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Power transformers are a fundamental component of the modern power

distribution network. The fault-free operation of step-up and step-down

transformers is of prime importance to the continuous supply of electrical

energy to the consumers. To ensure such efficient operation, power

distribution companies carry out routine maintenance of distribution

transformers through preplanned schedules. The efficacy of such

maintenance depends on a proper understanding of the transformer and its

components and efficient prediction of faults in these components. There are

several components whose condition can be studied to predict transformer

failures and therefore the overall health of a transformer. These include

transformer windings, insulations, transformer oil, core insulations, and

ferromagnetic cores. This work develops a new, simplified fuzzy logic–based

method to predict the health of a transformer by taking into account the state of

several individual components. Case studies are used to demonstrate the

efficacy of the developed method.
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1 Introduction

In the power system, the cost of electricity produced and

supplied to consumer significantly depends on the level of

reliability that is attained and the effective maintenance of

power system equipment. This also impacts the stability of the

power system and the life span of associated equipment

(Nurcahyanto et al., 2019). Industrial, commercial, and

domestic consumer power supply failures result in technical

and financial loss to power utilities. The most expensive

equipment for substation/grid stations is transformers, which

comprise 60% of the total investment (Idrees et al., 2019). The

faults usually experienced in transformers may be categorized

into two types on the basis of location, i.e., internal and external

faults. External faults are usually line to line (L-L), line to line to

line (L-L-L), and line to line to ground (L-L-L-G), which are rare

faults, whereas line to line to ground (L-L-G) and line to ground

(L-G) are frequently occurring faults. Internal faults are as

follows: winding insulation degradation that results in inter-

turn faults, winding defects, and earth faults. Overload

conditions for long durations, excessive overvoltages, inrush

current, and failure of cooling equipment are among several

reasons for insulation failure (Bhide et al., 2010). Electrical

insulation has a shared function in providing mechanical

support, heat dissipation, electrical isolation, and personal

safety. There are three major types of insulation in a

transformer: solid, liquid, and gas. The most widely used

insulation type is solids. This can be found inside

transformers, and on transmission lines, capacitors, motors,

cables, etc. The damage to solid insulation is usually non-

reversible and destructive (Cygan and Laghari, 1990). In

addition to frequent faults, transformer insulation undergoes

different kinds of stresses (mechanical, electrical, environmental,

and thermal) throughout its life period. This results in insulation

degradation, lower withstanding capability during short circuit

and overvoltage conditions, and reduced life span of the

transformer. Therefore, in order to have a reliable and

efficient operation, the health assessment of transformers is

considered an important parameter among power utilities

(Arshad et al., 2004).

The major focus of this research is to analyze the

deformation/displacement of active parts of transformers

along with the solid and liquid insulation, which may be

degraded with time, and to establish an accurate way to

estimate the remnant life of the transformer. This evaluation

also includes the identification of faulty equipment/assets having

high failure risk or are at end of the life span so that asset

managers can expedite the replacement or repairing of such

assets (Contin et al., 2011).

The health assessment of transformers has been discussed in

the literature, and various algorithms have been proposed that

include the following: formulating detailed mathematical

models/algorithms that encompass a tier method; scoring/

ranking method; multi-feature factor assessment model; and

matrices/entropy weight health index (EWHI) method (Azmi

et al., 2017). However, health index evaluation by mathematical

modeling is considered to be a complex process because at the

same time, different stresses act that may cause inconsistencies.

Another approach is the use of the weighting average

(Assessment, 2020). Despite the simplicity of weighting

methods, the determination of the weight factors is based on

the rules of thumb and experienced guesses, which differ from

one expert to another. In addition, setting a sharp threshold of

diagnostic measurements for scoring is very difficult. Another

research proposes a Bayesian multinomial logistic regression

model for estimating the HI of transformers (Sarajcev et al.,

2018). However, it omits effects associated with the inherent

ordering of categories, which can also be the case with

applications of ANNs and some other ML models used for

classification tasks. In addition, online learning/monitoring

can be implemented in the present model, which can be used

for health management. Regression models are used to evaluate

health index (%HI) in terms of percentage for condition

assessment, which is discussed in Leauprasert (2020), but they

lack comprehensible interpretation of their parameters and

explanatory power. Also, the HI values may lie outside the

intended range. For AI methods, a large number of data with

known conditions are saved in the database and then used as

training and testing data, but they are still subjective (Jian et al.,

2020). Online condition monitoring is employed for HI based on

DGA interpretation using the C4.5 algorithm with a decision tree

of a machine-learning model for transformers. The algorithm

uses the ML software (WEKA and Orange) to give the best

learning outcome, and the results are compared with those of the

support vector machine, neural network, naïve Bayes, and

nearest neighbor models in Basuki (2018). Based on SPSS

statistical tools, a HI model is established but more research

can be extended to other fields such as transmission, distribution

systems, and other substation equipment. A devoted online

condition monitoring approach only for 33 kV steel mill

transformers is established using fuzzy models as discussed in

Patil et al. (2020) for health index (HI) computation and

estimation of remnant life in a fuzzy mode, but research can

be continued for higher voltage transformers, so a generalized

fuzzy model that is applicable to all other transformers such as

generation and transmission may be formed. Seven models based

on adaptive neuro-fuzzy inference system (ANFIS), multiple

linear regression (MLR), and other simpler approaches are

investigated in Prasojo et al. (2019) to deal with missing furan

data in power transformers. The offered multiple computation

methods can still be enhanced by mentioning historical factors in

the calculation, instead of only forecasting single instances. A

distribution transformer health index is analyzed online for

condition monitoring (Davies and Roose) and utilizes

different parameters of the transformer through an energy

monitoring system such as current and voltage. In order to
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verify the proposed algorithm, a study on a 50-kVA distribution

transformer is also performed, but the same can be extended to

other bigger transformers, which, instead of approximation from

data, apply practical sensors to measure the parameter to validate

their sensitivity.

Based on the results of DGA performed on oil and fuzzy logic

system, the health index of the transformer is proposed in Arshad

et al. (2010), but DGA results can be found from different

techniques, and instead of standard mathematical modeling of

these techniques, these are knowledge- and experience-based.

Sometimes, the results do not follow offered codes of present

methods, and then, it becomes difficult to analyze them. In this

regard, the modification in current DGA techniques is applied

with help of the gene expression programming (GEP) algorithm

in Islam (2012) for DGA standardizing and identifying

transformer criticality. Another author developed a fuzzy logic

model for the transformer to assist the asset management in

developing a decision-making strategy by integrating criticality

based on diagnostic testing techniques in Arshad et al. (2014), but

the remnant life of the transformer is not discussed. Another

research focused on data acquired from liquid insulation

parameters such as DGA, water content, furan, and interfacial

tension (IFT) for analyzing health conditions and operating

temperature for assessing the remnant life of the transformer

(Bakar and Abu-Siada, 2016). Another paper established a

mathematical model of health index, and then, these values

are applied to fuzzy models to evaluate failure, risk, and

maintenance model, and the same is verified with the help of

simulation, but the model lacks the feedback system for

addressing maintenance problems (Rosero-z, 2018). Enhanced

health assessment based on the fuzzy logic system of DGA only is

proposed in Aburaghiega (2018), but the model does not focus on

all the problems linked with asset management.

The transition of the utility grid toward a pervasive and smart

grid has brought new opportunities for automatic fault detection

and prevention (Ben Dhaou et al., 2017). The predictive

maintenance of the power transformer using industrial

internet of things (IIoT) and machine-learning techniques has

received ample attention in both academic and industrial work

(De Faria et al., 2015; Mahmoud et al., 2021).

Most of the research so far has focused on the degradation of

oil alone using DGA for transformer health index assessment,

whereas no specific attention is given to the integrated model for

fault identification using Duval triangle 1 and other diagnostic

parameters (Dukarm et al., 2020). High and low energy arcing,

partial discharge, and hot spots of various temperature ranges are

major types of faults that can be identified using Duval triangle 1

(Assessment, 2020), but there is no region for a normal aging

condition that may result in a diagnosis of either one of the

mentioned faults if careless implementation is adopted. To avoid

this problem, dissolved gases should be assessed along with an

assessment of insulation paper (Mawelela et al., 2020). The

above-mentioned problem can be analyzed by considering

other diagnostic parameters such as hottest spot temperature

of winding, insulation resistance/polarization index, dissipation

factor of system insulation, and remnant life of the transformer

based on the relative aging rate of insulation material. This point

encourages the formation of new algorithm and models. In this

regard, this research focuses on fuzzy logic systems (FLS) to deal

with the uncertainty involved in identifying the different faults,

which are related to aging of insulation paper along with mineral

oil. Using this analysis, defuzzification will be applied to each

predicate, which is related to a precise fault/defect condition with

a membership function that specifies the degree of confidence

associated with output. Another reason for implementing the

fuzzy logic system is that it is easy to design, can handle a large

number of inputs, and is insensitive to parametric variation.

Moreover, analytical models developed so far exhibit complexity

when dealing with a large number of inputs and system becomes

difficult to design and analyze (Azmi et al., 2017).

Therefore, this research utilizes an integrated fuzzy logic

system based on Duval triangle 1, which will focus on fault

identification and failures related to insulation oil and remnant

life of the transformer based on the hottest spot temperature of

winding/relative aging rate in addition to dissolved gas analysis

(DGA), dielectric strength of oil, hottest spot temperature of

winding, insulation resistance and polarization index, and

dissipation factor to calculate health assessment and remnant

life of the transformer to ensure that proper decision-making

strategy, i.e., replacing, repairing, or refurbishment, can be

implemented for effective health monitoring system of the

transformer (Arshad et al., 2004).

The research will be useful to avoid cascaded failure of the

power system, inconvenience, and economic loss due to power

outages. Major insulation used in transformers is Kraft paper and

insulation mineral oil, and its mechanical strength of

transformers depends on it. With time, due to various stresses

(thermal, mechanical, and environmental) the paper ages, which

results in the deteriorating performance of a transformer. For

example, during short circuit events, the paper insulation may

fail to withstand stresses due to reduction in mechanical strength,

ferroresonance, and vibrations resulting from the excessive

switching operation. This may eventually, after accumulation,

lead to a transformer catastrophic disaster if no corrective action

(replacing, repairing, or refurbishment) is taken (Azis et al.,

2014). It will also avoid removing substation transformer from

service before completing their actual life span because in the

past, older equipment was renewed before reaching the end of the

lifetime of the equipment and the main reasons for the change

were the growth of the load and their operational limits

(Velásquez and Lara, 2017). The contributions of this study

are listed below:

• To identify the incipient faults and identification of faulty

accessories, which cannot be taken out of service

immediately.
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• To estimate remnant life of the transformer.

• To provide accurate estimates of the transformer aging and

insulation aging so that timely repair, replacement, or

refurbishment can be performed.

• To prevent sudden failures in transformers prior to the

completion of expected life, which will cause more

significant losses due to accelerated aging effect.

• To reduce costs of periodic diagnostic testing and by

workers.

2 Methodology

The fuzzy-based model for health and life estimation of the

transformer works using the data obtained from diagnostic

testing performed either during factory testing or as a result

of in-service tripping or during maintenance. The parameters

used are dielectric strength (DES, i.e., water content of oil,

breakdown voltage, and dielectric dissipation factor (DDF@

100°C) of oil), dissolved gas analysis (DGA), insulation

resistance and polarization index, hot spot temperature of

winding, and dissipation factor of insulation system.

Moreover, in addition to life and health estimation, fault-type

identification is performed using Duval triangle 1 (DT1) based

on the results of DGA. Transformer health index evaluation is

assessed by integrating the aforesaid parameters. The analysis of

the transformer insulation degradation and mechanical

condition will be evaluated by the use of fuzzy logic systems.

These models overcome the complexity and consistency

limitation of mathematical modeling by integrating its

criticality. Gasses developed as a result of the dissolved gas

analysis test provided the information about the thermal

condition of oil. There are other methods such as the key gas,

the Doernenburg ratio, and the IEC ratio method. However,

there are certain limitations to these methods: The key gas

method gives faulty identification (50%) when applied

through software and 30% wrong identification when applied

manually. Similarly, the Doernenburg ratio is a historic method

used less frequently, and it only identifies a limited number of

faults. Similarly, the IEC ratio is valid only when a sufficient

amount of gas is generated. In view of the above, Duval triangle

1 is used that can identify six types of faults and does not have

above-mentioned limitations (Abu-Siada and Hmood, 2015).

Results of breakdown voltage, dissipation factor, and water

FIGURE 1
Fuzzy sublogic based on dielectric strength of oil.

TABLE 1 Health index based on dielectric strength of oil.

Parameters assessed Unit Data obtained
from testing

Condition Input of
dielectric strength
of oil
(%)

Health index
based on
dielectric strength
of oil
(%)

Water content mg/kg 5.5 Good 88.17

Breakdown voltage kV 72.8 Good 87.33 87.17

Dielectric dissipation factor@100°C % 0.016 Good 88.17
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content are used to verify the dielectric condition of oil (Chantola

et al., 2018). The most significant factor in contributing to the

health of the transformer is the top oil temperature rise because it

served as a basis for the hottest spot temperature rise of winding

(Davies and Roose,). Fuzzy logic is considered as one of many

soft computing techniques similar to the human thinking

process. It is often utilized in our daily lives and uses simple

linguistic variables as decision-making segments, which are easily

comprehendible as compared to analytical models. The three

steps are involved in the fuzzy logic system, which comprise

fuzzification, fuzzy inference process, and defuzzification.

Fuzzification derives the membership functions (MF), which

means converting crisp input (classical set theory) to fuzzy set to

varying degrees (Bai and Wang, 2006). Each input of the fuzzy

system is represented independently by either trapezoidal or

triangular shape of membership functions (MF). Individual

membership functions (MF) are marked over their complete

range by linguistic variables such as “low,” “medium,” “high,”

and “very high” to indicate criticality/health index for

transformer health. A fuzzy rule base contains “IF-THEN”

statements, which are applied to the inference system. A large

number of fuzzy rules are implemented for a complex system to

represent diagnostic representation (Idrees et al., 2019). The final

output of the fuzzy inference engine is still not in the form to be

used, so the fuzzy output (linguistic variable) is converted to crisp

output by means of the defuzzification process.

FIGURE 2
(A) Rules used in fuzzy sublogic for dielectric strength of oil. (B) Surface formed for dielectric strength of oil.
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For this purpose, three methods: the center of gravity method

(COG), the height method (HM), and the mean of maximum

method (MOM), are commonly implemented based on their

advantages. The most popular is the center of gravity method

because the entire shape of the output membership function is

not reflected in theMOM, but it only considers highest degrees in

that function. It is difficult to distinguish between different

shapes of output membership functions having highest

degrees, because it generates the same result. The HM

technique is only applicable when the output membership

function is an accumulated union result of symmetrical

functions (Bai and Wang, 2006).

MATLAB is used to implement fuzzy logic controllers. To

achieve accuracy, the problem is divided into subfuzzy models

and their integration provides a complete health assessment of a

transformer.

3 Results

The aforesaid model is developed and verified from power

transformers being used in Pakistan. The data obtained after

detailed factory testing of the transformers are used as input for

the established model.

FIGURE 3
Fuzzy sublogic based on dissolved gas analysis.

TABLE 2 Health index based on dissolved gas analysis.

Gas composition Unit Data
obtained from testing

Gas generated levels Health index based on
DGA

H2 ppm 0 Low

CH4 ppm 0 Low

C2H6 ppm 0 Low

C2H4 ppm 0 Low 83.77%

C2H2 ppm 0 Low

CO ppm 11 Low

CO2 ppm 181.3 Low

N2 ppm 59,747.5 —

O2 ppm 12,695.6 —
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FIGURE 4
(A) Surface formed for DGA. (B) Rules used in fuzzy sublogic for DGA.

TABLE 3 Fault identification based on Duval triangle 1.

Output of Duval triangle 1 Fault symbol Fault type

00.00–00.99 — No fault detected

01.00–14.29 PD Partial discharges of corona type

14.30–28.57 T1 Thermal fault, t < 300°C

28.58–42.86 T2 Thermal fault, 300°C < t < 700°C

42.87–57.14 T3 Thermal fault, t > 700°C

57.15–71.43 DT Mixtures of electrical and thermal faults

71.44–85.74 D1 Discharges of low energy or partial discharges of sparking type

85.75–100.0 D2 Discharges of high energy
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3.1 Fuzzy sublogic based on dielectric
strength of oil

In order to evaluate the dielectric strength (DES) of oil, three

parameters (water content of oil, breakdown voltage, and

dielectric dissipation factor (DDF@100°C) of oil) are utilized.

The condition of oil depends on all of these parameters, and if

anyone is outside its specified range, the overall dielectric

strength will be lower.

To achieve adequate breakdown voltage and minimal

dissipation losses, mineral insulating oil must have a low

water content when delivered to avoid free water separation.

Mineral insulating oil’s breakdown voltage reflects how well it

can withstand electrical stress in electrical equipment. The

dielectric dissipation factor (DDF@100°C) is an indicator for

evaluating dielectric losses in oil. Higher DDF values than those

required by standards can indicate polar pollutants in the oil or

poor refining quality (IEC 60296, 2020). Individual fuzzy models

of water content, breakdown voltage, and dielectric dissipation

factor of oil are derived to monitor the condition of oil, and then,

these are integrated to calculate the overall dielectric strength of

oil, which can be seen in Figure 1. The model is implemented

using the data obtained from testing performed on a newly

bought uninhibited oil, i.e., mineral insulating oil that

contains no oxidation inhibitor or other antioxidant additives.

The effectiveness of the model can be verified from Table 1 which

indicates that the condition of oil is good, which results in the

higher health index of the transformer because the oil is new.

Each individual input parameter is designated as “critical,”

“normal,” and “good.” The percentage between 0 and 100% is

assigned to the output of fuzzy logics of water content,

breakdown voltage, (DDF@100°C), and overall DES of oil.

Figure 2A represents that a total of 9 fuzzy rules are used to

calculate the dielectric strength of oil. The output (DES) will give

a value close to 100% if all the individual input parameters are in

good condition, and similarly, the output will give a value close to

0% if any of the individual input parameters are in critical

condition. The surface representation of input parameters and

corresponding output (DES) is shown in Figure 2B. It can be seen

FIGURE 5
Conventional Duval triangle 1.

FIGURE 6
Fuzzy sublogic based on Duval triangle 1.
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that if percentages of breakdown voltage or water content are

lower, then output (DES) as shown in the surface is also lower.

Similarly, for different percentages, the output (DES) varies

accordingly.

3.2 Fuzzy sublogic based on dissolved gas
analysis

The submodel as shown in Figure 3 is based on nine gasses (H2,

CH4, C2H2, C2H4, C2H6, CO, CO2, O2, andN2), which are formed in

case of faults. Firstly, IEEE/IEC (IEC 60599, 2015) (C57.104, 2019)

fuzzy logic–based filter is applied to determine whether any of the

aforesaid gases are within their specified limits or not. For this

purpose, 90th and 95th percentile gas concentrations as a function of

O2/N2 ratio and age of health of the transformer are utilized.

Corona partial discharge and stray gassing of oil is a reason

for the emission of hydrogen (H2). It is also produced by sparking

discharges and arcs, but C2H2 is considerably a better indicator in

such cases. It could also be caused by a chemical reaction with

galvanized steel.

The heating of oil or paper produces methane (CH4), ethane

(C2H6), and ethylene (C2H4). Arcing in oil or paper at temperatures

exceeding 1,000°C generates acetylene (C2H2). Under normal

FIGURE 7
(A) Surface formed for Duval triangle 1. (B) Rules used in fuzzy sublogic for Duval triangle 1.
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operating conditions, transformers with no internal fuses, switches,

or other arcing mechanisms should not produce any C2H2. When

C2H2 is found, it is common to observe elevated levels of H2 or

C2H4. The combustion of cellulose produces carbonmonoxide (CO)

and carbon dioxide (CO2) (Azis et al., 2014).

The quantity of gas generated as shown in Table 2 is low after

the DGA is performed on the mineral oil, and consequently, the

health index based on dissolved gas analysis has higher values of

83.77%. Each individual quantity of gas generated is designated

as “high,” “medium,” and “low.” The percentage between 0 and

100% is assigned to the output of DGA. Figure 4B shows values of

H2, CH4, C2H2, C2H4, and C2H6 are zero, which means that any

of the aforesaid gas is not generated. The output (DGA) will give

a value close to 100% if all the gases are within a specified range,

and similarly, the output will give a value close to 0% if any gas

exceeds the range as shown in Figure 4A.

3.2.1 Fault identification based on Duval
triangle 1

Duval triangle 1 (DT1) is a fault identification method based on

the gasses obtained from dissolved gas analysis (DGA). This method

utilizes percentages of three gasses (%CH4, %C2H4, and%C2H2) to

FIGURE 8
Fuzzy sublogic based on the hot spot temperature of winding.

TABLE 4 Health index based on the hot spot temperature of winding.

Parameters assessed Unit Data obtained from
testing and calculations

Health index based
on hot spot
temperature of winding
(%)

Top oil temperature °C 68.35

Bottom oil temperature °C 40.967

Ambient temperature °C 31.925

Gradient (g) 13.97

Q value 1.16 90.33

S value 1

Hot spot factor 1.02

Top liquid temperature rise K 36.42

Hottest spot temperature of winding °C 75.48
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identify six types of faults mentioned in Table 3. The percentages are

calculated using Eqs 1–3. The percentages are plotted on Duval

triangle 1 as shown in Figure 5. %C2H2 ismarked along the x-axis, %

CH4 on the left side, and %C2H4 on the right side of Duval triangle.

The advantage of this method always identifies fault visually and

evolution with respect to time in the transformer (Poonnoy et al.,

2021). The identification of an unusual situation is the first step in

interpreting DGA data. When identified, it should be followed by a

severity assessment and fault diagnosis. DGA’s problem

identification and severity assessment component compare gas

levels generated by specific faults and rates of change with their

respective limit and assign a status condition based onwhether limits

(if any) were exceeded. When a problem is suspected, a reliable

methodology, such as the Duval triangle 1 method as shown in

Figure 6, can be used to identify or diagnose the problem.

%CH4 � CH4

(CH4 + C2H2 + C2H4) 100 (1)

%C2H2 � C2H2

(CH4 + C2H2 + C2H4) 100 (2)

%C2H4 � C2H4

(CH4 + C2H2 + C2H4) 100 (3)

The Duval triangle 1 method employs three fault gases that

depends on temperature rise in case of fault. Duval triangle

FIGURE 9
(A) Rules used in fuzzy sublogic for the hot spot temperature of winding. (B) Plot formed for the hot spot temperature of winding.
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1 analyzes major gases such as methane (CH4) for low-energy or

low-temperature faults; ethylene (C2H4) for high-temperature

faults; and acetylene (C2H2) for extremely high-temperature or

high-energy/arcing faults. This method allows the identification

of the six basic types of faults shown in Table 3 plus mixtures of

electrical/thermal faults (Azis et al., 2014).

Table 3 identifies the type of fault based on the output of

Duval triangle 1. Each fault type is designated by a specific fault

symbol. For example, if the output of Duval triangle is between

28.58 and 42.86, then the fault type is thermal fault T1,

300°C < t < 700°C. Figure 7B shows that a total of 11 rules

are used to develop a fuzzy submodel for Duval triangle 1. The

results of DGA showed that no gases of CH4, C2H2, and C2H4 are

generated, so their percentage is also zero, and the result from the

output of Duval triangle 1 is zero, which means that no fault is

detected. Figure 7A shows the surface formed for DGA, which

represents, e.g., that when the value of CH4 is greater than 98%,

no matter what is the value of C2H4, the output will be between

1.00 and 14.29, which means the fault type is PD (partial

discharge of corona type) as also shown in Table 3.

FIGURE 10
Fuzzy sublogic model of the remnant life of the transformer based on the relative aging rate.

TABLE 5 Estimating the remnant life of the transformer based on the relative aging rate.

Parameters assessed Data Symbol Unit Remnant life of
the transformer

Hot spot temperature 75.48 θh °C Transformer can be operated for 25 years or more

Relative aging rate 0.07414 V —

Loss of life 0.3707 L Years

Expected/average life of the transformer 25 — Years

Operating period 5 — Years

TABLE 6 Health index based on insulation resistance and polarization index.

Winding Connection Unit IR after
60 s

IR after
30 or 15 s

Polarization index
IR60/IR30 or 15 s

Percentage polarization
(%)

Health index based on
insulation resistance
and polarization
index

HV-LV + Earth GΩ 199 147 1.354 42.76

LV-HV + Earth GΩ 155 109 1.422 53.86 50%

LV + HV-Earth GΩ 178 109 1.633 54.64
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TABLE 7 Health index based on dissipation factor of the insulation system.

Winding connection Unit Input DF at 20°C (%) Health index based
on dissipation factor
(%)

HV-LV + Earth % 0.27 87.97

LV-HV + Earth % 0.28 87.83 87.2

LV + HV-Earth % 0.30 87.48

HV-LV % 0.24 88.17

TABLE 8 Health index based on fuzzy submodels.

Fuzzy submodels Unit Input Health index of
the transformer (%)

Hot spot temperature of winding % 90.33

Dielectric strength of oil % 87.17

Dissolved gas analysis % 83.77 50

Insulation resistance and polarization index % 50

Dissipation factor of the system insulation % 87.2

FIGURE 11
Fuzzy sublogic based on insulation resistance and polarization index.
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FIGURE 12
Rules used in fuzzy sublogic for insulation resistance and polarization index.

FIGURE 13
Fuzzy sublogic based on dissipation factor of the insulation system.
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3.3 Fuzzy sublogic based on the hot spot
temperature of winding

Fuzzy sublogic based on the hot spot temperature of winding

is shown in Figure 8. The hot spot is the maximum temperature

occurring in any part of a winding insulation system, and it is

assumed to represent the thermal limitation of transformers. If

the hot spot winding temperature rise is not directly measured,

an estimate of its value can be made starting from the results of

the temperature rise test or using either design data or results of

tests performed on similar transformers.

The following equation can be used to determine the hot spot

winding temperature:
△θh � △θo +Hg (4)

H � QS (5)
θh � △θh + θam (6)

where Δθo is the top liquid temperature rise in the tank, H is

the hot spot factor, g is the average winding-to-average liquid

gradient, θh is the top liquid temperature, and θam is ambient

temperature. The difference between the average winding

temperature rise and the average liquid temperature rise is

utilized to calculate the average thermal gradient between each

winding and liquid along the limb (g). For each winding, the

corresponding hot spot factor (H = QS) that depends on

Factor Q is the additional loss and is determined by the

ratio of the specific loss in the region of the leakage flux

concentration (top winding) to the winding’s average specific

loss. Factor S is the efficiency of liquid cooling circuits within

the coil (Velásquez and Lara, 2017). Parameters such as top oil

temperature, bottom oil temperature, and ambient

temperature obtained from diagnostic testing as shown in

Table 4 are used for the calculation of the hot spot temperature

of winding. Figure 9A shows that a total of 3 rules are used to

develop the fuzzy submodel. The hot spot temperature of

winding is lower, i.e., 75.5°C, that’s why the health index is

better. As the hot spot temperature of winding increases, the

health index decreases; i.e., for the hot spot temperature of

winding greater than 140°C, the health index decreases to less

than 20% as shown in Figure 9B.

FIGURE 14
Rules used in fuzzy sublogic for dissipation factor of the insulation system.
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3.3.1 Remnant life of the transformer based on
the relative aging rate

In recent years, extensive work has been carried out on

paper degradation, indicating that cellulose aging may be

described by the combination of three processes,

i.e., oxidation, hydrolysis, and pyrolysis. In a real

transformer, all these processes act simultaneously. This

hampers the application of one model describing the full

complexity of degradation processes. Which process will

dominate depends on the temperature and the conditions

(oxygen, water, and acid content). To characterize the aging of

the cellulose breakdown process, various parameters may be

used. In reality, mechanical strength is critical for the winding

paper to withstand shear forces during short circuits.

However, due to the folded geometry of paper in a

transformer, the tensile strength of paper samples from

used transformers cannot be determined. As a result,

determining the degree of polymerization (DP) in order to

define the state of an insulation paper is more convenient.

When DP is decreased to 200 percent or 35 percent, the tensile

strength is retained, but the paper quality (i.e., mechanical

strength) is typically considered so bad that this marks the

“end of life” for such an insulating substance, although the

dielectric strength may be still at an acceptable level (Biçen

et al., 2011). The submodel is shown in Figure 10.

Although insulation deterioration is a time-dependent

function of temperature, moisture content, oxygen content,

and acid content, the model utilized in this article is only

based on the insulation temperature as the governing

parameter. Because temperature distribution is not uniform,

the area operating at the highest temperature usually suffers

the most degradation. As a result, the winding hot spot

temperature can be used to describe the rate of aging (Mann,

2013). In this case, the relative aging rate V is defined as follows:

V � 2
(θh−98)

6 (7)

The loss-of-life L of the insulation paper over a certain period

of time is given by the following formula:

L � ∑
N

n�1
Vntn (8)

Here, Vn represents the relative aging rate for nth interval; tn
represents the nth time interval. n represents the number of each

interval; N represents the total number of intervals considered in

a certain period.

FIGURE 15
Fuzzy sublogic based on submodels.
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The remnant life R of the transformer based on the loss of life

of the insulation paper and relative aging rate is given by the

following formula:

R � (Expected/Average life of transformer) − Loss of life (9)

The remnant life of the power transformer operating for

5 years comes out to be 25 more years as shown in Table 5

because the hot spot temperature of winding is low and relative

aging of paper insulation is slow. The life of the power

transformer will be reduced to half if the hot spot

temperature exceeds 98°C because the relative aging will be twice.

3.4 Fuzzy sublogic based on Insulation
resistance and polarization index

The fuzzy submodel of insulation resistance and polarization

index is depicted in Figure 11. The insulation resistance of a

transformer winding depends on insulation type, condition, and

applying techniques. Insulation resistance varies according to

insulation thickness and is inversely proportional to conductor

surface area. Insulation resistance testing is a DC voltage test,

and this voltage must be within a specified limit suitable for the

designedwinding’s rating and the fundamental insulation condition.

This is especially important when considering small and low-voltage

machines, often known as wet windings. The applied test voltage

may overstress the insulation, resulting in insulation failure if the test

voltage is too high. Insulation resistance tests are typically performed

using steady direct voltages with negative polarity. The negative

polarity is favored to compensate for the phenomenon of

electroendosmosis (Wen et al., 2020).

Normally, the polarization index is defined as the ratio of theDC

resistance value (IR10) measured after 10 min to the DC resistance

value (IR1) measured after 1 min. The polarization index represents

the slope of the characteristic curve and can be used to evaluate the

insulation quality. It is also a normal practice to take readings at

different intervals other than 60 min or 1 min to offermore accuracy

and to allow the data to be graphed on a logarithmic scale.

FIGURE 16
Rules used in fuzzy sublogic for submodels.
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Absorption currents in insulation materials, such as asphaltic

mica, sometimes take 10 min or more to decay to near zero.

Nowadays, the absorption current may decay to near zero in little

time in insulation material, and as a result, it is becoming a

practice to calculate a version of the traditional P.I. for modern

insulation. This defining characteristic results in direct voltage

applied for shorter duration, and consequently, the winding must

be grounded for shorter time. Since the absorption current in

modern windings is nearly zero after a few minutes, the test time

can be significantly reduced without any loss of information

regarding the degree of contamination or moisture absorption

present (Fa, 1988). Figure 12 shows that a total of 9 rules are used

to develop the fuzzy submodel. The insulation resistance for all

the condition lies in an average range that’s why the overall result

is 50% which is shown in Table 6.

3.5 Fuzzy sublogic based on Dissipation
factor of the insulation system

For the sake of this discussion, both PF and DF are regarded as

functionally similar; nonetheless, the calculations differ. Remember

that tan-delta is another common term for these functionally

identical tests. The DF as shown in Figure 13 has long been

recognized as one of the most effective means of measuring a

transformer’s overall status, and it is important to a transformer

condition-based maintenance program. Because the capacitance

value and related charging current are necessary to calculate the

DF, theAC capacitance test is a subset of theDF test. Because of their

close relationship, both values are usually examined jointly.

Transformer DF testing can assist in establishing whether the

level of contamination is above acceptable risk criteria or

whether mechanical damage due to bulk coil movement is a

possibility. The DF is one of the most effective ways for

identifying moisture and pollution within a transformer, although

it is also affected by bushing conditions and testing conditions. The

capacitance measurement (as part of the DF test) can assist in

determining whether the coil has moved in bulk or whether a layer

of insulation has been shorted (Faria et al., 2018). Figure 14 shows

that a total of 19 rules are used to develop the fuzzy submodel for the

determination of dissipation factor of the insulation system. Fuzzy

submodel showed health index of 87.2% in Table 7 which reflects

lower value of dissipation factor of insulation system which will

result in lower power loss/absorbed by dielectric material or internal

resistance resulting in high quality capacitance of overall system.

4 Integration of fuzzy submodels

The submodels obtained previously are integrated as shown

in Figure 15 to calculate the overall health of the transformer.

Figure 16 represents that a total of 25 fuzzy rules are used to

develop the overall model. The output (HI) will give a value close

to 100% if all the individual input parameters are in good

condition, and similarly, the output will give a value close to

0% if any of the individual input parameters are in critical

condition. Table 8 shows the results of all fuzzy submodels.

The health index of transformer results in 50% due to lower value

of insulation resistance and polarization index.

5 Discussion

This work outlines a comprehensive, component-wise

health estimation method for power transformers. The

methodology accurately estimates the health of

transformer components and predicts the remnant life of

the transformer. This method has been tested on new and old

transformers at various stages of service life, and has yielded

satisfactory results as can be seen in the various results and

discussion sections. For example, the results obtained from

this work show that the transformers operating for 5 years

have a health index of around 50%. For such transformers, all

the parameters show good health indices except insulation

resistance/polarization index, which results in an overall

average health of the transformer. The lower health index

based on insulation resistance/polarization index is an

indication of degradation of the transformer insulation

due to aging as no fault is detected based on results

obtained from fault identification through Duval triangle

1. Therefore, after the extensive presentation of results and

discussions, it can be concluded that the method is effective

and predicts the health and remnant life of power

transformers effectively.

6 Conclusion

This work develops a new, integrated fuzzy logic–based

method to predict the health of power transformers by taking

into account the state of several individual transformer

components such as dielectric strength of oil, dissolved gas

analysis (DGA), hottest spot temperature of winding,

insulation resistance and polarization index, and dissipation

factor of system insulation. A case study is used to

demonstrate the efficacy of the developed method. The results

obtained from remnant life based on the relative aging rate show

slow aging. For transformers with faulty insulation resistance/

polarization index of the transformer at the time of

manufacturing, there are variations in insulation resistance/

polarization index when compared to results of factory

testing. Based on the results obtained from the testing of
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various distribution transformers, it is concluded that the

proposed method accurately predicts the health status and

remnant life of power transformers.
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