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Abstract—In the paper, the Levenshtein’s sequence reconstruc-
tion problem is considered in the case where at most t substitution
errors occur in each of the N channels and the decoder outputs
a list of length at most L. Moreover, it is assumed that the
transmitted words are chosen from an e-error-correcting code
C (⊆ {0, 1}n). Previously, when t = e + ` and the length n
of the transmitted word is large enough, the exact numbers of
required channels is determined for L = 1, 2 and `+1. Here we
determine the number of channels in the cases L = 3, 4, . . . , `.
Furthermore, with the aid of covering codes, we also consider the
list sizes in the cases where the length n is rather small. Finally,
the majority algorithm is discussed for decoding; in particular,
we demonstrate that with high probability a decoder based on
it, is verifiably successful, i.e., outputs a list (sometimes even of
size one) such that it contains the transmitted word.

Index Terms—Levenshtein’s Sequence Recontruction, Informa-
tion Retrieval, Substitution Errors, Majority Algorithm.

I. INTRODUCTION

In this paper, the Levenshtein’s sequence reconstruction
problem, introduced in [1], is studied when the errors are
substitution errors. For related sequence reconstruction prob-
lems (concerning, for instance, deletion and insertion errors)
consult, for example, [1]–[6]. Originally, the motivation for
the sequence reconstruction problem came from biology and
chemistry where the familiar redundancy method of error
correction is unsuitable. The sequence reconstruction problem
has returned to the focus, as it was recently pointed out that the
problem is highly relevant to information retrieval in advanced
storage technologies where the stored information is either a
single copy, which is read many times, or it has several copies
[4], [7]. This problem (see [4]) is especially applicable to
DNA data storage systems (see [8]–[11]) where DNA strands
provide numerous erroneous copies of the information and the
goal is to recover the information using these copies.

Let us denote the set {1, 2, . . . , n} by [1, n], by F the finite
field of two elements, and by Fn the binary Hamming space.
The support of the word x = x1 . . . xn ∈ Fn is defined as
supp(x) = {i | xi 6= 0}. Let us denote the zero word 0 =
00 . . . 0 ∈ Fn and by ei ∈ Fn a word with supp(ei) = {i}.

The first and second author were funded in part by the Academy of
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The Hamming weight w(x) of x ∈ Fn is |supp(x)|. The
Hamming distance is defined as d(x,y) = w(x + y) for
x,y ∈ Fn. Let us denote the radius t Hamming ball centered
at x ∈ Fn by Bt(x) = {y ∈ Fn | d(x,y) ≤ t} and |Bt(x)|
by V (n, t) =

∑t
i=0

(
n
i

)
. Code is a nonempty subset of Fn

and its elements are called codewords. The minimum distance
of a code C ⊆ Fn is dmin(C) = minc1,c2∈C,c1 6=c2

d(c1, c2).
Moreover, the code C has the error-correcting capability
e = e(C) = b(dmin(C)− 1)/2c.

Next we consider the sequence reconstruction problem.
For the rest of the paper, let C ⊆ Fn be any e-error-
correcting code. A codeword x ∈ C is transmitted through
N channels where, in each of them, at most t substitution
errors can occur. In the sequence reconstruction problem, our
aim is to reconstruct x based on the N different outputs
Y = {y1, . . . ,yN} from the channels (see Fig. 1).

It is assumed that t > e(C) (if t ≤ e(C), then only one
channel is enough to reconstruct x). For ` ≥ 1, let us denote

t = e(C) + ` = e+ `

for the rest of paper. The situation where we obtain sometimes
a short list of possibilities for x instead of always recovering
x uniquely, is considered in [12], [13]. Based on the set Y and
the code C, the list decoder (see Fig. 1) D gives an estimation
TD = TD(Y ) = {x1, . . . ,x|TD|} on the sequence x which we
try to reconstruct. We denote by LD the maximum cardinality
of the list TD(Y ) over all possible sets Y of output words. The
decoder is said to be successful if x ∈ TD. In this paper, we
focus on the smallest possible value of LD over all successful

Fig. 1. The Levenshtein’s sequence reconstruction.



decoders D, i.e., on L = minD is successful{LD}. Let us denote

T = T (Y ) = C ∩ (
⋂
y∈Y

Bt(y)).

Consequently,

L = max{|T (Y )| | Y is a set of N output words}.

The value L depends on e, `, n and N . Obviously, one would
like to have as small L as possible. This problem is studied,
for example, in [12]–[17]. In this paper, we mainly consider
the relation between N and L for various n after we fix
two parameters ` and e (while letting C be any e-error-
correcting code). The sequence reconstruction problem is also
closely related (see [14]) to information retrieval in associative
memory introduced by Yaakobi and Bruck [12], [13].

The structure of the paper is as follows. In Section II, we
recall some of the known results. In particular, it is pointed out
that if we have at least (resp. less than) V (n, `−1)+1 channels,
then the list size is constant with respect to n (resp. there
are e-error-correcting codes with list size depending on n). In
Section III, we give the complete correspondence between the
list size and the number of channels when we have more than
V (n, `−1)+1 channels and n is large enough. It is sometimes
enough to increase the number of channels only by a constant
amount in order to decrease the list size (see Corollary 10).
Section IV focuses on improving the bounds on the list size
when n is not restricted and we obtain strictly more channels
than V (n, `−1)+1. Section V is devoted to list size when we
have less than V (n, `−1)+1 channels. The final section deals
with the reconstruction with the aid of a majority algorithm
on the coordinates among the output words in Y . Some of the
proofs are omitted due to the lack of space.

II. KNOWN RESULTS

In this section we present some known results on how the
two values N and L are linked. The basic idea on estimating
L is the following: we analyse the maximum number of
output words (N ) we can fit in the intersection of L t-radius
balls centered at codewords. As expected, the length L of the
outputted list strongly depends on the number of channels.

Previously, in [1] and [12], the problem has been considered
for L = 1 and L = 2, respectively. Moreover, in [18], the
exact number of channels N required to have L constant on n
has been presented, see Theorems 3 and 4. Following theorem
gives an exact number of channels required to have L = 1.

Theorem 1 ([1]). We have L ≤ 1 if

N ≥
`−1∑
i=0

(
n− 2e− 1

i

) t−i∑
k=e+1+i−`

(
2e+ 1

k

)
+ 1.

The next result is a a reformulation of a result by Yaakobi
and Bruck [12, Algorithm 18] proven in [18].

Theorem 2. Let n ≥ 2` − 1 and C be an e-error-correcting
code in Fn. If N ≥ V (n, `− 1) + 1, then we have

L ≤
(

2`

`

)
.

The bound in Theorem 2 can be improved to 2` which has
been shown to be tight in [18].

Theorem 3 ([18]). Let n ≥ ` and C be an e-error-correcting
code in Fn. If N ≥ V (n, `− 1) + 1, then we have L ≤ 2`.

Besides the 2` part, also the value V (n, `− 1) + 1 for the
number of channels is tight, that is, if the value for N is less,
then list size L can be linear with respect to n.

Theorem 4 (Theorem 10, [18]). If N ≤ V (n, `−1), then there
exists an e-error-correcting code such that L ≥ bn/(e+ 1)c.

Let us denote for the rest of the paper n(e, `, b) = (` −
1)2
(
b− e+ (e+ 1)

(
b− 3e− 2e2 + eb+

(
b−2e−1

2

)))
+ `−

2. Although the bound for L in Theorem 3 cannot be improved
in general, we can improve it, when n is large, to `+ 1.

Theorem 5 (Theorem 20, [18]). Let n ≥ n(e, `, b), b =
max{3t, 4e + 4}, |Y | = N ≥ V (n, ` − 1) + 1 and C be
an e-error-correcting code. Then we have

L ≤ `+ 1.

Moreover, the bound `+ 1 is tight.

Theorem 6 (Theorem 9, [18]). There exists an e-error-
correcting code C ⊆ Fn

2 such that L ≥ `+ 1 if n ≥ `+ `e+ e
and the number of channels satisfies N ≤ V (n, `− 1) + 1.

Finally, in [12, Theorem 6], the authors have given exact
number of channels required to have L ≤ 2. All in all, these
three values for N are all we know when L is constant on n.
In the following section, we give the missing values for N .

III. LIST SIZE WITH MORE CHANNELS

In this section, we give exact bounds for the number of
channels N = Nh +1 (when n is large) which is required that
L < h for every constant value h. Previously, Nh was known
only for three values h = 2, 3, ` + 2, i.e., L = 1, 2, ` + 1. In
Theorem 9, we give a solution for L = 3, . . . , `. To achieve
this, we need to introduce two technical lemmas from [18].

In the following lemma, when n is large, it is shown that
any three codewords in T (Y ) differ within some subset of
coordinates D of size constant size b and there exists an output
word y which differs from these codewords in at least ` − 1
coordinate positions outside of D. Notice that supp(w + z)
gives the set of coordinates in which w and z differ.

Lemma 7 (Lemma 18, [18]). Let b ≥ 3t be an integer and
C1 be an e-error-correcting code. Assume that n ≥ n(e, `, b),
|Y | = N ≥ V (n, ` − 1) + 1, |T (Y )| ≥ 3 and c0, c1, c2 ∈
T (Y ). If now D ⊆ [1, n] is a set such that |D| = b and

supp(c0 + c1) ∪ supp(c0 + c2) ∪ supp(c1 + c2) ⊆ D,

then for any word w ∈ Fn we have supp(w + c0) \ D =
supp(w + c1) \ D = supp(w + c2) \ D and there exists an
output word y ∈ Y such that

|supp(y + c0) \D| ≥ `− 1.



The following lemma shows that the distance between any
codewords in T (Y ) is either 2e+ 1 or 2e+ 2.

Lemma 8 (Lemma 19, [18]). Let n ≥ n(e, `, 3t), |Y | = N ≥
V (n, `−1)+1, C be an e-error-correcting code and |T (Y )| ≥
3. Then we have d(c1, c2) ≤ 2e+2 for any two c1, c2 ∈ T (Y ).

Let us denote by N(n, `, e, h) = Nh (when the exact
formulation is not necessary for clarity) the maximum number
of t-error channels such that there exists a set of output
words Y ⊆ Fn satisfying |Y | = Nh and |T (Y )| ≥ h
for some e-error-correcting code C. By Theorems 4 and 5
N`+2 = Nbn/(e+1)c = V (n, `−1). Observe that in general, if
N ≥ Nh + 1, then L < h for all e-error-correcting codes.

We require the following two technical notations. Let

Ww =

(i1, . . . , iL) ∈ NL |
w + 1− `

2
≤ ij ≤ e+ 1 and w ≥

L∑
j=1

ij


and

W ′
w =

{
(i1, . . . , iL) ∈ NL |

w − `

2
≤ i1 ≤ e and for

j ≥ 2 :
w + 1− `

2
≤ i1 ≤ e+ 1 and w ≥

L∑
j=1

ij

 .

In the following theorem, we give the maximum number of
channels Nh which gives list size L ≥ h.

Theorem 9. Let n ≥ n(e, `, b), b ≥ max{3t, 4e + 4}, ` ≥ 3,
3 ≤ h ≤ `+1, |D| = L(e+1) and |D′| = L(e+1)−1. Then

N(n, `, e, h) = Nh = V (n, `− 1)+

max

∑
w≥`

∑
(i1,...,iL)∈Ww

(
n− |D|

w −
∑L

j=1 ij

) L∏
j=1

(
e+ 1

ij

)
,

∑
w≥`

∑
(i1,...,iL)∈W ′

w

(
n− |D′|

w −
∑L

j=1 ij

)(
e

i1

) L∏
j=2

(
e+ 1

ij

) .

Proof. Let us have N = N(n, `, e, h), n ≥ n(e, `, b), b ≥
max{3t, 4e+4}, ` ≥ 3 and 3 ≤ h ≤ `+1. Moreover, let C be
such an e-error-correcting code, that it maximizes L (we have
L ≥ h) when N = N(n, `, e, h) and let Y be a set of outputs
such that |T (Y )| = L and let us denote T (Y ) = {c1, . . . , cL}.

Since C is an e-error-correcting code and by Lemma 8,
we have d(ci, cj) ∈ {2e + 1, 2e + 2} for each i 6= j. Since
h ≥ 3, each pairwise distance cannot be 2e+1. Let us assume
w.l.o.g. that d(c1, c2) = 2e + 2 and let us then translate the
Hamming space so that c1 = 0. Now w(c2) = 2e + 2 and
w(c3) ∈ {2e+ 1, 2e+ 2}. Moreover, |supp(c2)∩ supp(c3)| =
e+1. Let D be any subset of [1, n] satisfying supp(c1 +c2)∪
supp(c1 +c3)∪ supp(c2 +c3) ⊆ D and |D| = b. Observe that
supp(c1) \D = supp(c2) \D = supp(c3) \D = ∅.

By Lemma 7, there exists an output word y ∈ Y such
that |supp(c1 + y) \D| ≥ `− 1. Since d(y, c2) ≤ t, we have
|supp(y)∩supp(c2)| ≥ e+1. Moreover, since d(y, c1) ≤ t, we
have w(y) ≤ t and hence, |supp(y)∩supp(c2)| = e+1. Thus,
supp(y) = (supp(y)∩supp(c2))∪(supp(y)\D) and supp(y)∩

(supp(c3) \ supp(c2)) = ∅. Hence, supp(y) ∩ supp(c3) ⊆
supp(c2) and moreover, supp(y)∩ (supp(c2) \ supp(c3)) = ∅
as otherwise d(y, c3) ≥ 1 + 1 + e + (l − 1) = t + 1 > t
(a contradiction). Together these give that supp(y) ∩ D =
supp(c2) ∩ supp(c3). Notice that for each i ∈ [4,L] we may
choose D in such a way that also supp(ci) ⊆ D since |D| =
b ≥ 4e+4. Thus, there exists an output word y′ ∈ Y such that
|supp(c1 + y′) \D| ≥ `− 1. Therefore, as above, supp(y′) ∩
D = supp(c2) ∩ supp(ci) and supp(y′) ∩ D = supp(c2) ∩
supp(c3) implying supp(c2)∩supp(ci) = supp(c2)∩supp(c3).
Finally, translate the Hamming space so that the word z with
supp(z) = supp(c2)∩supp(c3) becomes z = 0. Then we have
w(ci) ∈ {e, e+1} and supp(ci)∩supp(cj) = ∅ for each i 6= j
since d(ci, cj) ∈ {2e+ 1, 2e+ 2}. Moreover, at most one of
ci can have weight e by the minimum distance of C.

Let us then count the number of words in
⋂L

i=1Bt(ci).
Clearly, each word y with w(y) ≤ ` − 1 belongs to the
intersection contributing V (n, `−1) words to it. Assume then
that w(y) = w ≥ `. As d(y, cj) ≤ t for all j ∈ [1,L], we
have w(y) +w(cj)− 2|supp(y)∩ supp(cj)| ≤ t. Denote ij =
|supp(y) ∩ supp(cj)|. Assume first that w(cj) = e+ 1 for all
j. Then y ∈ Bt(cj) if and only if we have w+e+1−2ij ≤ t.
Hence, e+ 1 ≥ ij ≥ (w + 1− `)/2. Moreover,

∑L
j=1 ij ≤ w

since w(y) = w and supp(cj1) ∩ supp(cj2) = ∅ for each
j1 6= j2. In other words, y ∈

⋂L
i=1Bt(ci) if and only

if (i1, . . . , iL) ∈ Ww. In the case where w(ck) = e for
some k, say k = 1, we have e ≥ i1 ≥ (w − `)/2. Thus,
y ∈

⋂L
i=1Bt(ci) if and only if (i1, . . . , iL) ∈ W ′w. Together

these give the claim.

Observe that by the proof the bounds given in Theorem 9
are tight. If we increase N by one, then L decreases by at
least one since we cannot place the output word within the
intersection of t-balls centered at codewords in T (Y ). Notice
that geometrically the output sets giving maximal list size are
more complicated than, for example, in Theorem 4 (where a
ball of volume V (n, `− 1) is essential). Another observation
is that although the sums do not include an upper bound for
w, there is one. Namely the definition, for Ww, gives that
w ≤ 2e+ `+ 1 and for W ′w that w ≤ 2e+ `.

Theorem 9 allows improving the bound L ≤ `+ 1 of The-
orem 5 just by increasing N by constant number (e+ 1)`+1.

Corollary 10. Let n ≥ n(e, `, b), b ≥ max{3t, 4e + 4} and
` ≥ 3. If N ≥ V (n, `− 1) + (e+ 1)`+1 + 1, then L ≤ `.

Proof (sketch). First calculate the value Nh of Theorem 9 with
h = ` + 1. For this purpose, first consider the set Ww with
w ≥ `. We get that each ij ≥ 1 and ` + 1 ≤ w ≤ ` + 1 as
L ≥ h = ` + 1. Indeed, if w ≥ ` + 2, then w ≥

∑L
j=1 ij ≥∑`+1

j=1 ij ≥ (`+1)(w+1−`)/2 = (`−1)(w+1−`)/2+w−(`−
1) > w (a contradiction). Therefore, as w = `+ 1 and ij ≥ 1,
we have L = ` + 1 implying Ww = {(1, 1, ..., 1)}. Thus, the
sum corresponding to Ww in Theorem 9 gives V (n, `− 1) +
(e + 1)`+1. Analogously, for W ′w, we obtain that ` ≤ w ≤
`+ 1, W ′` = {(0, 1, 1, . . . , 1)} and W ′`+1 = {(1, 1, 1, . . . , 1)}.
Hence, the corresponding sum is equal to V (n, `− 1) + e(e+



1)` +(e+1)` = V (n, `−1)+(e+1)`+1. Thus, in conclusion,
if N ≥ Nh+1 = V (n, `−1)+(e+1)`+1+1, then L ≤ `.

IV. NEW BOUNDS WITH THE AID OF COVERING CODES

Notice that although we have the bound L ≤ ` + 1 when
n is rather large (see Theorems 5), for smaller lengths of the
codes our best bound is still L ≤ 2` (see Theorem 3) when the
number of channels satisfies N ≥ V (n, `− 1) + 1. Although
this bound is attained in some cases (see [18]) and thus cannot
be improved in general, we can try to get a smaller list size L
when we increase the number of channels. Indeed, recall that
in [12, Theorem 6] the authors give a (fairly large) number
of channels (which depends also on e whereas N ≥ V (n, `−
1) + 1 does not) such that L ≤ 2. In this section, we utilize
covering codes when we increase the number of channels. A
code C ⊆ Fn is an R-covering code if for every word x ∈ Fn

there exists a codeword c ∈ C such that d(x, c) ≤ R. For
an excellent source on results concerning covering codes, see
[19]. Let us denote by k[n,R] the smallest possible dimension
of a linear R-covering code of length n.

Let us next present the well-known Sauer-Shelah lemma.

Theorem 11 ([20], [21]). If Y ⊆ Fn is a set containing at
least V (n, k − 1) + 1 words, then there exists a set S of k
coordinates such that for any word w ∈ Fn with supp(w) ⊆ S
there exists a word s ∈ Y satisfying supp(w) = supp(s) ∩ S.

Observe that each Hamming ball of radius e contains at
most one codeword of C. Thus, if the intersection of the balls
of radius t centered at the output words of Y can be covered by
k balls of radius e, then we have |T (Y )| ≤ k. This approach
is formulated in the following lemma.

Lemma 12 ([18]). Let C ⊆ Fn be an e-error-correcting code.
If for any set of output words Y = {y1, . . . ,yN} we have

T (Y ) ⊆
k⋃

i=1

Be(βi)

for some words βi ∈ Fn (i = 1, . . . , k), then L ≤ k.

Notice that Lemma 12 also gives a decoding algorithm.
Indeed, if the words βi are known, then there is at most one
codeword in each Be(βi), we can use the decoding algorithm
of C on βi and the codeword can be added to the list T .

Theorem 13. Let C be an e-error-correcting code. If the
number of channels satisfies N ≥ V (n, ` + 2R − 1) −
2`+2R−k[`+2R,R] + 2, then

L ≤ 2k[`+2R,R].

Proof. Let x be the input word. We have |Y | ≥ (V (n, `+2R−
1) + 1)− (2`+2R−k[`+2R,R]− 1). Next we show that with this
number of outputs we can guarantee that there exists a set S
of `+ 2R coordinates such that within these coordinates of S
a subset Y ′ ⊆ Y contains a linear R-covering code of length
` + 2R. Due to Theorem 11, we know that if we had more
output words, namely, |Y | ≥ V (n, ` + 2R − 1) + 1, then we
would have a set S of coordinates such that a subset Y ′′ ⊆ Y

contains all the 2`+2R words of length ` + 2R among these
coordinates of S. Let D be a linear R-covering code in F`+2R

with dim(D) = k[` + 2R,R]. Notice that any coset u + D,
u ∈ F`+2R, of the linear code D is also an R-covering code,
and there are 2`+2R−dim(D) distinct cosets. Therefore, the set
Y ′′ can miss any 2`+2R−dim(D) − 1 words of F`+2R and still
the remaining subset contains at least one R-covering code of
length `+2R. Consequently, it follows that Y ′ contains an R-
covering code of size 2k[`+2R,R] because Y ′ can be obtained
from Y ′′ by removing some 2`+2R−dim(D) − 1 words.

Now let s ∈ Fn be a word such that supp(s) = S and
Y1 = {y1, . . . ,y2k[`+2R,R]} ⊆ Y ′ the subset of output words
corresponding to the R-covering code. Denote βi = s + yi

for i = 1, . . . , 2k[`+2R,R]. Since the words in set Y1 form,
among the coordinates corresponding to S, an R-covering
code of length ` + 2R, we know that there exists yj , j ∈
{1, . . . , 2k[`+2R,R]}, such that the words yj and x + s differ
in at most R places among the coordinates of S. Consequently,
as d(x,yj) ≤ t, the words x and βj = yj + s have distance
at most t− (`+R) +R = e from one another. Therefore, by
Lemma 12, we get that L ≤ 2k[`+2R,R].

Note that if ` = 5 and N ≥ V (n, 4)+1, then, by Theorem 3,
we have L ≤ 25 = 32. If we have N ≥ V (n, 6) − 6, then
(using as the linear 1-covering code D the Hamming code of
length 7), we obtain by the previous result, that L ≤ 16.

V. LIST SIZE WITH LESS CHANNELS

By the following theorem it is clear that if we have less than
V (n, `− 1) + 1 channels, then the list size cannot in general
be constant for e-error-correcting codes of length n.

Theorem 14 ([18]). Let V (n, `−b−1)+1 ≤ N ≤ V (n, `−b)
where 0 ≤ b ≤ ` − 1. Moreover, let C ⊆ Fn be such an e-
error-correcting code that L is maximal. Then we have

L = Θ(nb).

Consequently, let us concentrate on certain e-error-
correcting codes, namely, those with at most M codewords
within any ball of radius e+ a, for some a > 0.

Theorem 15. Let N ≥ V (n, `−a−1)+1 where 0 ≤ a ≤ `−1.
Let C be an e-error-correcting code such that |Be+a(u)∩C| ≤
M for every u ∈ Fn. Consequently,

L ≤ 2`−aM.

The previous result is useful when our e-error-correcting
code is a code for traditional list-decoding, see [22]. For
number of channels being less than V (n, ` − 1) + 1, it also
gives, for every e-error-correcting code with suitable a, small
exponent for n compared to Theorem 14 (see Corollary 16(ii)
below), or even constant bounds (see Corollary 16(i)). Let us
denote (see [22, Theorem 3.2])

r(n, e,M) =
n

2

(
1−

√
1− M − 1

M

2(2 + 1)

n

)



and the Johnson bound

r(n, e) =
n

2

(
1−

√
1− 2(2e+ 1)

n

)
.

Corollary 16. Let M ≥ 1 and 2e+ 1 < n/2. We have
(i) Let N ≥ V (n, ` − r(n, e,M) + e − 1) + 1 where 0 ≤

r(n, e,M)− e ≤ `− 1. Consequently,

L ≤ 2t−r(n,e,M)M.

(ii) Let N ≥ V (n, `−r(n, e)+e−1)+1 where 0 ≤ r(n, e)−
e ≤ `− 1. Consequently,

L ≤ 2t−r(n,e)n.

The following result considers the case when we have less
than V (n, `−1)+1 channels and the set of output words have
certain restrictions on the distances between the output words.

Theorem 17. Let C be an e-error-correcting code, s ≥ 1,
N ≥

(
n

`−s
)

+ 2V (n, `− s− 1) + 1 and d(y,y′) ≥ 2s+ 1 for
any distinct y,y′ ∈ Y . Then we have L ≤

(
2`
`

)
.

VI. DECODING WITH MAJORITY ALGORITHM

In this section, we focus on decoding the transmitted word
x ∈ C based on the set Y of the output words using a ma-
jority algorithm. First we describe the (well-known) majority
algorithm using similar terminology and notation as in [12].
The coordinates of the output words yj ∈ Y are denoted by
yj = (yj,1, yj,2, . . . , yj,n). For simplicity we assume that N
is odd. Furthermore, the number of zeros and ones in the ith
coordinates of the output words are respectively denoted by

mi,0 = |{j ∈ {1, 2, . . . , N} | yj,i = 0}|

and mi,1 = N − mi,0. Based on Y , the majority algorithm
outputs the word c = (c1, c2, . . . , cn) ∈ Fn, where

ci =

{
0 if mi,0 > mi,1

1 if mi,0 < mi,1

.

In other words, for each coordinate of c, we choose zero
or one based on which one occurs more frequently. In [12,
Example 1], it is shown that the majority algorithm does not
always output the correct transmitted word x even though
we take the e-error-correction capability of C into account.
In [6], a modification of the majority algorithm is presented
for decoding and it is shown that if the number of channels
satisfies the bound of Theorem 1, then the output word of the
algorithm belongs to Be(x) and can be uniquely decoded to x.
In what follows, we demonstrate that with high probability the
word c is verifiably within distance e from x with significantly
smaller number of channels (than in [6]).

For this purpose, notice first that the total number of
errors occurring in the ith coordinates of yi is at least
mi = min{mi,0,mi,1}. On the other hand, there happens at
most t errors in each channel and, hence, the total number of
errors in the channels is at most tN . Thus, we obtain that

n∑
i=1

mi ≤ tN . (1)

Furthermore, if x = c, then the number of errors is exactly∑n
i=1mi. In addition, if x 6= c, then for each coordinate i

in which the words differ, max{mi,0,mi,1} = N − mi is
contributed to the sum of errors (instead of mi). The following
theorem is based on the idea that even the modified sum (in
the left hand side of (2)) has to satisfy Inequality (1).

Theorem 18. Let C be an e-error-correcting code, m′i be the
integers mi ordered in such a way that m′1 ≥ m′2 ≥ · · · ≥ m′n
and c be the output word of the majority algorithm. We have
d(x, c) ≤ k if k is a positive integer such that

k+1∑
i=1

(N −m′i) +

n∑
i=k+2

m′i > tN . (2)

Observe that (2) allows us to estimate the accuracy of c.
In particular, if k ≤ e, then d(x, c) ≤ k ≤ e and the word
c can be decoded to x as C is an e-error-correcting code.
Furthermore, if k > e, then x ∈ C ∩Bk(c) and the decoding
algorithm outputs a list of words containing x. Moreover, the
size of the list is at most maxu∈Fn |C ∩ Bk(u)|, which is
closely related to the traditional list decoding (see [22]). In
conclusion, the theorem gives us a condition guaranteeing that
the transmitted word can be decoded with certain accuracy. In
what follows, we further study the probability that for a set Y
of outputs there exists k such that k ≤ e.

For the rest of the section, we assume that each word of
Bt(x) is outputted from a channel with equal probability. Here
we actually allow — unlike elsewhere in the paper — some
of the output words yi to be equal. Analysing analytically the
probability that in Theorem 18 there exists k such that k ≤ e
seems rather demanding problem. Hence, in this presentation,
we only approximate it using Monte Carlo simulations. In
Table I, the probability is approximated using 100000 samples
for n = 24, t = 7, e = 2, 3, 4 and varying number of
channels N . From the table, we can notice that as the number
of channels increases it becomes very likely that the majority
algorithm together with the the e-error-correction capability
of C correctly gives the transmitted word x. Thus, although
the majority algorithm does not always work (as was stated
in [12]), it works with high probability when the number of
channels is large enough. However, the required number of
channels is very modest in comparison to [6] where tens of
thousands channels are needed in the cases of Table I. In
some applications, we could also request new outputs (from
the channels) until the integer k is small enough to obtain the
transmitted word x with desired accuracy.

TABLE I
THE MONTE CARLO APPROXIMATIONS WITH 100000 SAMPLES OF THE

PROBABILITY FOR e SATISFYING THE CONDITION OF THEOREM 18 WHEN
n = 24, t = 7, e = 2, 3, 4 AND N = 11, 21, 31, 41.

N\e 2 3 4
11 0.068 0.260 0.587
21 0.369 0.790 0.972
31 0.701 0.971 0.999
41 0.887 0.997 0.999
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