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A B S T R A C T   

Background: The optimal management of oropharyngeal squamous cell carcinoma (OPSCC) includes both sur-
gical and non-surgical, that is, (chemo)radiotherapy treatment options and their combinations. These approaches 
carry a risk of specific treatment-related side effects. HPV-positive OPSCC has been reported to be more sensitive 
to (chemo)radiotherapy-based treatment modalities. Objectives: This study aims to demonstrate how machine 
learning can aid in classifying OPSCC patients into risk groups (low-chance or high-chance) for overall survival. 
We examined the input variables using permutation feature importance. Furthermore, we provided explanations 
and interpretations using the Local Interpretable Model Agnostic Explanations (LIME) and SHapley Additive 
Explanation (SHAP) frameworks. Methods: The machine learning model for 3164 OPSCC patients was built 
using data obtained from the Surveillance, Epidemiology, and End Results (SEER) program database. A total of 
five variants of tree-based machine learning algorithms (voting ensemble, light GBM, XGBoost, Random Forest, 
and Extreme Random Trees) were used to divide the patients into risk groups. The developed model with the best 
predictive performance was temporally validated with a different cohort. Results: The voting ensemble machine 
learning algorithm showed an accuracy of 88.3%, Mathews’ correlation coefficient of 0.72, and weighted area 
under curve of 0.93, when temporally validated. Human papillomavirus (HPV) status, age of the patients, T 
stage, marital status, N stage, and the treatment modality (surgery with postoperative radiotherapy) were found 
to have the most significant effects on the ability of the machine learning model to predict overall survival. 
Similarly, for the individual patients with SHAP framework, HPV status, gender, and treatment modality (surgery 
with postoperative radiotherapy) were the input features that improved the model’s prediction. Conclusion: The 
proposed stratification of OPSCC patients into risk groups by machine learning techniques can provide accurate 
predictions and thus aid clinicians in administering early and personalized interventions. Clinicians could utilize 
the predicted risk with the explanations offered by the SHAP and LIME frameworks to understand previously 
undetected relationships between prognostic variables to make informed clinical decisions and effective 
interventions.   

1. Introduction 

Oropharyngeal squamous cell carcinoma (OPSCC) is one of the most 
common head and neck carcinomas [1,2]. The incidence of OPSCC has 
increased in recent years – especially in developed countries, where over 

100,000 new cases are diagnosed yearly [3–5]. The current modifiable 
risk factors include human papillomavirus (HPV), in addition to the 
traditional heavy alcohol use and smoking [3,6]. The frequently 
encountered HPV-associated OPSCC affects the younger population in 
particular, compared with the conventional type of upper respiratory 
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airway squamous cell cancer [7–10]. Consequently, the landscape of the 
head and neck carcinoma has been transformed despite the initially 
reported decline in the incidence of head and neck cancers [11]. 

OPSCC and its treatment may have devastating effects on the quality 
of life of these patients, especially the HPV-related tumors typically 
present at advanced stage, i.e., with neck metastases, while the primary 
tumor may still be nonvisible. Considering the associated sequelae of the 
management of OPSCC, such as dysphagia and xerostomia, the proper 
individualized planning of the treatment and management of these pa-
tients is of utmost importance [7]. 

Patients treated for HPV-associated OPSCC are usually confronted 
with decades of survival with an adversely impacted quality of life [12]. 
This is largely due to the side-effects of aggressive treatment with a 
combination of surgery and radiotherapy and with concurrent chemo-
therapy. Therefore, it is imperative to stratify the patients into risk 
groups for individualized treatment interventions that can positively 
enhance their quality of life. For instance, suggesting a treatment de- 
intensification for low-risk HPV-positive OPSCC patients and a more 
aggressive treatment for high-risk HPV-positive subgroups would lead to 
more individualized outcomes. 

Of note, the increasing costs of cancer care and its treatment are 
expected to result in a significant burden in the form of greater loss of 
economic resources (financial loss) and opportunities for patients 
(morbidity, reduced quality of life, and decreased life expectancy), 
families, employers, and society at large [13]. The healthcare cost for 
OPSCC varies from one country, cancer site, and center to another [13]. 
For example, in the United States, the average overall medical costs for 
treatment of oropharyngeal cancer were estimated at $77116 for OPSCC 
patients who received surgery (Sx) only, $88895 for radiotherapy only 
(RT), $102910 for Sx + RT, and $115779 for chemoradiotherapy (CRT) 
[14]. 

Therefore, it is important for clinicians to have an insightful treat-
ment approach that can improve the quality of cancer care and prevent 
further economic and financial losses. An example of an approach that 
can enhance decision-making regarding an effective treatment alterna-
tive is to provide an artificial intelligence-based second opinion to the 
clinicians. The subfield of artificial intelligence, that is, machine 
learning (ML) can be used to classify the OPSCC patients into risk groups 
in relation to the patients’ chance of overall survival. 

This study presents an insightful approach that can assist in the 
effective stratification of OPSCC patients into risk groups using machine 
learning (ML) techniques. These techniques are able to analyze the 
hidden and complicated interactions that exist between variables [15]. 
The same approach has been reported to show significant contributions 
in the stratification of patients into risk groups in the prediction of 
locoregional recurrences [15,16]. Therefore, in this study, we aim to 
explore the potential of machine learning techniques in the prediction of 
survival of OPSCC patients. 

The contribution of this study is fourfold. First, it develops an 
implementable machine-learning-based overall survival risk stratifica-
tion model for OPSCC patients. Having a prior knowledge of the risk of 
the patients in terms of the chance of overall survival (high chance or 
low chance of overall survival) can enhance early and fitted personal-
ized medical care and interventions. Furthermore, this will prevent 
increasing financial costs of cancer treatment, improve quality of cancer 
care, and enable healthcare organizations to efficiently deliver 
population-based health management interventions. Second, it provides 
a global explanation for the developed predictive model through the use 
of permutation feature importance. Third, explanations and in-
terpretations for the individual predictions (local explanations) were 
provided using the Local Interpretable Model Agnostic Explanations 
(LIME) and SHapley Additive Explanation (SHAP) frameworks. The 
essence of this framework is to provide explainable and interpretable ML 
models that are transparent and trusted, facilitate human-AI model 
understanding, and aid model adoption. Finally, the combination of a 
predictive model with explanations and interpretations using LIME & 

SHAP frameworks is poised to allow clinicians to make informed de-
cisions regarding treatment options rather than trusting the prediction 
by a ML-based model. The overall survival risk stratification model is 
expected to demonstrate reasonable predictive ability while offering 
explanations and interpretations of the predictions. This will allow cli-
nicians to understand previously undetected relationships between 
prognostic variables to make informed clinical decisions and perform 
effective interventions. 

This paper provides background information about OPSCC and its 
economic implications. Then, it describes the objectives of the study and 
the proposed method, our results (using arrays of performance metrics 
after the training and temporal validations of the model), and the 
findings’ practical implications. We conclude with the limitations of the 
study and suggested avenues for further research. 

2. Materials and methods 

2.1. Collection of data 

In this study, we retrieved data from the National Cancer Institute 
(NCI) through the Surveillance, Epidemiology, and End Results (SEER) 
Program of the National Institutes of Health (NIH). This database was 
used because it is a publicly available database with a high-quality, 
significant number of cases and non-identifiable information on pa-
tients with various cancers [17,18]. These important characteristics are 
aimed at ensuring large-scale outcome analysis research. 

2.1.1. Ethical permission 
The ethical permission to use the SEER database was granted with 

the identification number: 17247-Nov2020 (alabir). The access to the 
human papillomavirus status of the patients was granted with the same 
identification number. 

2.1.2. Selection of patient’s attributes 
The specialized database of the SEER program of the NCI was 

searched for Nov 2020 submission [2010– 2015] (Fig. 1). The consid-
eration for oropharyngeal cancer as contained in the SEER database 
include the base (posterior one-third) of the tongue, oropharynx, tonsil, 
vallecula, and soft palate (Fig. 1). The inclusion criteria included that all 
the cases have known diagnostic information. The included known 
clinical and pathologic characteristics were race, gender, age at diag-
nosis, marital status, TNM status according to the American Joint 
Committee on Cancer (AJCC) 7th edition, grade, human papillomavirus 
status, treatment modalities (surgery, and radiotherapy). The disease- 
free survival (in months) and overall survival of the patients were also 
included. Disease-free survival is the time period from the beginning (or 
end) of treatment until the patient is diagnosed of recurrence while 
overall survival refers to the time period from the beginning (or end) of 
treatment until the patients die of any cause. These parameters were 
considered in a similar study on oropharyngeal cancer [19,20] and in a 
study on prognostic markers [21]. 

2.1.3. Extracted cases of oropharyngeal cancer 
A total of 3284 cases of oropharyngeal cancer were found eligible for 

inclusion in this study (Table 1). The detailed extraction process for 
these cases is presented in Fig. 1. Additionally, a detailed explanation of 
the clinical and pathologic parameters used in this study is presented in 
Table 1. The data used in the training of the machine learning-based 
model included 3164 patients while 120 patients were reserved to 
temporally validate the model. 

2.2. Machine learning algorithms 

Five variants of ensemble machine learning algorithms were exam-
ined in this study. Ensemble learning paradigm, also known as multiple 
classification systems, has the potential to produce a learner that is 
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generalizable [22]. Technically, an ensemble paradigm ensures that 
multiple versions of the same machine learning model (weak or strong) 
are trained in such a way that each ensemble member is different (i.e., 
the decision trees are fit on different subsamples of the training dataset) 
[23]. Then, this process is followed by a selective combination of 
member classifiers into a better classification using any of the several 
appropriate and efficient ensemble methods, such as voting, averaging, 
bagging, stacking boosting, or boosting [22,24,25]. The combination 
method largely depends on the problem to be solved [26]. The five 
variants examined in this study are voting ensemble, light gradient 
boosting machine (Light GBM), extreme gradient boosting machine 
(XGBM), random forest, and extreme random trees.  

i. Voting ensemble’ also known as a meta-model or model of models 
because it combines the prediction from multiple other models 
[27]. The Azure machine learning studio uses the soft voting 
methodology, whereby it sums the predicted probabilities for 
each class label. The predicted class label with the largest sum 

probability is given as the final prediction. Hence, it is known as a 
majority voting ensemble [22]. 

ii. Light Gradient Boosting (LightGBM) uses the boosting method-
ology where many moderately accurate weak learners are inte-
grated (boosted) to form strong learning [22]. The 
implementation of LightGBM introduces two novel techniques. 
These are gradient-based one-side sampling and exclusive feature 
bundling [28]. These two ideas resulted in the training speed and 
improved predictive performance of LightGBM [28].  

iii. Extreme Gradient Boosting (XGBM or XGBoost), like the 
LightGBM, also uses the boosting methodology. The main dif-
ference between LightGBM and XGBM lies in how they weigh 
samples and hypotheses for training [22]. For example, in XGBM, 
there is a level-wise (horizontal) growth of the trees [29]. Thus, 
making it more robust than LightGBM that uses leaf-wise (verti-
cal) growth of trees which makes it prone to overfitting [29,30]. 
In terms of the hypothesis for training, XGBoost uses a pre-sorted 
and histogram-based approach for computing the best split, thus, 
making it less fast compared to LightGBM that utilizes one of the 

Fig. 1. A schematic of data extraction from the Surveillance, Epidemiology, and End Results (SEER).  
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novel techniques (gradient-based one-side sampling) to compute 
its best split [30]. Depending on size of data and resources, both 
LightGBM and XGBM have showed promising model perfor-
mance for various classification and regression tasks [23,30].  

iv. Random forest (RF) samples subsets of the entire dataset with 
replacements (bootstrapping). Multiple decision trees (a forest) 
are constructed over different subsets [16]. The final prediction is 
made using majority voting or averaging from these trees.  

v. Extreme random trees, also known as extra trees differs from the 
RF in that it samples the entire dataset randomly [16,31]. During 
training, extreme random trees construct trees over every 

observation in the dataset but with different subsets of features. 
When constructing each decision tree, the extreme random tree 
splits nodes randomly. This makes it faster since the node splits 
are randomized. Thus, it produces a low variance compared to RF 
[31]. 

2.3. Machine learning training 

The machine learning training process started with the pre- 
processing of data, which is necessary to ensure high data quality for 
the training process [32–34]. All forms of incomplete data, such as 

Fig. 2. The area under receiving operating characteristics curve for voting ensemble method.  

Fig. 3. Permutation feature importance of the input parameters on the model.  
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missing values, incorrect input values, and incomplete entries were 
removed from the onset of the extraction process (Fig. 1). The resulting 
data from the pre-processing phase were further checked to ensure that 
it had been correctly preprocessed. The data was further categorized to 
ensure that was in a reliable format for the machine learning training 
phase (Table 1). From the extracted data, the input parameters for the 
machine learning training included age at diagnosis, gender, ethnicity, 
marital status, grade, HPV status, tumor site, TNM-stage, and treatment 
modalities (surgery, surgery + radiotherapy (Sx + RT), and surgery +
chemoradiotherapy (Sx + CRT). The target outcome is the overall sur-
vival of the patient. The entire training phase was done using Microsoft 
Azure Machine Learning Studio (Azure ML 2021) to build the predictive 
model [35]. 

The training process was performed using 5-fold cross-validation due 
to the relatively large amount of dataset. This approach minimizes bias 
and imitates external validation [36]. Cross-validation was chosen in 
order to test the predictive ability of the model on new data that were 
not used in estimating it, hence offering the ability to detect overfitting 
or selection bias [37]. In addition, it gives insight into how the model 
will generalize to an independent dataset (i.e., an unknown dataset) as 
demonstrated in subsection 2.3.2. We used the ensemble method as the 
training algorithm due to its ability to reduce generalization error. 
Therefore, we selected 5 variants of ensemble methods as the training 
algorithm. These variants were stacked ensemble, voting ensemble, light 
gradient boosting machine (Light GBM), extreme gradient boosting 
machine (XGBM), random forest, and extreme random trees. The 
hyperparameter tuning was done where necessary to ensure that a 
reasonable weighted area under curve (AUC) was achieved. The model 
with the best performance was then temporally validated (sub-section 
2.3.2). The result from the external validation was evaluated mainly on 
weighted AUC. Other performance metrics were examined (sub-section 

Table 1 
Extracted baseline demographic and tumor characteristics of oropharyngeal 
cancer patients from the SEER database (N = 3284 for both training and tem-
poral validation).  

Parameters Total 
Number of 
cases for 
training (n 
= 3164) 

Categorization for 
machine learning 
training 

Total Number of 
cases for external 
validation of the 
web-based tool 
(n = 120) 

Year:    
2010 267 (8.4 %)   

No categorization 
(Not used in 
training) 

– 
2011 388 (12.3 

%) 
1 (0.8 %) 

2012 519 (16.4 
%) 

– 

2013 614 (19.4 
%) 

8 (6.7 %) 

2014 690 (21.8 
%) 

51 (42.5 %) 

2015 686 (21.7 
%) 

60 (50.0 %) 

Gender:    
Male 2526 (79.8 

%) 
0 = Male 98 (81.7 %) 

Female 638 (20.2 
%) 

1 = Female. 22 (18.3 %) 

Ethnicity:    
White 2825 (89.3 

%) 
0 = White 108 (90.0 %) 

Black 233 (7.4 %) 1 = Black 11 (9.2 %) 
Other 106 (3.4 %) 2 = Others 

(American Indian 
/AK Native, Asian 
pacific 

1 (0.8 %) 

Marital Status:    
Married* 1900 (60.1 

%) 
1 = Married 76 (63.3 %) 

Single** 1264 (39.9 
%) 

0 = Single 44 (36.7 %) 

Grade:    
Grade I: Well 

differentiated 
174 (5.5 %) Grade I = 1 7 (5.8 %) 

Grade II: Moderately 
differentiated 

1305 (41.2 
%) 

Grade II = 2 55 (45.8 %) 

Grade III: Poorly 
differentiated 

1650 (52.1 
%) 

Grade III = 3 53 (44.2 %) 

Grade IV: 
Undifferentiated 

35 (1.1 %) Grade IV = 4 5 (4.2 %) 

HPV Status:    
Negative 1143 (36.1 

%) 
0 = HPV-negative 36 (30.0 %) 

Positive 2021 (63.9 
%) 

1 = HPV-positive 84 (70.0 %) 

Site:    
Base of tongue 1178 (37.2 

%) 
1 = Base of tongue 44 (36.6 %) 

Oropharynx + 218 (6.9 %) 2 = Oropharynx 11 (9.2 %) 
Tonsil ++ 1742 (55.1 

%) 
3 = Tonsil 62 (51.6 %) 

Valecullar 26 (0.8) 4 = Valecular 3 (2.5 %) 
Tumor (T-stage)    
T1 875 (27.6 

%) 
1 = T1 34 (28.3 %) 

T2 1279 (40.4 
%) 

2 = T2 47 (39.2 %) 

T3 580 (18.3 
%) 

3 = T3 19 (15.8 %) 

T4 430 (13.6 
%) 

4 = T4 20 (16.7 %) 

Nodal (N-stage)    
N0; No regional lymph 

node metastasis 
1417 (44.8 
%) 

0 = N0 50 (41.7 %) 

N1; Single node 
regional lymph node 
metastasis 

1424 (45.0 
%) 

1 = N1 60 (50.0 %) 

323 (10.2 
%) 

3 = N3 10 (8.3 %)  

Table 1 (continued ) 

Parameters Total 
Number of 
cases for 
training (n 
= 3164) 

Categorization for 
machine learning 
training 

Total Number of 
cases for external 
validation of the 
web-based tool 
(n = 120) 

N3; Cancer has spread 
to one or more lymph 
node 

Metastases (M− stage)    
AJCC M0; No distant 

metastasis 
3085 (97.5 
%) 

0 = M0 116 (96.6 %) 

AJCC M1; Presence of 
distant metastasis 

79 (2.5 %) 1 = M1 4 (3.3 %) 

Treatment parameters    
Surgery with 

postoperative 
radiotherapy (Sx +
RT) 

1270 (40.1 
%) 

1 = Sx + RT 57 (47.5 %) 

Surgery with 
chemoradiotherapy 
(Sx + CRT) 

579 (18.3 
%) 

1 = Sx + CRT 28 (23.3 %) 

Definitive 
chemoradiotherapy 

413 (13.1 
%) 

1 = CRT 11 (9.2 %) 

Surgery alone 518 (18.3 
%) 

1 = Surgery 6 (5.0 %) 

No treatment given 384 (12.1 
%) 

0 = No treatment 
given 

18 (15.0 %) 

Overall Status    
Alive 2117 (66.9 

%) 
0 = Alive 84 (70.0 %) 

Dead 1047 (33.1 
%) 

1 = Dead 36 (30.0 %) 

HPV: Human papillomavirus; *Married including common law; ** Single in-
cludes never married, widowed, divorced, unmarried/domestic partner, and 
separated: +Oropharynx includes posterior wall of oropharynx, overlapping 
lesion of oropharynx, and lateral wall of oropharynx; ++Tonsil includes lingual 
tonsil, overlapping lesion of tonsil, and tonsillar pillar. 
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3.4). 

2.3.1. Performance metrics of the trained model 
Apart from accuracy, other performance metrics such as Mathew 

correlation coefficient (MCC), F1 score, confusion matrix categories, 
sensitivity, specificity, and weighted area under curve were used to 
evaluate the performance of the model (Table 2). Notably, Mathews’ 
correlation coefficient has been reported to be a reliable metric for 
classification tasks [38]. 

2.3.2. Temporal validation of the model 
A temporal external validation method was used where 120 cases 

that had not been used in the training or testing were used to evaluate 
the true performance of this model. The performance of the model when 
temporally validated was considered the gold standard performance 
(Table 3). Temporal validation approach may be posited as a viable 
validation process for prediction model reproducibility and generaliz-
ability [39]. Therefore, it is considered the simplest form of external 
validation, which is more robust and stronger than internal validation 
[40] even though the subsequent cohorts used for temporal validation 
were recruited from the same data source [41]. 

2.3.3. Permutation feature importance 
We performed permutation feature importance (PFI) to examine the 

global explanation of the model. PFI works by shuffling the data in such 
a way that one feature is removed at a time while the corresponding 
effect of the shuffled feature on the performance metrics of the model is 
estimated [42]. The larger the change, the more important is the feature 
to the model’s performance in stratifying the patients into risk groups for 
overall survival. 

2.4. Interpretability with Local Interpretable model Agnostic explanations 
(LIME) and SHapley additive explanations (SHAP) 

We used the LIME framework to examine the probability of the 
correctness of the predictions made by our trained model. Furthermore, 
it gives an overview of how each of the input parameters contributed to 
the risk stratification results given by our model. This framework uses 
the LimeTabularExplainer to fit the training data. To demonstrate how 
this framework works, we examined the LIME framework explanations 
on the stratified risk predictions made by our model for a single patient 

[Fig. 4]. This approach offers an interpretation regarding the prediction 
made by the model. The SHAP framework, on the other hand, is a model- 
agnostic approach that is based on cooperative game theory to explain 
the prediction of any machine learning model [43]. We used the classic 
SHAP values from game theory to capture the average marginal 
contribution of each input parameter (sub-section 2.1.2) to the single 
prediction made by the model [43,44]. That is, we used the SHAP 
framework to divide the variability of the predictions made by the model 
between the available covariates. Thus, the contribution of each variable 
to every single prediction by the model can be assessed regardless of the 
underlying model (Fig. 5a). Therefore, it is a model-agnostic framework. 
In this study, we used an extreme gradient boosting-based model with 
Python version 3.10.4. The motivation of the SHAP approach is to offer 
some level of explanation and interpretability to the predictions made 
by the model. We demonstrated the SHAP framework on the stratified 

Table 2 
Machine learning algorithm performance metrics from the training phase (N = 3164 cases for training set).   

Performance metrics Voting Ensemble Light GBM XGBoost Classifier Random Forest Extreme Random Trees 

Confusion matrix parameters True positive 2044 2044 2038 2043 2049       

False positive 73 73 79 74 68       

False negative 251 258 253 257 271       

True negative 796 789 794 790 776 
Predictive value PPV (Precision) 0.97 0.97 0.96 0.97 0.97       

NPV 0.76 0.75 0.76 0.75 0.74 
Other metrics Sensitivity (recall) 0.89 0.89 0.89 0.89 0.88       

Specificity 0.92 0.92 0.91 0.91 0.92       

F1 score 0.93 0.93 0.92 0.93 0.92 
Accuracy Accuracy 89.8 % 89.5 % 89.5 % 89.5 % 89.2 %       

Balanced accuracy 86.3 % 85.9 % 86.0 % 85.9 % 85.5 %       

Weighted accuracy 92.5 % 92.3 % 92.2 % 92.3 % 92.3 % 
Correlation Mathews’ correlation coefficient 0.77 0.76 0.76 0.76 0.75 
AUC Weighted AUC 0.929 0.926 0.929 0.925 0.923 

PPV: Positive predictive value; NPV: Negative predictive value; AUC: Area under curve. 

Table 3 
Temporal validation with cases neither used in training nor testing (N = 120 
cases).   

Performance metrics Voting Ensemble method 

Confusion matrix parameters True positive 78   

False positive 6   

False negative 8   

True negative 28 
Predictive value PPV (Precision) 0.93   

NPV 0.78 
Other metrics Sensitivity (recall) 0.91   

Specificity 0.82   

F1 score 0.92 
Accuracy Accuracy 88.3 %   

Balanced accuracy 85.3 %   

Weighted accuracy 90.5 % 
Correlation Mathew’s correlation 0.72 
AUC Weighted AUC 0.934 

PPV: Positive predictive value; NPV: Negative predictive value; AUC: Area under 
curve. 
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risk predictions made by our model for any given patient [Fig. 5b]. 

3. Results 

3.1. Characteristics of the study population 

Out of the 3164 cases used for model training and internal validation 
of this study (Table 1), a total of 267 (8.4 %) cases were reported in the 
year 2010, 388 (12.3 %) cases in 2011, 519 (16.4 %) in 2012, 614 (19.4 
%) cases in 2013, 690 (21.8 %) in 2014, and 686 (21.7 %) in the year 
2022 demonstrating increasing occurrence of OPSCC. The median age at 
diagnosis was 61 (SD ± 10.4: range 20–85: mean age was 61.4 years). A 
significant amount of the extracted cases were male (2526 [79.8 %] 
males and 638 [20.2 %] females) in the ratio of 3.96:1 male-to-female. 

Considering the ethnicity, 2825 (89.3 %) were of White origin, 233 
(7.4 %) were Black, and 106 (3.4 %) were from other origins (American 

Indian/AK Native, Asian/Pacific Islander). Regarding the marital status 
of OPSCC patients at the time of diagnosis, the unmarried patients 
(single [never married], divorced, unmarried or domestic partner, 
widowed, and separated) comprised a total of 1264 (39.9 %) cases while 
1900 (60.1 %) were married (Table 1). 

In terms of the HPV status of the patients, 1143 (36.1 %) were HPV 
negative while 2021 (63.9 %) were HPV positive. In addition, the clin-
ical and pathologic characteristics such as grade showed that 174 (5.5 
%) out of the 3164 patients had a tumor with a well-differentiated grade, 
1305 (41.2 %) a moderately differentiated grade, 1650 (52.1 %) a 
poorly differentiated grade, and 35 (1.1 %) an undifferentiated grade. 
For the staging scheme according to the AJCC TNM classification, 875 
(27.6 %) patients had stage T1 tumors, 1279 (40.4 %) stage T2, 580 
(18.3 %) stage T3, and 430 stage T4 (13.6 %). Correspondingly, 1417 
(44.8 %) had N0, 1424 (45.0 %) had N1, 333 (10.2 %) N3; 3085 (97.5 
%) M0, and 79 (2.5 %) M1. The details of the clinicopathologic 

Fig. 4. The Local Interpretable Model Agnostic Explanations (LIME) framework for individual predictions.  

Fig. 5. The SHapley Additive Explanation (SHAP) framework for individual predictions.  
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characteristics and the corresponding distributions are given in Table 1. 
Regarding the treatment modalities, 1270 (40.1 %) had surgery with 

postoperative radiotherapy, 579 (18.3 %) surgery with chemo-
radiotherapy, 413 (13.1 %) definitive (chemo)radiotherapy, 518 (18.3 
%) surgery alone and 384 (12.1 %) received none of the available 
treatments. The follow-up time ranged from 0 to 107 months (Median 
49; Mean 49.4; SD ± 27.2). The number of patients who were alive at 
the last follow-up was 2201 (67.0 %). 

3.2. Characteristics of the study population for temporal validation 

The detailed characteristics of the external validation data (n = 120) 
are presented in Table 1. The mean age at diagnosis was 59.4 years 
(Median 59; SD ± 10.8; range 31 – 85 with 98 (81.7 %) male and 22 
(18.3 %) female. Considering the ethnicity of the OPSCC patients for 
external validation, the vast majority were of white origin [108 (90.0 %) 
White, 11 (9.2 %) Black, and 0.8 % were from another ethnic group]. 
Additionally, 76 (63.3 %) were married and 44 (36.7 %) were unmar-
ried, which includes single, never married, divorced, unmarried or do-
mestic partner, widowed, and separated. In terms of the clinical and 
pathologic characteristics such as grade, 7 (5.8 %) out of the 120 OPSCC 
patients for temporal validation had well-differentiated grade, 55 (45.8 
%) moderately differentiated, 53 (44.2 %) poorly differentiated, and 5 
(4.2 %) undifferentiated. Regarding HPV status, a total of 36 (30.0 %) 
had a HPV-negative while 84 (70.0 %) had a HPV-positive tumor. 

A total of 44 (36.6 %) originated from the base (posterior one-third) 
of the tongue, 62 (51.6 %) from the tonsils, and the remaining 14 (11.6 
%) cases were from other subsites. For the staging scheme according to 
the AJCC TNM, 34 (28.3 %) patients had stage T1, 47 (39.2 %) stage T2, 
19 (15.8 %) stage T3, and 20 (16.7 %) stage T4. Correspondingly, 50 
(41.7 %) had N0, 60 (50.0 %) had N1, 10 (8.3 %) N3; 116 (96.6 %) M0, 
and 4 (3.3 %) M1. The details of the histopathologic characteristics and 
the corresponding distributions are given in Table 1. 

Considering the treatment modalities in the external validation 
cohort, 57 (47.5 %) had surgery with postoperative radiotherapy, 28 
(23.3 %) surgery with chemoradiotherapy, 11 (9.2 %) definitive 
(chemo)radiotherapy, 6 (5.0 %) surgery alone and 18 (15.0 %) received 
none of the available treatments. The follow-up time ranged from 2 to 
79 months (Mean 38.2; Median 42.0; SD ± 16.3). The number of pa-
tients who were alive at last follow-up was 84 (70.0 %). 

3.3. Ensemble method performance during training 

The performance metrics of the examined algorithms (voting 
ensemble, stacked ensemble, light GBM, XGBoost, random forest, and 
extreme random trees) was presented in Table 2. These algorithms 
showed comparable performance in the risk stratification of OPSCC 
patients based on the training phase results (Table 2). Remarkably, the 
voting ensemble variant slightly outperformed the other algorithms, 
specifically in terms of the weighted area under curve. The accuracy, 
balanced accuracy, Matthews’ correlation coefficient, and weighted 
area under curve for the voting ensemble were 89.8 %, 86.3 %, 0.77, and 
0.929 (Table 2). The area under receiving operating characteristics 
curve of the voting ensemble model is presented in (Fig. 2). Meanwhile, 
other performance metrics such as predictive values, confusion matrix 
parameters, sensitivity, specificity, and F1-score are also presented in 
Table 2. 

3.4. Temporal validation of the prediction performance of the model 

The trained voting ensemble model gave an accuracy of 88.3 % when 
temporally validated with new cohorts. The performance from this type 
validation was considered the gold standard regarding the predictive 
ability of the model [15,16,45]. Similarly, the sensitivity, specificity, F1- 
score, and Matthew’s correlation were 0.91, 0.82, 0.92, and 0.72 
respectively (summarized in Table 3). 

3.5. Predictive features for the developed model 

In terms of the importance of the input features on the ability of the 
model to stratify the patients into risk groups, the human papillomavirus 
(HPV) status, age of the patients, T stage, marital status, N stage, and the 
treatment (surgery followed by radiotherapy) were found to be the most 
prominent features (Fig. 3). 

3.6. Explainability and interpretability of the model 

The LIME framework explained the degree of correctness of the 
stratification made by the model for a single prediction (Fig. 4). Addi-
tionally, how each of the input parameters contributed to the prediction 
was given (Fig. 4). As shown in Fig. 4, the model predicted that the 
patient has a high-risk for survival with 100 % degree of correctness 
(Fig. 4). Furthermore, HPV status, M− stage, age, ethnicity, Sx + RT, and 
chemotherapy contributed to the high survival risk prediction made by 
the model for that particular instance of prediction (Fig. 4). Similarly, 
SHAP framework showed that HPV status, gender, and treatment mo-
dality (surgery with radiotherapy) were the input features that enhanced 
the model prediction from the base value (the average model output 
over the training dataset) to the model prediction (shown in red in 
Fig. 5a&b). As shown in Fig. 6, HPV-positive, young-aged OPSCC pa-
tients, early T-N stage, married, treatment approach (surgery followed 
by radiotherapy), and disease-free survival time associated with a high 
chance of overall survival (Fig. 6). This result is specifically comparable 
to the feature importance identified in the PFI analysis (Fig. 3). 

3.7. Comparison of current studies with previous studies 

The studies by Dinia et al. and Patel et al. developed a predictive 
model based on a machine learning paradigm to identify patients at high 
risk of relapse or death after treatment for HPV-positive OPSCC. How-
ever, these studies used a relatively small amount of data (n = 450 for 
Dinia et al and n = 553 for Patel et al.) and showed a reasonable per-
formance in terms of area under curve (AUC) metrics (0.89 and 0.79) 
[20,46]. Similarly, the study by Gaebel et al., examined a hybrid 
approach – expert-based implementation and machine-learning-based 
model for clinical decision-making using a small clinical dataset (n =
94) [47]. With the introduction of this hybrid approach, the weighted 
accuracy of the prediction increased (from 52.9 % to 88.3 %). Following 
the limitations of these studies, we developed and externally validated a 
machine learning model to identify patients at high risk of overall sur-
vival (OS) with a reasonable performance metrics (weighted accuracy: 
90.1 %; AUC: 0.92) using population-based registry data. Besides iden-
tifying patients at high risk of OS, explanations and interpretations were 
provided with the prediction using Local Interpretable Model Agnostic 
Explanations (LIME) and SHapley Additive Explanation (SHAP) frame-
works. The LIME and SHAP techniques ensured that how each variable 
contributed to the predicted outcome was known. In addition, our study 
also demonstrated a better predictive performance than a similar study 
that used a national cancer database [19]. 

3.8. Significance of stratifying patients into risk groups 

Several studies have emphasized the significance of dividing medical 
patients into risk groups in recent years [48–51]. For cancer patients, 
risk stratification becomes pertinent due to the increased risk of cancer 
recurrence, associated treatment costs, and treatment morbidities that 
can affect the quality of life of the patients. Thus, the application of a 
subfield of artificial intelligence, like machine learning techniques, 
provides opportunities for health care organizations and clinicians to 
better understand the underlying risks of their large patient populations. 
Identifying those patients who are likely to be members of high-risk 
trajectories allows healthcare organizations to stratify patients by level 
of risk and develop early targeted and personalized interventions to 
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improve care quality [48,50]. Clinicians could utilize the explanations 
and interpretations provided by the LIME and SHAP frameworks in 
addition to the predicted results to understand previously undetected 
relationships between these prognostic parameters to allow for more 
informed clinical decision-making and effective interventions. Most 
importantly, targeted and personalized interventions can help reduce 
the incidence of recurrence of OPSCC as cancer relapse leads to further 
financial loss in terms of costly hospital readmissions and increased 
treatment costs. 

3.9. Discussion 

The present study examined the potential of ensemble machine 
learning-based models to stratify oropharyngeal squamous cell carci-
noma (OPSCC) patients into favorable overall survival (low-risk) and 
worse overall survival (high-risk) groups for targeted treatment inter-
vention. This stratification was aimed at guiding treatment decisions to 
spare patients from possibly ineffective treatment approaches. The 
model developed showed promising overall risk stratification prediction 
when externally validated. Additionally, the permutation feature 
importance (PFI) highlighted that the topmost variables that are most 
predictive for the overall survival stratification were human papillo-
mavirus status, age, tumor stage, marital status, nodal status, and 
treatment (surgery followed by radiotherapy). In terms of the explain-
ability of the model for individual prediction, HPV status, gender, and 
treatment (surgery followed by radiotherapy) were significant. The 
interpretability of the model with the SHapley additive explanations 
(SHAP) framework showed that HPV-positive, young-aged OPSCC pa-
tients, early T-N stage, being married, treatment approach with surgery 
followed by radiotherapy), and disease-free survival time are associated 
with a high chance of overall survival. The reliability of the prediction 
made by the model was provided using the Local Interpretable Model 
Agnostic Explanations (LIME) framework. 

Considering the dearth of evidence suggesting the optimal treatment 
modality for early-stage OPSCC patients [19,52], it becomes important 
to carefully select a treatment plan that can enhance the patients’ 
quality of life. It has been reported that the current combined therapies 
include significant risks of morbidity for the growing group of survivors 
[9]. Therefore, survivors are faced with potentially severe deterioration 
in their quality of life marked by xerostomia, dysphagia, and chewing 

problems [9]. These ailments further emphasize the need to accurately 
stratify the patients into risk groups for effective targeted treatment 
planning and improved management of the patients. 

Several attempts have been made to optimize treatment planning for 
OPSCC patients. For example, the study by Karadaghy et al. concluded 
that the tumor characteristics and the facility type influenced the deci-
sion to either undergo primary surgery or primary radiation [19]. In this 
study, we leveraged the ability of a machine-learning algorithm to un-
ravel the intricate nonlinear interactions among variables (Table 1). The 
developed model is poised to create additional value in the analysis of 
clinical data from an international, multi-state, and national cancer 
registry by assisting in the clinical decision-making process. 

The predictive performance showed by the machine learning model 
presented in this study is capable of assisting clinicians in selecting a 
treatment approach that contributes to excellent oncologic control while 
reducing morbidity and enhancing function and quality of life [52]. This 
is imperative considering that human papillomavirus (HPV)-positive 
OPSCC has been reported to demonstrate favorable treatment outcomes 
compared with the traditional HPV-negative OPSCC counterpart, which 
is usually driven by tobacco and alcohol consumption [52–55]. 

Because an increase in the incidence of OPSCC is generally found in 
young and generally healthy cohorts [56–59], it is necessary to mini-
mize treatment-related toxicity. The predictive performance shown by 
the machine learning algorithms examined in this study may suggest 
that patients with favorable overall survival (low-risk) may require a 
single modality treatment while worse overall survival (high-risk) pa-
tients may require multimodality treatment. 

Permutation feature importance found HPV to be an important factor 
for the predictive ability of the ML model. This may corroborate why 
HPV infection has been regarded as the most significant causal factor for 
OPSCC [6,10,60–62]. Similarly, the age of OPSCC was also considered 
by the PFI as an important parameter. This observation agrees with 
another report which emphasized that age was one of the factors asso-
ciated with highly aggressive HPV-associated OPSCC [63]. This may be 
attributed to the fact that HPV-related infection might have occurred for 
many years prior to the development of OPSCC. Additionally, T-stage 
was also considered an important factor. This is evident as it has been 
reported that oropharyngeal cancers are typically diagnosed late, i.e., at 
advanced stage with positive regional lymph nodes [6,64,65]. Conse-
quently, the locoregional prognosis and survival of the OPSCC patients 

Fig. 6. Explainability and interpretability of the SHAP framework for each feature.  
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are affected [6]. 
Understanding the pattern of metastatic spread to the neck lymph 

nodes in OPSCC is of paramount importance, as highlighted in this study 
where the PFI analysis identified the nodal stage as an important factor. 
Nodal status may help to improve the rationale for determining the 
proper neck treatment approach, indicating the possible treatment 
(adjuvant therapy or not), and better envisaging the prognosis of the 
OPSCC patients [66]. Regarding the possible treatment approach, PFI 
analysis performed in this study equally identified surgery with radio-
therapy as an important factor for overall survival in OPSCC patients. 
This is essentially necessary, especially in the era of HPV-associated 
OPSCC where there has been a renewed interest in primary surgical 
management with a less invasive approach such as transoral robotic 
surgery as well as a refinement of radiation techniques to minimize long- 
term morbidity and side effects [67]. 

The marital status of OPSCC patients was also found to be an 
important parameter of survival in HPV-related OPSCC. This result is 
consistent with similar studies using SEER data to examine the effects of 
marital status on survival in patients with head and neck cancer (HNC) 
[68,69]. A likely reason for this may be due to spousal support, which 
offers social support and active surveillance of visual and symptomatic 
head and neck cancer sites to enhance early observation, higher rates of 
treatment success, and better survival [68,70]. 

Notably, the afore-mentioned PFI analysis in this study provides the 
overall behavior of the features on the underlying model. It does not 
explain the contributions of these features for individual predictions to 
enhance the explainability and interpretability of the model. Remark-
ably, explainability has been identified as one of the main concerns 
hindering the adoption of a machine learning-based model for cancer 
management [33,71]. According to the SHAP framework to enhance 
explainable and interpretable machine learning, HPV status, gender, 
and treatment approach are the main salient features for the individual 
predictions of the outcome by the model. This is evident as OPSCC is 
associated with HPV (an independent risk factor) [6], more prevalent in 
males, and HPV-associated diseases have been found to show signifi-
cantly better treatment response and prognosis than the non-HPV- 
associated counterpart [21,72]. 

To bring the utilization of the ML model closer to reality, we 
temporally validated the model developed. The motivation for external 
validation was to ensure that the integrated model addresses possible 
concerns regarding the generalizability of the tool [16,45]. Several 
studies have touted the benefits of tree-based (ensemble) machine 
learning algorithms in the prognostication of outcomes in cancer man-
agement [15,16,45]. This is because the algorithm can summarize the 
impact of input features on the model (i.e., global interpretation) [73]. 
However, the algorithm is not able to reveal the impact of the input 
features on individual predictions (i.e., local interpretation), which is 
needed for explainability and interpretability, despite its potential 
benefits [73]. Therefore, we used the SHAP framework to ensure both 
local and global interpretations are presented to enhance interpretable 
and explainable models [73]. Furthermore, the LIME framework gives 
the degree of accuracy of the prediction made by the model. This ad-
dresses concerns about the trustworthiness of predictions made by the 
model. 

While both the LIME and SHAP frameworks are aimed at providing 
interpretable and explainable machine learning models, the SHAP 
framework appears to be more robust as it provides both local and global 
interpretations of the developed model and the corresponding input 
parameters. Remarkably, the feature importance produced by the SHAP 
framework (Fig. 6) is more detailed than the traditional feature impor-
tance (Fig. 3) as it not only shows the important features but also how 
the variables within each parameter contribute to the predictive ability 
of the model. However, there are growing concerns regarding the in-
terpretations made by the SHAP framework [74]. Despite these, it is 
hoped that providing explanations and interpretations to promising 
machine learning models as demonstrated in this study can bring the 

utilization of these models closer to usage in daily clinical practices. 

3.10. Practical implications 

Our proposed model demonstrated good performance in stratifying 
patients with different risks of survival by using comprehensive clini-
copathologic data from one of the most comprehensive cancer popula-
tion databases. The model can provide additional personalized 
information for the postoperative management of patients with OPSCC. 
Traditionally, clinical decisions have been based on guidelines and 
accumulated experience [75]. However, this approach may be subjec-
tive due to variations in the experience of the clinicians. Thus, our model 
seeks to provide a second opinion and rigor to clinicians for effective 
decision making. The model is able to generate individualized pre-
dictions by synthesizing data across broad patient bases. Thus, the 
model will stratify an OPSCC patient to a specific risk group while ac-
counting for the patient’s unique characteristics. On an individual level, 
the individualized predictions made by the model address one of the 
concerns regarding the traditional American Joint Committee on Cancer 
(AJCC) Tumor-Nodal-Metastasis (TNM), which is the fact that the model 
considered other tumor- and patient-related risk factors in making the 
predictions [45]. On a more granular level, understanding the risks of 
overall survival can help clinicians in achieving a targeted treatment 
approach. Although analysis of optimal treatment was not performed in 
this study, as the focus was on the overall survival risk of the OPSCC 
patients, the model may provide the premises for clinicians to intensify 
or deintensify treatment approaches (regimens) in order to improve 
quality of life and prognosis. 

4. Limitations 

The inherent limitations of the SEER database have an impact on the 
present study. For example, extracting OPSCC patients from this data-
base was challenging because tumors are often reported in aggregate 
with other pharyngeal or head and neck malignancies. Similarly, the 
definition of subsite may sometimes be confusing as there are no clear 
distinctions between the oral cavity and oropharynx. Additionally, there 
are limitations regarding the recording of the radiotherapy and 
chemotherapy information in the SEER registry. The model still showed 
promising performance. It remains important to externally validate our 
proposed model with new cases to enhance its generalizability and, most 
importantly, to facilitate clinical application in the future. The predic-
tive model was trained with a dataset that is fairly balanced, thus it had a 
relatively stable performance. However, data imbalance techniques 
should be used in the training to ensure a reduction in false positive 
errors in the model. 

4.1. Conclusions and future research 

This study responds to frequent calls for personalized and precision 
medicine [76]. It utilized ensemble machine learning algorithms to 
stratify OPSCC patients into risk groups (as either high-risk or low-risk) 
based on the chance of overall survival using population-based data. 
Interpretations and explanations were provided for the predictions made 
by the model using the LIME and SHAP frameworks. Our findings 
indicated that the proposed model is able to stratify the patients into risk 
groups and may help clinicians make informed decisions and facilitate 
more precise management of OPSCC patients. Ideal and universally 
accepted global guidelines for the treatment of OPSCC patients are 
lacking. Therefore, the present approach of the division of OPSCC pa-
tients according to their respective chance of overall survival may pro-
vide a general recommendation for the treatment of OPSCC patients. In 
addition, the explanations and interpretation provided alongside the 
predicted chance of overall survival are posited to provide insights to 
clinicians in terms of how each prognostic factor contributes to the 
predicted chance of survival. 
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In the future, we aim to integrate our model as a web-based prog-
nostic tool to facilitate external validation of the model using a new 
dataset. It would be interesting to add other important parameters, such 
as smoking and drinking habits, to the development of the machine- 
learning model. Considering the increasing application of machine 
learning for cancer management in various studies, a comprehensive 
systematic literature review and meta-analyses are warranted in a future 
study to carefully synthesize the published results in these studies. This 
is posited to define the path to the possible implementation of machine 
learning models in cancer management. 
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Summary points:  

• A survival risk stratification model was developed by combining a 
highly accurate machine learning (ML) model with explainable 
artificial intelligence (xAI).  

• We compared five varieties of ensemble algorithms – voting 
ensemble, light gradient boosting machine (Light GBM), extreme 
gradient boosting (XGBoost), random forest, and extreme random 
trees for survival risk stratification in oropharyngeal cancer patients.  

• Explainability and interpretability of the model were enhanced using 
the Local Interpretable Model Agnostic Explanations (LIME) and 
SHapley Additive exPlanations (SHAP) frameworks.  

• The interpretable and explainable machine learning model showed 
the ability to predictive risk stratification of oropharyngeal cancer 
patients into distinct risk groups (high-risk and low-risk).  

• The human papillomavirus (HPV) status, age of the patients, T stage, 
marital status, N stage, and the treatment modality (surgery with 
postoperative radiotherapy) were found to be the most prominent 
features with significant effects on the ability of the machine learning 
model to perform overall survival risk stratification in oropharyngeal 
cancer patients.  

• The predictive risk stratification of oropharyngeal cancer patients is 
important for effective treatment planning care and informed clinical 
decisions. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ijmedinf.2022.104896. 

References 

[1] L.A. Koneva, Y. Zhang, S. Virani, P.B. Hall, J.B. McHugh, D.B. Chepeha, et al., HPV 
Integration in HNSCC Correlates with Survival Outcomes, Immune Response 
Signatures, and Candidate Drivers, Mol Cancer Res 16 (2018) 90–102, https://doi. 
org/10.1158/1541-7786.MCR-17-0153. 

[2] Z. Gooi, J.Y.K. Chan, C. Fakhry, The epidemiology of the human papillomavirus 
related to oropharyngeal head and neck cancer: Epidemiology of HPV-Related 
OSCC, The Laryngoscope 126 (2016) 894–900, https://doi.org/10.1002/ 
lary.25767. 

[3] A.C. Chi, T.A. Day, B.W. Neville, Oral cavity and oropharyngeal squamous cell 
carcinoma-an update: Oral & Oropharyngeal Cancer Update, CA Cancer J. Clin. 65 
(2015) 401–421, https://doi.org/10.3322/caac.21293. 

[4] S. Warnakulasuriya, Global epidemiology of oral and oropharyngeal cancer, Oral 
Oncol. 45 (2009) 309–316, https://doi.org/10.1016/j.oraloncology.2008.06.002. 

[5] R. Lambert, C. Sauvaget, C.M. de Camargo, R. Sankaranarayanan, Epidemiology of 
cancer from the oral cavity and oropharynx, Eur. J. Gastroenterol. Hepatol. 23 
(2011) 633–641, https://doi.org/10.1097/MEG.0b013e3283484795. 
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