layers of the model [30]. From the learning task aspect, the ladder 
network is similar to Stacked Denoising AutoEncoders (SDAEs) [13]	but applied to every layer, not just inputs. In SDAEs, 
the original input is corrupted with noise and the objective of the network is to reconstruct the original uncorrupted input x 
from the corrupted 𝑥. On the other hand, SDAEs are trained to reconstruct the original inputs from a corrupted version in 
order to force the hidden layer to discover more robust features and prevent it from simply learning the patterns. Learning is 
based on minimizing the difference of the original x and its reconstruction z from the corrupted 𝑥. 

Figure 2 shows an example of SDAEs and ladder network when they have two hidden layers. This figure represents the 
inference structure of a ladder network in comparison to SDAEs. The inference structure of SDAEs is similar to SAEs (Figure 
2 (a)) but a Gaussian noise is added to each layer. In the ladder network (Figure 2 (b)), each hidden layer activations hl can 
represent information independently from the other higher layers by lateral connections at each layer. Moreover, abstract 
invariant representations at the higher levels can be interpreted in the context of detailed information without the higher levels 
having to represent all the details. In this work, we compare our proposed approach to a semi-supervised learning algorithm 
with ladder work that presented in [30]. This algorithm combines supervised and unsupervised learning in deep neural 
networks. It achieves the state-of-the-art performance in semi-supervised MNIST and CIFAR-10 classification. 



 

  

Figure 3. The unsupervised pre-training phase of the (a)first hidden layer; (b) second hidden layer of stacked denoising autoencoder 

 
4. Stacked denoising autoencoders-based intrusion detection system 
 

In this section, we describe how our proposed deep neural network architecture, Stacked Denoising AutoEncoders-based 
Intrusion Detection System (SDAEs-IDS), can address the network intrusion detection problem. The intrusion detection 
problem can be formulated as a classification problem as the main goal is assigning a label (i.e., normal or attack) to each 
unlabeled instance. The classification problem is considered as a binary classification if we categorize the data into normal or 
attack instances. However, we propose a multi-classification problem in this work, and our architecture classifies an instance 
into a normal or one of the four main attack classes. 

Based on a series of experiments (Section 5.4), the best performing SDAEs model is built by daisy-chaining four 
autoencoders together where each autoencoder has 64 neurons. The output of an autoencoder at each current layer l is used as 
the input of the autoencoder at the next layer l+1. Finally, the output of the last layer is used as the output of the entire SDAEs 
model that contains five neurons corresponding to five classes. The training of the SDAEs model is based on the two following 
phases: 
(1) Unsupervised pre-training phase: in the first phase, each hidden layer is trained as a Denoising AutoEncoder (DAE) by 
minimizing the error in reconstructing its input. The pre-training of the first hidden layer is performed by considering it as a 
regular DAE. The first layer uses the training dataset without labels as inputs (unsupervised) and creates a compressed 
representation 𝑓O 𝑥 	of corrupted input (Figure 3 (a)). Therefore, it is trained to reconstruct x from a stochastically corrupted 
(noisy) transformation of it (𝑥). After the first hidden layer is completely pre-trained, the second hidden layer is trained by 
using the first layer s' output as input in order to learn a second level compressed representation 𝑓O ℎD 	(Figure 3 (b)). This 
pre-training task sequence is iterated for all layers. So that the output of each DAE at layer l is the code vector hl. In our 
experiments hl = s(bl +Wlhl-1 ) is an ordinary neural network layer, with hidden unit biases b, and weight matrix W . Therefore, 
the output of this phase is a list of code vectors where each function hl shows the reconstructed values in training the DAE 
corresponding to the hidden layer with same index l. 
(2) Supervised fine-tuning phase: once all layers are pre-trained, the network goes through the second phase of training 
called supervised fine-tuning. The obtained parameters from the first phase are used as initialization for a network optimized 
with respect to a supervised training criterion. For a classification task, all parameters of the pre-trained network are fine-
tuned to minimize the error in predicting the supervised target (e.g. class). For this, a softmax layer with n neurons firstly is 
added to the top of the pre-trained network where n is the number of labels in the dataset. Then, the pre-trained network is 
trained using both inputs and labels (xi, yi) of the training dataset (supervised) in order to minimize a cross-entropy loss 
function measuring the error between the classifier’s predictions and the correct labels.  
 
5. Experiments and results 
 

The performance of the proposed SDAEs approach was tested in several experiments. This section firstly describes the 
KDD-CUP99 dataset [15]	 that we used for our experiments. Then, we investigate the influence of the various corruption 
levels on the proposed approach. After that, we report the results from a series of experiments to find the optimal model 
hyper-parameters on a separate test dataset. Finally, we compared our architecture with the classification methods based on 
shallow learning architecture described in Section 3. Moreover, we conduct a comparison between our proposed architecture 
and other deep architectures. 

 
 



 

 

Figure 4. Effect of numbers of corruption level on the performance of SDAEs 

 
5.1. Dataset description 
 

The KDD-CUP'99 dataset [15]	is a common benchmark for evaluation of network intrusion detection systems. The data 
consists of about 4 GB of compressed raw tcpdump data of network traffic for seven weeks [31]. Each instance of the dataset 
has 41 features which are described various aspects of the traffic pattern in a specific time interval. Those features consist of 
38 continuous or discrete numerical features and 3 categorical features. It is common practice to use 10% of the original data 
as a training dataset since this dataset can represent the original KDD-CUP'99 data and allow for reduced computation [18].	
10% of the original KDD-CUP'99 dataset contains 494,021 instances. For evaluating the trained model, we used the standard 
test dataset containing 311,029 instances with corrected labels. Each instance is labeled as either normal or as an attack with 
exactly one attack type among of four classes. Originally, there are 40 different attacks that are categorized into four main 
attack classes as follows: 

• Denial of Service (DoS): is an attack in which an attacker attempts to prevent legitimate users access to a machine 
or make a memory or some computing resources too busy for handling legitimate requests. 

• User to Root (U2R): is an attack in which an attacker access to the system by a normal user account and then exploits 
some vulnerability to gain root access to the system. 

• Remote to Local (R2L): is an attack in which an attacker sends packets to a machine on the network without any 
accounts on that machine and is able to exploits some vulnerability to gain local access as a user of that machine. 

• Probing (Probe): is an attack in which an attacker collects information about networks or target host for the apparent 
purpose of circumventing its security controls. 

Table 1 shows the number of instances for both normal and four attack classes in training and test datasets. 
Table 1: Number of instances of each class in both training and test datasets 

  
Dataset Normal DoS U2R R2L Probe Total 
Training 97,278 391,458 52 1,126 4,107 494,021 

Test 60,593 229,854 70 16,347 4,166 311,029 
 
 

5.2. Pre-processing 
 

The following pre-processing steps were performed on the KDD-CUP'99 training and test datasets: 
(1) Feature Numeralization: the symbolic features (protocol type, services and flag) are mapped to numerical features by 
binary coding [35]. For example, tcp, udp and icmp protocols are mapped to (1,0,0), (0,1,0) and (0,0,1), respectively. 
Similarity, the 'flag' feature with 11 values and 'services' feature with 65 values can be mapped to numerical features. 
Therefore, 41 original features are finally numeralized to 117 features. 
(2) Class Numeralization: the non-numerical attack types are converted into the numeric categories. We used one hot 
encoding to convert five categorical classes into five binary classes, with only one active. 
 



 

 
Figure 5. Effect of numbers of hidden layers and hidden units on the performance of MLP, DBN, SAEs, SDAEs and Ladder 

 
(3) Feature Normalization: the numeric features must be normalized for removing the effect of original feature value scales. 
All numeric features values are ranged between 0 and 1. 
(4) Redundancies reduction: one of the main problems of the data is a large number of duplicate records in both training 
and testing datasets that lead to the bias towards more frequent records. Therefore, the data should be cleaned as there are lots 
of redundancies in the dataset. To solve this problem, we removed all duplicate records in the training and test datasets and 
kept only one copy of each record. After redundancies reduction, the training and test datasets consist of 145,586 and 77,291 
instances, respectively. 
 

5.3. Effect of corruption level 
 

We investigated the influence of the input corruption on SDAEs performance. We added a stochastic corruption step 
operating on the input. The stochastic process randomly sets some of the inputs to zero. Then our model is trying to predict 
the corrupted values from the uncorrupted values for randomly selected subsets of missing inputs. The corruption level cl% 
means cl percentage of input values randomly are assigned to zero. Figure 4 shows that the test accuracy of SDAE in different 
corruption level from 0% to 85%. Note 0% corruption corresponds to SAEs (regular stacked autoencoders).  

The results show that SDAEs appear to perform better that SAEs for a rather wide range of noise levels, regardless of the 
number of hidden layers. Moreover, SDAEs obtained the high detection accuracy when the corruption level is 50%. 
 
 
5.4. Choice of hyperparameters 
 

Designing an efficient model involves a challenging problem called hyper-parameters optimization. The performance of 
the model is changed depending on the value of hyper-parameters. In order to tune the hyperparameters for all models in this 
paper, we randomly split the 145,586 training instances into a14,000-instance validation dataset and used 131,586 instances 
as the training dataset. We used the training dataset for training a model and the validation dataset for validation of the model. 
After the best value of hyperparameters is selected, the final model is trained with all 145,586 instances. 

The performance of neural networks highly depends on the network topology. The neural network topology represents the 
breadth (number of neurons per layer) and depth (number of layers) of the network. For this reason, we tried to find the 
network topology that is optimal to intrusion detection. The proposed neural network takes the input from the training dataset. 
Therefore, the input layer of networks represents all 117 features of the KDD-CUP99 dataset. The output layer represents five 
available classes of the KDD-CUP99 dataset. The number of hidden layers varied from one to five with 32, 64 and 100 
neurons at each layer.  



 
Table 2. List of hyper-parameters for shallow learning architecture 

Model Hyperparameter Best value 

K-NN 
  number of neighbors 

the algorithm used to compute the nearest neighbor 
leaf size 

50 
ball tree 

500 
DT the maximum depth of the tree 500 

SVM kernel type 
penalty parameter 

rbf 
1.0 

AdaBoost learning rate 
the maximum number of estimators 

0.001 
50 

Random Forest   the maximum depth of the tree 
the number of trees in the forest 

11000 
10 

iForest   max number of instances 
the number of base estimators in the ensemble 

145586 
100 

MLP 

  hidden layer size 
activation function 
optimizer 
learning rate 

32 
Relu 

Adam 
0.001 

 
 Figure 5 shows the test classification accuracy of the proposed deep models for the different number of hidden layers and 

units. As you can see in Figure 5, a higher number of hidden layers or units not necessarily improves the model accuracy. The 
SDAEs model with four hidden layers and 64 hidden units at each layer is best to other deep networks giving 96.85% testing 
accuracy for intrusion detection. The MLP model with five hidden layers and 100 units in each layer can get high accuracy 
(93.70%). The highest accuracy of DBN and SAE are 94.20% and 94.71% with three number of hidden layers and 64 units, 
respectively. The Ladder can also produce 93.62% classification accuracy when the network has four hidden layers and 64 
units. 

We consider four different network training strategies: without any pre-training (such as MLP and Ladder), with pre-
training (such as DBN), with ordinary autoencoders pre-training (such as SAEs) and with denoising autoencoder pre-training 
(such as SDAEs). We clearly see that unsupervised pre-training gives substantially higher test classification accuracy than 
no pre-training for the same depth (Figure 5). Figure 5 shows that denoising pre-training being better than autoencoder pre-
training. Moreover, the autoencoder pre-training being better than no pre-training. This result is a typical illustration of what 
is gained by pre-training deep networks with a good unsupervised criterion. 

 Optimization of shallow models was performed over key hyper-parameters and their values are given in Table 2. List of 
hyper-parameters for shallow learning architecture. Our proposed SDAEs-based deep architecture achieves the best result of 
accuracy when batch size and epochs of pre-training are 100 and 150, respectively. Moreover, the model got the highest 
accuracy with 100 batch size and 100 epochs of fine-tuning. There are a lot of choices to select activation functions in the 
hidden and output layers. We choose the Sigmoid function for the hidden layer in this work based on a series of preliminary 
experiments. In addition, the best optimizer for our neural network model in order to learn properly and tune the internal 
parameter is Adam based on our experiments. We also tune the learning rate parameter that is used in Adam with the grid 
search. Learning rate controls the speed of weight updating at the end of each batch. We tried a suite small standard learning 
rate from 0.001 to 0.3 in steps of 0.1. The best value for the learning rate is 0.001. In MLP, we explore the effect of dropout 
on the proposed model. The value of the dropout ranges from 0.0 to 0.9. We see that as dropout is 0.5, the model can get 
better accuracy. 

 
5.5  Comparison with shallow and deep learning architectures  

In order to design an efficient intrusion detection system performance, the system was trained and evaluated to classify 
five different attacks using shallow and deep learning architectures. Eight first rows of Table 3 shows the accuracy of shallow 
learning architecture. Maximum test classification accuracy was achieved at 92.33% for K-Nearest Neighbor (K-NN), 
followed by 93.74% for CART decision tree, 92.86% for Support Vector Machine (SVM), 87.95% for AdaBoost, 92.32% for 
Random Forest, 90.89% for iForest, 93.17% for Multi-Layer Perceptron (MLP) and 93.13% for AutoEncoder (AE). The two 
best performing classifiers were CART and MLP, respectively. Although none of these shallow learning architecture’s 
performance was as high as Stacked Deionising AutoEncoders (SDAEs). In addition, Table 3 shows the classification 
accuracy of SDAEs-IDS in comparison to the other deep architectures: Multi-Layer Perceptron (MLP), Deep Belief Network 



(DBN), Stacked AutoEncoder (SAEs) and Ladder [30], AutoEncoder+DBN10 -10 [18] and DBN4 [22]. MLP is tested with and 
without dropout to investigate how dropout can affect on the accuracy.  

Table 3. Comparison of Stacked Denoising AutoEnocders (SDAEs) with shallow and deep learning architectures 

Model	 Test classification accuracy(%)	
K-NN	 92.36	
CART	 93.74	
SVM	 92.86	

AdaBoost	 87.95	
Random Forest	 92.32	

iForest	 90.89	
MLP 93.17 
AE 93.13 

MLP with dropout 93.70 
MLP without dropout 93.28 

SAEs 94.71 
DBN 94.20 

Ladder [33] 93.62 
AutoEncoder+DBN10 -10  [19] 92.10 

DBN4 [23] 93.49 
SDAEs 96.85 

 
Results show that the accuracy of MLP is improved by considering dropout as it can avoid overfitting. The best 

performance is achieved by Stacked Denoising AutoEncoder (SDAEs) among the proposed deep models as shown in Table 
3. The representation ability of shallow learning architecture or neural network is limited in comparison to the deep neural 
networks. Another reason for achieving the better accuracy by SDAEs is a denoising task. SDAEs is forced to discover more 
robust features when is reconstructed the input from a corrupted version of it. 
 
6. Conclusion 
 

We have introduced a deep neural network architecture for improving the performance of anomaly-based intrusion 
detection systems. Our architecture used Stacked Denoising AutoEncoders (SDAEs) that is formed by stacking several 
autoencoders to improve the representation capability of learned features from training data. To the best of our knowledge, 
currently there are no existing works on using SDAEs to detect intrusions in networks. SDAEs can extract robust features by 
reconstructing the data from the corrupted version of it. Moreover, the proposed architecture is designed to perform first 
unsupervised pre-training and then followed by supervised fine-tuning for intrusion detection.  

A series of experiments were performed to evaluate the proposed architecture on the KDD-CUP'99 dataset. The empirical 
results support the following conclusions: unsupervised pre-training gives substantially higher test classification accuracy 
than no pre-training. Denoising pre-training being better than autoencoder pre-training. Our SDAEs-based architecture can 
produce a high accuracy compared with other deep architectures and shallow learning architectures for intrusion detection. 
We also presented a series of experiments aimed at evaluating the link between the performance of our deep neural network 
architecture and aspects of their topology such as depth and breadth. Finally, we explored the effect of corruption levels on 
the proposed architecture performance. Overall the results should have a wide interest in the IDS community. 
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