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Abstract: Type 1 diabetes mellitus is a disease that affects millions of people around the world.
Recent progress in embedded devices has allowed the development of artificial pancreas that can
pump insulin subcutaneously to automatically regulate blood glucose levels in diabetic patients. In
this work, a Lyapunov-based intelligent controller using artificial neural networks is proposed for
application in automated insulin delivery systems. The adoption of an adaptive radial basis function
network within the control scheme allows regulation of blood glucose levels without the need for a
dynamic model of the system. The proposed model-free approach does not require the patient to
inform when they are going to have a meal and is able to deal with inter- and intrapatient variability.
To ensure safe operating conditions, the stability of the control law is rigorously addressed through
a Lyapunov-like analysis. In silico analysis using virtual patients are provided to demonstrate the
effectiveness of the proposed control scheme, showing its ability to maintain normoglycemia in
patients with type 1 diabetes mellitus. Three different scenarios were considered: one long- and two
short-term simulation studies. In the short-term analyses, 20 virtual patients were simulated for a
period of 7 days, with and without prior basal therapy, while in the long-term simulation, 1 virtual
patient was assessed over 63 days. The results show that the proposed approach was able to guarantee
a time in the range above 95% for the target glycemia in all scenarios studied, which is in fact well
above the desirable 70%. Even in the long-term analysis, the intelligent control scheme was able to
keep blood glucose metrics within clinical care standards: mean blood glucose of 119.59 mg/dL with
standard deviation of 32.02 mg/dL and coefficient of variation of 26.78%, all below the respective
reference values.

Keywords: artificial pancreas; automated insulin delivery; blood glucose regulation; intelligent
control; radial basis functions; neural networks

1. Introduction

Diabetes mellitus is a metabolic disease characterized by hyperglycemia resulting from
defects in insulin action, secretion, or both. Chronic hyperglycemia caused by diabetes
is associated with long-term damage and failure of several organs, such as kidneys, eyes,
heart and nerves [1]. The two more common types of diabetes are Type 1 diabetes mellitus
(T1DM) and Type 2 diabetes mellitus (T2DM). T1DM consists of an autoimmune destruction
of pancreatic β-cells, which are responsible for producing insulin, the hormone that lowers
blood glucose concentration (BGC). In this case, the subcutaneous administration of insulin
is indeed crucial for survival.

For patients with T1DM, modern therapy consists of continuous blood glucose mon-
itoring (CGM) and automatic insulin delivery. CGM devices, which measure interstitial
glucose concentration, have great benefits for diabetes management [2]. By combining a
CGM device with an insulin pump, it became possible to deploy automated insulin delivery
(AID) systems, also known as an artificial pancreas. However, in addition to the insulin
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pump and the CGM sensor, an appropriate algorithm to automatically define the amount
of insulin to be delivered to the patient is also a fundamental part of developing an effective
artificial pancreas.

Several control strategies have been proposed for automatic blood glucose reg-
ulation. Basically, they can be categorized as linear or nonlinear and model-based
or model-free techniques. Proportional–integral–derivative (PID), fuzzy inference and
model predictive control (MPC) are the most common approaches for AID systems, being
the only ones with clinical validation so far [3–5]. MPC has been extensively used [6–9]
and, when compared PID controllers, show better performance [10,11]. Nevertheless,
Haidar [12] shows that fuzzy logic can still improve MPC performance and reduce the
risk of hypoglycemia, which indicates the relevance of computational intelligence for
the design of artificial pancreas.

Fuzzy logic, like many other artificial intelligence (AI) algorithms, allows the devel-
opment of model-free controllers, that is, without the need for a patient model. This can
be quite useful, as we are dealing with a biological system which is highly complex, non-
linear, uncertain and subject to external disturbances and time delays. In fact, obtaining
mathematical models that can adequately capture human physiological behavior for use
in control schemes has been a major challenge [13]. Vettoretti et al. [14] stress that, due
to the huge amount of data collected from T1DM patients using CGM, AI techniques can
give support to bolus insulin calculation [15] and BGC prediction [16–19], that is, predict
future glycemic profiles based on present and past values of glycemia. Furthermore,
reinforcement learning (RL) has also been applied in the context of AID systems with an
increasing interest in the past few years [20–22]. In [23], a bioinspired RL algorithm was
used to automate insulin infusion, by selecting reward functions that imply temporal
BGC homeostasis.

For example, the main sources of nonlinearity in blood glucose dynamics come from
the insulin action on parameters of glucose production, glucose distribution/transport
and glucose disposal [24]. On this basis, due to the need to linearize the plant around
an operating point, the adoption of linear controllers may lead to several issues in blood
glucose regulation. This has led in recent years to the development of nonlinear control
strategies for AID systems.

Nonlinear MPC was tested in a clinical study with 10 T1DM patients [24], showing
satisfactory results in maintaining normoglycemia and reducing hypoglycemic events.
In addition, feedback linearization (FBL) [25] and sliding mode control (SMC) [26,27]
have been also used in the design controllers for artificial pancreas. Abu-Rmileh and
Garcia-Gabin [28] combine SMC and a nonlinear Wiener model for in silico analysis,
resulting in faster response for food intake when compared to MPC controller. Moreover,
Ahmad et al. [29] and Ebrahimi et al. [30] also implemented SMC controllers for artificial
pancreas and obtained sound results. Nath et al. [31], in turn, developed a nonlinear
adaptive controller that is able to provide desired glycemic control under uncertain meal
disturbance and intrapatient variability.

It is also worth noting that the use of subcutaneous route to deliver insulin to the
patient adds significant delay to the system’s dynamics. Furthermore, the unidirectional
effect of insulin on glucose dynamics may hamper the safe and efficient regulation of
the BGC because the controller cannot counteract the effects of insulin overdosing [13].
Thus, to improve control performance, many AID systems are also designed with state,
parameter or uncertainty estimators to deal with both external disturbances and unmodeled
dynamics. State estimation has been performed in [32–34] to aid the controller and improve
its overall performance. Due to the great inter and intrapatient variability, some control
schemes consider parameter estimation to improve plant modeling and, consequently,
control performance [7,33,35].

An essential feature in modern AID systems is the ability to maintain postprandial
normoglycemia without the need to report meals to the device. Typically, the patient should
inform the insulin delivery system about a meal and the amount of carbohydrate in it.



Bioengineering 2022, 9, 664 3 of 16

Meal announcement and carbohydrate calculation, which is usually not accurate, are major
concerns for patients and often restrict their eating. In order to attain this automatically, a
separate module may be used to detect food intake [36–40].

However, most control schemes proposed so far for automated insulin delivery face
severe limitations: time-delays, for example, may compromise the stability of PID con-
trollers [41]; model predictive control is often subject to excessive computational burden
due to its associated optimization issues [42]; fuzzy control is typically heuristic and gen-
erally lacks a systematic framework and rigorous tools for stability analysis [43]; sliding
mode controllers may suffer from chattering issues and need a reasonable plant model as
well as full state feedback [44].

In this work, we introduce a novel intelligent controller for the automatic regulation of
blood glucose levels. For this purpose, an artificial neural network (ANN) is incorporated
in a Lyapunov-based nonlinear control law to ensure the stability of the closed-loop system.
Online learning, instead of offline training, is proposed to update the ANN weights, which
allows continuous learning and manages to cover all the nuances and variability of human
physiology. Following [45,46], the projection algorithm [47] is also employed to ensure that
the ANN weights remain within predefined bounds, in order to avoid hypoglycemia due
to insulin overdosing. By combining the artificial neural network with a non-linear control
scheme, the computational demands on the ANN are drastically reduced. This in fact scales
down the computational complexity of the algorithm and allows the proposed controller to
be deployed on the low-power embedded hardware of automated insulin delivery systems.
The efficacy of the proposed control scheme is evaluated through numerical simulations
using the Identifiable Virtual Patient (IVP) model presented in [48]. It should be emphasized
that the IVP model is used for simulation purposes only, but is not considered in the design
of the control law.

The main advantages of the control approach introduced in this work are summarized below:

1. It requires only one state, namely the blood glucose concentration, which is measured
once every five minutes;

2. No dynamic model of the patient is needed for the design of the control law;
3. It is able to maintain normoglycemia (during postprandial and fasting periods) with-

out the need for meal announcement or carbohydrate calculation;
4. It is able to deal with both inter- and intrapatient variability;
5. It has a good trade-off between simplicity and efficacy, which allows its implementa-

tion on low-power embedded hardware.

The rest of this paper is organized as follows: Section 2 presents the virtual patient
model used for simulation purposes (only) during in silico analysis; Section 3 introduces
the proposed intelligent controller with the corresponding Lyapunov-like stability analysis
to demonstrate the boundedness and convergence properties of all closed-loop signals;
Section 4 presents the employed materials and methods; the numerical results obtained
in both short- and long-term simulations are presented and discussed in Section 5; and
Section 6 summarizes the concluding remarks.

2. Virtual Patient Model

In order to evaluate the control scheme by means of computer simulations, a virtual
patient is needed to emulate the physiology of a real one. The virtual patient is a math-
ematical model that describes blood glucose dynamics, that is, how BGC changes over
time under the influence of food intake and variations in both glycemia and plasma insulin
concentration. The Identifiable Virtual Patient model proposed by Kanderian et al. [48] is
then considered here for in silico analysis. The IVP is based on two previous models [24,49]
and has already been used in [50] for the controller design and in [51] for the design of
state, parameter and disturbance estimators in artificial pancreas.
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The IVP model can be described as a four-dimensional vector field:

İSC(t) = −
ISC(t)

τ1
+

u(t)
τ1CI

İ(t) =
ISC(t)

τ2
− I(t)

τ2

İEFF(t) = −p2 IEFF(t) + p2SI I(t)

Ġ(t) = −[GEZI + IEFF(t)]G(t) + EGP + RA(t)

(1)

where ISC(t) and I(t) are subcutaneous and plasma insulin concentrations [µU/mL], re-
spectively; IEFF(t) is the insulin effect on blood glucose [min−1]; G(t) represents the blood
glucose concentration [mg/dL]; u(t) stands for the subcutaneous insulin infusion [µU/min],
which is equivalent to the control input; and RA(t) represents the rate of glucose appear-
ance [mg/dL/min], i.e., the increase in blood glucose due to food intake, which can be
described by

RA(t) =
CH t

VG τ2
m

exp(−t/τm) (2)

with CH being the amount of carbohydrate ingested [mg], VG the glucose distribution
volume [dL], and τm the peak time of meal glucose appearance [min].

The other IVP parameters are the pharmacokinetic time constants τ1 and τ2 [min], the
insulin clearance CI [mL/min], the time constant for insulin action p2 [min−1], the insulin
sensitivity SI [mL/µU/min], the glucose effectiveness at zero insulin GEZI [min−1], and
the endogenous glucose production EGP [mg/dL/min].

3. Intelligent Control

In view of its ability to adapt itself, learn from experience and adequately predict
plant dynamics [52], intelligent control can be considered a very suitable approach for
healthcare applications. Intelligent controllers are capable of handling highly uncer-
tain systems and have been successfully employed in robotics [45,52] and many other
mechatronic systems [53,54].

In order to design the model-free intelligent controller, let us start by assuming that
the plant dynamics can be described by an uncertain first-order nonlinear system:

ẋ(t) = f (x, t) + b(x, t) u(t) (3)

where x(t) = G(t) represents the blood glucose concentration, f and b are both nonlinear
functions, and u(t) is the control input.

It is important to highlight that, by choosing the first-order system (3) to represent
all the physiological dynamics of the patient with T1DM, it is necessary to ensure that
the controller is capable of dealing with the disturbances/uncertainties arising from food
intake and insulin-glucose metabolism.

Thus, considering that (3) is subject to external disturbances as well as modeling
uncertainties, i.e., f = f̂ + ∆ f and b = b̂ + ∆b, it can be rewritten as follows:

ẋ(t) = f̂ (x, t) + b̂(x, t) u(t) + d (4)

where d comprises the disturbances due to food intake and modeling uncertainties, ∆ f
and ∆b.

Recalling that radial basis function (RBF) neural networks with a single hidden layer
can ensure universal approximation [55,56], we propose the adoption of a RBF network with
m neurons in the hidden layer (see Figure 1) to cope with the uncertainties/disturbances
that can arise:

d̂ = w>ϕ(x) (5)
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where w is the weight vector and ϕ(x) contains the activation functions of each neuron in
the hidden layer, i.e.,

ϕ(x) = [ϕ1(x) ϕ2(x) · · · ϕm(x)]> (6)

Figure 1. Architecture of a RBF neural network.

RBF networks have been successfully employed for uncertainty/disturbance compen-
sation in the intelligent control of many uncertain complex systems [46,52].

Now, we evoke the feedback linearization method [57] to design an appropriate
nonlinear control law for the uncertain first-order nonlinear system (4):

u = b̂−1(− f̂ + ẋd − λx̃− d̂) (7)

where xd is the desired blood glucose concentration (target glycemia), x̃ = x− xd represents
the control error, and λ is a strictly positive constant. Figure 2 presents the block diagram
of the proposed intelligent control scheme.

Figure 2. Block diagram of the proposed intelligent controller.

Applying the control law (7) to the assumed plant dynamics (4), we obtain the follow-
ing closed-loop system:

˙̃x + λx̃ = d− d̂ (8)
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Equation (8) shows that the error dynamics is constantly driven by the approximation
error d − d̂. Nevertheless, as RBF networks are universal approximators, an arbitrary
precision ε can be ensured for the uncertainty/disturbance estimation:

d = d̂∗ + ε (9)

with d̂∗ being the optimal approximation related to the optimal weight vector w∗.
Let us evaluate the stability of the proposed control approach by defining positive

definite Lyapunov candidate function V:

V =
1
2

x̃2 +
1

2η
δ>δ (10)

where η is a strictly positive constant and δ = w−w∗.
Hence, since δ̇ = ẇ, the time derivative of V is:

V̇ = x̃ ˙̃x + η−1δ>ẇ

= x̃
(
− λ x̃ + d− d̂

)
+ η−1δ>ẇ

= x̃
(
− λ x̃ + ε + d̂∗ − d̂

)
+ η−1δ>ẇ

= x̃
[
− λ x̃ + ε− (w−w∗)>ϕ(x̃)

]
+ η−1δ>ẇ

= x̃
[
− λ x̃ + ε− δ>ϕ(x̃)

]
+ η−1δ>ẇ

= −x̃
(
λ x̃− ε

)
+ η−1δ>

[
ẇ− ηx̃ϕ(x̃)

]
If the weight vector is updated according to the following learning rule

ẇ = η x̃ ϕ(x̃) (11)

then the time derivative of V becomes

V̇ = −x̃
(
λ x̃− ε

)
(12)

Equation (12) shows that V̇ is negative semi-definite only for |x̃| > ε/λ, with ε ≥ |ε|
being the upper limit of the approximation error. In order to ensure an upper bound on
w when |x̃| ≤ ε/λ, the projection algorithm [47] can be applied. Thus, the new learning
rule becomes

ẇ =



η x̃ ϕ(x̃) if ‖w‖2 < ϑ or
if ‖w‖2 = ϑ and
η x̃ w>ϕ(x̃) < 0(

I − ww>

w>w

)
η x̃ ϕ(x̃) otherwise

(13)

with ϑ being the desired upper bound for ‖w‖2 (the Euclidian norm of w).
In fact, by adopting (13) we ensure that the weight vector always remains within the

convex regionW = {w ∈ Rn |w>w ≤ ϑ2}, as long as ‖w(0)‖2 ≤ ϑ, and the control error
converges to the closed region X = {x̃ ∈ R | |x̃| ≤ ε/λ} as t→ ∞.

4. Materials and Methods

The intelligent controller was evaluated through an in silico analysis using the Iden-
tifiable Virtual Patient model. The IVP model was implemented in C++ and numerically
solved with the fourth-order Runge-Kutta method and a time step of 10−3 min. Three
different scenarios were considered: one long- and two short-term simulation studies. In
the short-term analyses, 20 virtual patients were simulated for a period of 7 days, while in
the long-term simulation, 1 virtual patient was assessed over 63 days.

It is important to stress that the IVP model was considered for simulation purposes
only and was not taken into account in the proposed control scheme design. As a matter
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of fact, the IVP model is represented by a four-dimensional nonlinear system (1) whereas
the intelligent controller is designed for first-order systems like (4). It means that the
controller only needs to measure one of the states of the IVP model, namely the blood
glucose concentration G(t), so there is no need to estimate non-measurable states, such
as the subcutaneous and plasma insulin concentrations ISC(t) and I(t), respectively, nor
the insulin effect on the blood glucose IEFF(t). This allows the controller to rely solely
on measurements from a blood glucose monitoring device, but requires it to be able to
handle the unmodeled insulin dynamics and its effect on glucose metabolism.

The parameters for the IVP model were obtained from [58] and are summarized in
Table 1. To take interpatient variability into account in the simulation, each patient had
its parameters initialized from samples of normal distributions. The standard deviation
for each distribution was chosen as 5% with respect to the corresponding mean value.
Furthermore, to assess the controller’s efficacy against intrapatient variability, all model
parameters were chosen to vary throughout the simulations. The parameters varied
sinusoidally by ±10% over the average value with a period of one day. Both inter and
intrapatient variability was considered to make the simulations more realistic and to assess
the robustness of the proposed control scheme.

Table 1. Mean values adopted to generate the parameters for virtual patients with the IVP model.

τ1 τ2 CI p2 SI GEZI EGP τm VG

Mean 49.00 47.00 2010.00 1.06 × 10−2 8.11× 10−4 2.20× 10−3 1.33 40.50 253.00

In order to appraise the capacity of the controller to cope with disturbances, food
intake was considered three times a day: breakfast, lunch and dinner. Meal times and
amounts of carbohydrate ingested (CH) varied according to normal distributions, whose
means and standard deviations are shown in Table 2.

Table 2. Time and amount of carbohydrate of each meal.

Breakfast Lunch Dinner

Time (Mean ± SD) [hh:mm] 07:30 ± 00:30 12:30 ± 00:30 19:30 ± 00:30
Carbohydrate (Mean ± SD) [g] 42.00 ± 3.50 66.00 ± 5.50 51.00 ± 4.25

Regarding the control scheme, it was considered that the blood glucose concentration
could be measured once every 5 min, as usual in commercial CGM devices. Therefore,
the control signal was updated using the same sampling period. The target glycemia
was chosen as xd = 110 mg/dL, the control gain set as λ = 1, and the upper bound for
‖w‖2 was defined as ϑ = 3× 104. Moreover, as we propose a model-free approach, we
assume that the controller designer has no prior knowledge about the plant dynamics
and set f̂ = 0 and b̂ = 1. By choosing the identity elements of addition/subtraction and
multiplication/division to define f̂ and b̂, respectively, we guarantee that none of them
exerts any influence on the control signal, letting the plant dynamics be fully compensated
by the neural network output d̂.

For the RBF network, a single neuron was considered for the input layer, namely
the control error x̃, and eleven neurons were chosen for the hidden layer. The activation
functions were of the Gaussian type:

ϕ(x̃) = exp

[
−1

2

(
x̃− c

l

)2
]

(14)

with corresponding centers c and widths l being defined as in Table 3.



Bioengineering 2022, 9, 664 8 of 16

Table 3. Parameters of the Gaussian-type activation functions.

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11

Center (c) −25.0 −10.0 −8.0 −5.0 −2.0 0.0 5.0 10.0 20.0 40.0 100.0
Width (l) 20.0 15.0 10.0 8.0 5.0 5.0 5.0 20.0 40.0 100.0 200.0

Two different protocols were adopted to adjust the neural network weights in the
short-term simulation studies.

First, we let the neural network learn about the insulin/glucose interaction from
scratch with the weight vector being initialized as w0 = 0 and updated according to
Equation (13). The learning rate of the neural network varied over time. We opted for
a higher value for η in the first days, so that the neural network could recognize insulin
action and glucose metabolism, as well as the dietary pattern of each individual. After the
first week, a low learning rate was maintained in order to accommodate small metabolic
fluctuations and food intake variations that might occur. The exact value of the learning
rate adopted in the simulations is presented in Equation (15).

η =


0.50, on day 1
0.10, on days 2 and 3
0.05, from day 4 to 7
0.01, from day 8 onwards

(15)

Then, in order to assess how the proposed algorithm would behave in a transition
from a different therapy protocol, we adopted a hybrid approach. We assumed that patients
were being treated with continuous basal insulin therapy using their automated delivery
systems. During the last three days of basal therapy, we collected the patients’ blood
glucose levels along with the corresponding infusion rates, and used this data to train the
neural network offline using the standard pseudoinverse matrix. Thus, when switching to
the therapy based exclusively on the intelligent controller on the fourth day, the weight
vector w was initialized with the values calculated from the pseudoinverse matrix and
thereafter updated according to Equation (13). The learning rates adopted in this case are
presented in Equation (16).

η =


0.50, on day 4
0.10, on days 5 and 6
0.05, on day 7
0.01, from day 8 onwards

(16)

It is also important to highlight, for the evaluation of glycemic control, standardized
CGM metrics for clinical care [59,60] were used. In this way, the values of mean BGC,
standard deviation (SD), coefficient of variation (CV) and time in range are calculated for
the simulations. For the coefficient of variation, the target range is below 36%, since values
above this limit are commonly associated with higher risks of hyperglycemia and higher
glycemic variability [61].

5. Results and Discussion

First, the results obtained in the short-term simulations (20 patients for 7 days with 3 meals
a day) and with the weight vector initialized as w0 = 0 are presented in Figures 3 and 4 as well
as in Table 4.
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Figure 3. Mean glycemia and standard deviation for 20 patients and considering w0 = 0.

Figure 4. Mean insulin infusion and standard deviation for 20 patients and considering w0 = 0.

Table 4. Glycemic metrics considering 20 patients and without prior basal therapy.

Peak [mg/dL] Mean [mg/dL] SD [mg/dL] CV [%]

Maximum 213.04 (Patient 1) 119.33 (Patient 7) 35.89 (Patient 1) 30.62 (Patient 1)
Minimum 74.77 (Patient 16) 113.45 (Patient 20) 26.47 (Patient 15) 23.21 (Patient 15)

Figure 3 shows the mean glycemia and the relative standard deviation obtained from
the 20 patients over 7 days. The results demonstrate that, after a brief learning phase
that lasted less than a day, the proposed intelligent controller was able to maintain the
patients’ normoglycemia for the remaining six days. During the first day, the learning rate
of the neural network was set to its highest value η = 0.5, so that the metabolism of the
glucose-insulin interaction could be properly estimated. In fact, this is what caused the
brief hyperglycemic peak at the very beginning of the controller’s actuation. Although
none of the simulated patients presented severe hypoglycemia (below 54 mg/dL) or
acute hyperglycemia (above 400 mg/dL), based on the results obtained, it would be
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recommended that real patients be followed up by a healthcare professional during the
neural network’s learning phase.

As a matter of fact, if the first three days (when the learning rates were higher,
i.e., η ≥ 0.10) are not considered in the analysis, then we can assert that none of the
patients had hypoglycemia (whether severe or moderate) or severe hyperglycemia. On
average, patients had a time in range (TIR) of 96.76% (normoglycemia) and a time
above range (TAR) of 3.24% (moderate hyperglycemia). This confirms the great perfor-
mance of the proposed intelligent controller, since the targets for assessment of glycemic
control in patients with diabetes are, respectively, TIR > 70% and TAR < 25% for
moderate hyperglycemia [59,60].

In addition, in order to have a glimpse of the extreme blood glucose concentrations in
the in silico analysis, the maximum and minimum glycemic values (peak, mean, standard
deviation, and coefficient of variation) obtained in the simulations are presented in Table 4.
These results are from the period after the initial learning phase (three days) and the
corresponding patients are shown in parentheses. It is noteworthy that the coefficient of
variation (CV) remained below the target of 36% for all patients. The highest coefficient of
variation (obtained for patient 1) was in fact 30.62%.

Regarding the insulin infusion, Figure 4 presents the mean values and their relative
standard deviation obtained from the 20 patients. The main fluctuations in the insulin
infusion that typically occur three times a day, as can be clearly seen in the figure, are caused
by food intake. It is important to emphasize that the control system was not previously
informed about the meals or the amount of carbohydrate, which attests to its efficacy in
recognizing the food intake and automatically compensating for it.

Now consider the case of patients with ongoing basal therapies who have switched
to a protocol based on the intelligent control scheme. Figures 5 and 6 , as well as Table 5,
present the results obtained for a protocol of 50 U of insulin per day during the three days
prior to the outset of the intelligent control approach.

Figure 5. Mean glycemia and standard deviation for 20 patients with prior basal therapy.



Bioengineering 2022, 9, 664 11 of 16

Figure 6. Mean insulin infusion and standard deviation for 20 patients with prior basal therapy.

Table 5. Glycemic metrics considering 20 patients and with prior basal therapy.

Peak [mg/dL] Mean [mg/dL] SD [mg/dL] CV [%]

Maximum 221.51 (Patient 1) 117.33 (Patient 19) 36.27 (Patient 1) 32.16 (Patient 1)
Minimum 59.91 (Patient 7) 107.74 (Patient 11) 28.56 (Patient 12) 25.06 (Patient 12)

As observed in Figure 5, the adoption of a continuous basal therapy before starting
the intelligent control scheme can be very useful to prevent severe hyperglycemic events.
Continuous basal therapy is a commonly used approach at the beginning of insulin-
based treatment [62], but due to its own limitations [63,64], it is generally not able to
maintain the desired level of glycemic control over the long term. However, if carried out
with adequate medical supervision, it can help in the prior training of the neural network.
In fact, thanks to the offline adjustment of the weights performed in the transition from
continuous basal to intelligently regulated therapy (from the third to the fourth day),
it was possible to maintain the blood glucose level within a much safer glycemic range
(Figure 5), when compared to the approach in which ANN had to learn from scratch
(Figure 3).

Figure 6 shows that the intelligent control scheme is able to adjust itself more quickly
at the beginning of the treatment, when compared to the case without previous training
Figure 4. Moreover, by regulating insulin infusion according to demand throughout the
day, the intelligent controller is able to automatically handle both inter and intrapatient
variability, which is not the case with basal therapy employed in the training phase.

After three days of basal therapy, patients had an average time in the range (TIR) of
96.73% (normoglycemia), a time above range (TAR) of 2.77% (moderate hyperglycemia),
and a time below range (TBR) of 0.50% (moderate hypoglycemia), which represent very
adequate metrics when compared to their targets, respectively, TIR > 70%, TAR < 25%
for moderate hyperglycemia, and TBR < 4% for moderate hypoglycemia [59,60]. In
addition, Table 5 provides a summary of extreme blood glucose concentrations after basal
therapy. It is worth mentioning that also in this case all the coefficients of variation (CV)
were below the target of 36%, with the highest value associated with patient 1 (32.16%).

Regarding the long-term analysis, the results obtained for a virtual patient con-
sidering 63 simulated days and 3 meals a day are shown in Figures 7 and 8. These
results are presented in order to emulate an ambulatory glucose profile (AGP) and have
been depicted on a 24-h basis. The AGP represents a standardized report in which
daily glucose and insulin profiles are qualitatively and quantitatively summarized. It
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is an internationally recognized standard for reporting CGM data [59] and allows for
easy identification of glycemic median, variability (using interpercentile ranges), mean,
standard deviation, coefficient of variation, and time in ranges. As the objective now is
to identify the effectiveness of the proposed control scheme in the long term, data from
the initial learning phase (first three days) of the neural network were not included in
this analysis.

As can be seen in Figure 7, the proposed intelligent controller was able to maintain
normoglycemia with an associated time in range of 95.19%. Furthermore, there were no
episodes of hypoglycemia, whether severe or moderate, nor severe hyperglycemia. Moder-
ate hyperglycemia was observed with a corresponding time above range of 4.81%, which is
well below the acceptable limit of TAR < 25% [59,60]. Mean glycemia was 119.59 mg/dL
with a standard deviation (SD) of 32.02 mg/dL and a coefficient of variation (CV) of 26.78%,
both below the reference values [61] of SD < 50 mg/dL and CV < 36%, respectively.

In addition, fluctuations in both glycemia (see Figure 7) and insulin infusion (see
Figure 8) after meals can be easily verified. These long-term results confirm that the
increase in blood glucose concentration due to food intake is readily associated with an
effective controller response, which delivers higher doses of insulin to counteract the effects
of the ingested carbohydrate.

Patient 1 - 60 days
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Figure 7. Glycemic profile of patient 1 with median and interpercentile ranges.
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Figure 8. Insulin profile of patient 1 with median and interpercentile ranges.

6. Concluding Remarks

This work introduces a novel intelligent control scheme for automated insulin delivery
systems (also known as an artificial pancreas). By combining an adaptive neural network
with a Lyapunov-based method, the proposed model-free controller is able to identify
the physiological characteristics of the glucose/insulin interaction, as well as the dietary
pattern of each patient, and automatically regulate the insulin infusion. Moreover, the
control scheme only needs to know the glycemia every five minutes, not requiring non-
measurable variables related to insulin dynamics and insulin-glucose metabolism. In order
to ensure patient safety, the stability of the control law is rigorously addressed through a
Lyapunov-like analysis. The ability of the intelligent controller to maintain normoglycemia
is confirmed through in silico analysis using virtual patients. The obtained results demon-
strate that the proposed scheme is able to deal with inter- and intrapatient variability and
does not require any information about food intake or amount of carbohydrate ingested.
Finally, it is also important to note that by combining the artificial neural networks with a
nonlinear control method, the computational demand on the ANN is drastically reduced,
which allows its implementation in the embedded hardware of AID systems.
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