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Abstract
Aims/hypothesis The aim of this study was to explore the utility of islet autoantibody (IAb) levels for the prediction of type 1
diabetes in autoantibody-positive children.
Methods Prospective cohort studies in Finland, Germany, Sweden and the USA followed 24,662 children at increased genetic or
familial risk of developing islet autoimmunity and diabetes. For the 1403 who developed IAbs (523 of whom developed
diabetes), levels of autoantibodies against insulin (IAA), glutamic acid decarboxylase (GADA) and insulinoma-associated
antigen-2 (IA-2A) were harmonised for analysis. Diabetes prediction models using multivariate logistic regression with inverse
probability censored weighting (IPCW) were trained using 10-fold cross-validation. Discriminative power for disease was
estimated using the IPCW concordance index (C index) with 95% CI estimated via bootstrap.
Results A baseline model with covariates for data source, sex, diabetes family history, HLA risk group and age at seroconversion with
a 10-year follow-up period yielded a C index of 0.61 (95% CI 0.58, 0.63). The performance improved after adding the IAb positivity
status for IAA, GADA and IA-2A at seroconversion: C index 0.72 (95% CI 0.71, 0.74). Using the IAb levels instead of positivity
indicators resulted in even better performance: C index 0.76 (95%CI 0.74, 0.77). The predictive power wasmaintainedwhen using the
IAb levels alone: C index 0.76 (95% CI 0.75, 0.76). The prediction was better for shorter follow-up periods, with a C index of 0.82
(95%CI 0.81, 0.83) at 2 years, and remained reasonable for longer follow-up periods, with a C index of 0.76 (95%CI 0.75, 0.76) at 11
years. Inclusion of the results of a third IAb test added to the predictive power, and a suitable interval between seroconversion and the
third test was approximately 1.5 years, with a C index of 0.78 (95% CI 0.77, 0.78) at 10 years follow-up.
Conclusions/interpretation Consideration of quantitative patterns of IAb levels improved the predictive power for type 1 diabe-
tes in IAb-positive children beyond qualitative IAb positivity status.
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Abbreviations
GADA Glutamic acid decarboxylase autoantibodies
IA-2A Insulinoma-associated antigen-2 autoantibodies
IAA Insulin autoantibodies
IAb Islet autoantibody
IPCW Inverse probability censored weighting
mULN Multiples of upper limit of normal
T1DI Type 1 Diabetes Intelligence

Introduction

Accurate prediction of the onset of type 1 diabetes in children
is important. It can usefully inform population screening,
monitoring for metabolic instability, recruitment for clinical
trials and timing of potential therapies [1]. The development
of islet autoantibodies (IAbs) is known to precede the onset of
clinical diabetes. However, the rate of progression from sero-
conversion to diabetes is highly heterogeneous. The age at
seroconversion, and the number and combination of specific
IAbs present at seroconversion, are known to be associated
with progression to onset of diabetes [2–4]. Both positivity
indicators and IAb levels have been shown to be associated
with progression to diabetes [5–9], and both have also been
used to develop models to predict diabetes onset [10–16].

In our previous work [17], we harmonised IAb levels from
our large, prospective Type 1 Diabetes Intelligence (T1DI)
study cohort [18], identified the IAb type-specific titre thres-
holds (measured at the time of confirmed positivity) that
maximised discrimination of 5-year type 1 diabetes risk, and
used the thresholds to risk-stratify children in various age
groups via survival analysis. This prior work demonstrated
that IAb levels were useful in predicting type 1 diabetes onset,
and motivated us to perform a more comprehensive assess-
ment of the utility of measurement of IAb levels. Specifically,
we wished to evaluate howwell progression to diabetes can be
predicted and characterised by IAb information, i.e. which
IAb types and IAb levels (as continuous variables) are useful
for predicting rapid vs slow progression, and how the number
and timing of IAb measurements affect robust prediction. We
focused our analyses around the time point of seroconversion,
defined as the time at which IAb positivity that was confirmed
in a second consecutive sample first appeared. In this study,
we built prediction models and used the harmonised IAb
levels from our T1DI study cohort to investigate (1) how well
IAb information at seroconversion predicts future diabetes
onset; (2) how prediction performance changes as the
follow-up observation period increases; and (3) the predictive
value of IAb information measured at various times after
seroconversion.
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Methods

Study population

Prospective studies in Finland (DIPP [19]), Germany
(BABYDIAB [20]), Sweden (DiPiS [21]) and the USA
(DAISY [22] and DEW-IT [23]) have followed 24,662 chil-
dren at increased genetic and familial risk of development of
IAbs and diabetes, from close to birth for a period of 15 years,
or until diagnosis. Data from these studies were combined and
harmonised in the T1DI study cohort [18]. Only those children
who seroconverted to autoantibodies against insulin (IAA),
glutamic acid decarboxylase (GADA) or insulinoma-
associated antigen-2 (IA-2A), with autoantibody level
measurements available before diagnosis of diabetes, or the
end of the study follow-up period, and with complete autoan-
tibody level measurements for all three autoantibodies at sero-
conversion, were selected for our analysis (see electronic
supplementary material [ESM] Fig. 1). This cohort (the ‘study
cohort’) comprised 1403 children, of whom 523 (37.3%)
developed diabetes (Table 1). All T1DI constituent studies
were approved by the respective ethics review boards.

Laboratory measurements

The methods used by each study to measure IAA, GADA and
IA-2A have been previously described [18]. Autoantibody
levels for IAA, GADA, and IA-2A from the individual
T1DI constituent studies were converted to multiples of the
upper limit of normal (mULN) to facilitate comparisons, and
were combined for analysis as previously described [17]. All
mULN values, regardless of whether they were above or
below the autoantibody positivity threshold, were included
in the analysis. The autoantibody levels were natural log-
transformed before use in the prediction models.
Autoantibodies to zinc transporter 8 (ZnT8A) were not consis-
tently measured across all constituent T1DI studies, and are
therefore not included in our analysis.

For each IAb type, seroconversion was defined as the first
appearance of positive autoantibody test results (for the same
autoantibody type) in at least two consecutive samples,
regardless of the time interval between the visits. The first
and second of these two consecutive visits are referred to as
the initial visit and the confirmatory visit, respectively (ESM
Fig. 2). The time intervals, in years, between the initial and
confirmatory visits for IAA, GADA and IA-2A were 0.4± 0.5,
0.5±0.5 and 0.4±0.7, respectively (mean±SD). The mean age
of the participants, the percentage of participants positive for
each autoantibody type, and mean autoantibody levels at the
initial and confirmatory visits are shown in Table 1.

HLA genotypes from individual studies were harmonised
into four risk groups: A, B, C and D (ordered by decreasing

risk, e.g. A=DR4-DQ8/DR3-DQ2.5 represents the highest
risk) as previously described [18].

Outcome definition

Diagnosis of type 1 diabetes was based on the WHO and ADA
criteria [24]. The main outcome of interest was the diagnosis of
diabetes within a given follow-up period (T years) starting at a
specified time point (‘time 0’) at the confirmatory visit (ESMFig.
2) and W years after the confirmatory visit (ESM Fig. 3).
Children diagnosed with diabetes before ‘time 0’were excluded.
Children diagnosed with diabetes after the given follow-up peri-
od were treated as not diagnosed with diabetes.

Statistical analyses

All analyses used multivariate logistic regression prediction
models with inverse probability censored weighting (IPCW)
to account for the censored observations [25]. To make effi-
cient use of the data and to obtain performance estimates from
test data independent of the training data, 10-fold cross-vali-
dation was used [26]. This was done by randomly splitting the
dataset into ten equally sized partitions, using nine of the
partitions to train the prediction model and the remaining
partition to test the model, and repeating this ten times using
different 9:1 groupings of the partitions each time. The final
performance was then computed by averaging the perfor-
mance of the ten models. Discriminative power for disease,
i.e. prediction performance, was estimated using the IPCW
concordance index (C index) to adjust for censoring [27],
and 95% CI were estimated via bootstrap [28]. The C index
is a generalisation of the more commonly used area under the
receiver operating curve (ROC-AUC) that can account for
censored data; it measures the model’s ability to correctly
provide a reliable ranking of the survival times based on the
individual risk scores. ORs derived from the beta coefficients
of the fitted logistic regression models were used to assess the
strength of association between the covariates and the diabetes
outcome. A p value <0.01 (two-sided Wald test) was consid-
ered statistically significant. The following logistic regression
model assumptions were checked and confirmed on the most
complex model considered (ESM Fig. 4): binary response
variable, linearity in the logit for continuous predictor vari-
ables, lack of strongly influential outliers, absence of severe
multicollinearity, independence of errors and adequate
number of events per predictor variable. We believe that the
assumptions would continue to hold for the simpler models
fitted using subsets of the data.

Three analyses were performed as described below, each
focused on addressing a specific question.

How well does IAb information at seroconversion predict
future diabetes onset? The prediction task for this analysis
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is illustrated in ESM Fig. 2. ‘Time 0’ is the time point when
the predictionwas made, i.e. the time of the confirmatory visit.
Information obtained at or prior to ‘time 0’, such as baseline
covariates, information from the initial visit and information
from the confirmatory visit, were used as covariates in the
prediction model. The outcome was determined based on the
presence (1) or absence (0) of a diabetes diagnosis in the 10-
year follow-up period.

To characterise and quantify the utility of IAb positivity indi-
cators and IAb levels in predicting diabetes onset, a series of nine
prediction models as defined below with different sets of covar-
iates were evaluated and compared: (1) baseline covariates (i.e.
data source, sex, diabetes family history, HLA risk group, age at
initial visit, age at confirmatory visit); (2) IAb positivity indica-
tors from the initial visit; (3) IAb positivity indicators from the
confirmatory visit; (4) IAb positivity indicators from both initial

Table 1 Key characteristics of the
study cohort Variable All

(n = 1403)

Developed diabetes

(n = 523)

Did not develop diabetes

(n = 880)

Male 779 (55.5) 293 (56.0) 486 (55.2)

Age at seroconversion, initial visit (years)

Mean ± SD 5.6 ± 4.2 3.6 ± 2.9 6.7 ± 4.3

Range 0.3–23.3 0.3–16.8 0.3–23.3

Age at seroconversion, confirmatory visit (years)

Mean ± SD 6.1 ± 4.3 4.1 ± 3.1 7.2 ± 4.5

Range 0.5–23.9 0.5–18.7 0.5–23.9

Data source

BABYDIAB 156 (11.1) 39 (7.5) 117 (13.3)

DAISY 178 (12.7) 64 (12.2) 114 (13.0)

DEW-IT 173 (12.3) 42 (8.0) 131 (14.9)

DIPIS 69 (4.9) 17 (3.3) 52 (5.9)

DIPP 827 (58.9) 361 (69.0) 466 (53.0)

HLA risk group

A 333 (23.7) 183 (35.0) 150 (17.0)

B 666 (47.5) 248 (47.4) 418 (47.5)

C 182 (13.0) 46 (8.8) 136 (15.5)

D 219 (15.6) 46 (8.8) 173 (19.7)

Missing 3 (0.2) 0 (0.0) 3 (0.3)

Autoantibody-positive at seroconversion (initial visit)

IAA 704 (50.2) 326 (62.3) 378 (43.0)

GADA 707 (50.4) 290 (55.4) 417 (47.4)

IA-2A 276 (19.7) 166 (31.7) 110 (12.5)

Autoantibody level at seroconversion (initial visit) (mULN)

IAA 3.1 ± 8.2 4.5 ± 11.0 2.3 ± 6.7

GADA 5.7 ± 27.9 7.6 ± 34.2 4.6 ± 24.3

IA-2A 13.6 ± 59.8 25.2 ± 72.9 6.7 ± 52.0

Autoantibody-positive at seroconversion (confirmatory visit)

IAA 787 (56.1) 364 (69.6) 423 (48.1)

GADA 865 (61.7) 381 (72.8) 484 (55.0)

IA-2A 416 (29.7) 278 (53.2) 138 (15.7)

Autoantibody level at seroconversion (confirmatory visit) (mULN)

IAA 4.4 ± 12.6 7.4 ± 16.4 2.7 ± 9.2

GADA 9.5 ± 64.6 13.9 ± 75.7 6.9 ± 56.9

IA-2A 24.5 ± 75.7 50.4 ± 94.0 9.0 ± 57.0

Data are presented as n (%), means ± SD, or range

Percentages may not total to 100 because of rounding. Autoantibody-positive percentages may not total to 100
due to multiple positivity
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and confirmatory visits; (5) IAb levels from the initial visit; (6)
IAb levels from the confirmatory visit; (7) IAb levels from both
initial and confirmatory visits; (8) baseline covariates plus the
IAb positivity indicators from both visits; and (9) baseline covar-
iates plus the IAb levels from both visits.

How does prediction performance change as the follow-up
period varies? To characterise how prediction performance
changes as the follow-up period varies, we performed a series
of analyses using the same prediction task illustrated in ESM
Fig. 2 but varying the length of the follow-up period (T) from
1 to 15 years in 1-year increments. For each value of T, the
cohort was updated (ESM Fig. 5) and used to train and eval-
uate two prediction models: one that used the baseline covar-
iates plus the IAb levels from both initial and confirmatory
visits, and another that used only the IAb levels from the
confirmatory visit. Prediction performance (C index) as a
function of the follow-up period (T) was then assessed and
compared across the two models.

What is the predictive value of additional IAb information
measured after confirmed seroconversion? To quantify the
predictive value of IAb information measured after confirmed
seroconversion, we modified the prediction task as illustrated in
ESM Fig. 3. A third visit, W years after the confirmatory visit,
was added, and ‘time 0’ (the prediction start time) was moved to
this later time point. We explored a range of nine values for W:
0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 and 5.0 years. The confirma-
tory visit corresponds to W=0. IAb information from the visit
immediately prior to the specified third time point was used.
The total number of diagnosed and not diagnosed participants
for the various values ofW are shown in ESM Fig. 6. The cohort
was updated for each of the 15×9=135 pairs of values for follow-
up period (T)×interval from confirmatory visit to the next test
(W), and a prediction model using the GADA, IA-2A and IAA
levels from ‘time 0’ as covariates was trained and evaluated. The
prediction performance (C index) and ORs of the IAb covariates,
as a function of T andW, were then assessed.

Analyses were performed using Python (scikit-learn,
scikit-survival) and R software (survival, survminer,
statsmodels) [29, 30].

Results

IAb levels add to IAb positivity when predicting
diabetes onset from seroconversion

Figure 1 shows the diabetes prediction performance for
models using the various covariate sets. An initial model using
a 10-year follow-up period with baseline covariates had a C

index of 0.607 (95% CI 0.584, 0.628). Significant improve-
ment was observed after adding IAA, GADA, IA-2A positiv-
ity indicators from the initial and confirmatory visits: 0.722
(95% CI 0.707, 0.736). Adding the autoantibody levels
instead resulted in even better performance: C index 0.756
(95% CI 0.744, 0.767) (Fig. 1a). Interestingly, the C index
was 0.757 (95% CI 0.753, 0.760) for a model that considered
only the IAb levels at the confirmatory visit and no baseline
covariates (Fig. 1b). Overall, models using IAb information
from the confirmatory visit performed significantly better than
models using information from just the initial visit (p<0.001).
Models using information from both the initial and confirma-
tory visits did not outperform models using information from
just the confirmatory visit. Models using IAb levels performed
significantly better thanmodels using IAb positivity indicators
(p<0.001). Adding baseline covariates to the IAb information,
whether positivity indicators or levels, did not improve predic-
tion performance.

ESM Fig. 4 shows a Forest plot of the multivariable logistic
regressionmodel for predicting type 1 diabetes onset using the
‘baseline+IAb levels (initial+confirmatory)’ covariate set. IAb
levels from the confirmatory visit for all three IAb types were
highly significant (p<0.0001) with ORs of 1.36 (95% CI 1.25,
1.47), 1.32 (95% CI 1.22, 1.44) and 1.15 (95% CI 1.07, 1.24)
for IA-2A, GADA and IAA, respectively. GADA and IA-2A
levels from the initial visit were not significant but IAA levels
were significant (OR 1.08 [95% CI 1.02, 1.15]; p=0.009). The
baseline covariate HLA group A (highest risk) was also a
significant predictor, probably due to the heterogeneous popu-
lation of single IAb-positive and multiple IAb-positive partic-
ipants at seroconversion. The data source features DS_DAISY
and DS_DIPIS were also statistically significant compared
with the reference DS_DIPP.

Prediction performance was better for shorter follow-
up periods (i.e. rapid-onset diabetes) and remained
reasonable for longer follow-up periods

Figure 2a shows type 1 diabetes prediction performance for
various follow-up periods (T) ranging from 1 to 15 years. The
model that used only the IAb levels from the confirmatory
visit (blue) had equivalent or better performance than the
model that used the baseline covariates plus the IAb levels
from both initial and confirmatory visits (grey). Prediction
performance (C index) was 0.812 (95% CI 0.789, 0.822) at
1 year and 0.821 (95% CI 0.807, 0.827) at 2 years, and
decreased slowly from 0.786 (95% CI 0.776, 0.791) at 3 years
to 0.757 (95%CI 0.752, 0.760) at 11 years and finally to 0.737
(95% CI 0.713, 0.747) at 15 years. Although diabetes predic-
tion performance decreased with longer follow-up periods,
prediction performance was high for short follow-up periods
(i.e. rapid-onset diabetes) and remained reasonable up until 11
years of follow-up.
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A third IAb test added to predictive power, and a
suitable interval between confirmed seroconversion
and the third test was approximately 1.5 years

Figure 2b shows the type 1 diabetes prediction performance
for various intervals from the confirmatory visit to the next
IAb test (W) ranging from 0.25 to 5 years (W=0 is the confir-
matory visit). Again, the model that used only the IAb levels
from the third visit (blue) consistently performed as well as or
better than the model that used the baseline covariates plus the
IAb levels from the initial, confirmatory and third visits
(grey).

Figure 3a and ESM Table 1 show type 1 diabetes predic-
tion performance as a function of both the duration of the
follow-up period (T) and the interval from confirmatory visit
to the next IAb test (W), with T ranging from 1 to 15 years and
W ranging from 0.25 to 5 years. The prediction models used
for this analysis only included three covariates: the GADA,
IA-2A and IAA levels from the latest visit (i.e. the ‘time 0’
prediction time point in ESM Fig. 3).

For a fixed value ofW (i.e. across each row), the prediction
performance decreased as the follow-up period T increased.
An example is shown forW=1.5 years in Fig. 3b. For a given
value of T (i.e. along each column), the prediction perfor-
mance improved as the test intervalW increased. An example
is shown for T=5 years in Fig. 3c. For short follow-up periods

(i.e. T≤5 years), performance continued to improve with
increasing W. However, for longer follow-up periods (i.e. T
>5 years), performance improved as W increased to 1.0–1.5
years and plateaued thereafter. Given this, a reasonable trade-
off between practical testing intervals and improved predic-
tion accuracy is W=1.5 years.

To understand better how the strength of association of the
IAb levels and diabetes outcome varied with the duration of
the follow-up period (T) and the test interval (W), ESM Figs 7
and 8 show the ORs and corresponding beta coefficients,
respectively, for the GADA, IA-2A and IAA autoantibody
levels measured at ‘time 0’ as a function of T and W. When
the follow-up period was short (T≤5 years), GADA levels
showed a low but steady association with diabetes (OR 1.0–
1.1) for all combinations of W and T; IA-2A levels showed a
range of associations from none tomoderate (OR 1.0–1.3) that
increased with larger values of T and decreased with larger
values of W; IAA levels had moderate to strong association
with diabetes (OR 1.2–1.7) that increased with larger values of
T and larger values ofW. When the follow-up period was long
(T>5 years), GADA levels had a low to moderate association
with diabetes (OR 1.1–1.3) that increased with larger values of
T and decreased with larger values ofW; IA-2A levels showed
a moderate association with diabetes (OR 1.2–1.4) that
increased with larger values of T and decreased with larger
values of W; IAA levels demonstrated a moderate to strong

0.50 0.55 0.60 0.65 0.70 0.75 0.80

Baseline

IAb positivity (initial) 

IAb positivity(confirmatory) 

IAb positivity (initial + confirmatory) 

IAb levels (initial) 

IAb levels (confirmatory)

IAb levels (initial + confirmatory) 

IPCW C index

0.50 0.55 0.60 0.65 0.70 0.75 0.80

Baseline

Baseline + IAb positivity 

(initial + confirmatory)

Baseline + IAb levels

(initial + confirmatory)

IPCW C index

a

b

Fig. 1 Type 1 diabetes prediction
performance (IPCW concordance
index [C index] with 95% CI) for
various covariate sets. (a)
Performance for a model using
baseline covariates; a model using
baseline covariates and IAb
positivity indicators from both
initial and confirmatory visits;
and a model using baseline
covariates and IAb levels from
both initial and confirmatory
visits. (b) Performance for a
model using baseline covariates,
models using IAb positivity
indicators from the initial visit, the
confirmatory visit and both visits,
and models using IAb levels from
the initial visit, the confirmatory
visit and both visits. The
prediction start time (‘time 0’)
was the seroconversion
confirmatory visit. The duration
of the follow-up period was 10
years. IAbs include GADA, IA-
2A and IAA
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association with diabetes (OR 1.3–1.6) that was reasonably
steady with larger values of T and increased with larger values
of W.

Another way to look at the strength of association of the
IAb levels and diabetes outcome is to estimate the ORs of
developing type 1 diabetes within a given follow-up period
(T) for a specific n-fold increase in the level of each autoanti-
body type (ESM Section 1). Figure 3d shows the ORs for the
development of type 1 diabetes for 1-, 2-, 5- and 10-fold
increases in GADA, IA-2A and IAA levels, with a test interval
of W=1.5 years and a follow-up period of T=5 years. An
increase in GADA levels resulted in a small increase in the
OR (e.g. 12% for a 5-fold increase). For IA-2A, an increase in
levels resulted in a moderate increase in the OR (e.g. 34% for a
5-fold increase). An even stronger effect was observed for
IAA (e.g. a 59% increase in OR for a 5-fold increase).

Discussion

This study demonstrated that IAb information at the time of
seroconversion and thereafter may be used for robust predic-
tions of both rapid-onset type 1diabetes and slow type 1

diabetes progression in autoantibody-positive children.
Furthermore, the study also revealed that the distinct types
of IAb and the number and timing of their measurements
affected the prediction model in different ways.

IAb information at the time of confirmation of a newly
developed autoantibody response (i.e. the confirmatory visit)
performed better than IAb information obtained at the very
first detection of this autoantibody (i.e. the initial visit) and
about the same as using information from both visits, suggest-
ing that the later (and more ‘mature’) autoantibody response
may be more robust, and captures the most salient information
for diabetes onset prediction. In general, using IAb levels
improved prediction over just using IAb positivity indicators,
consistent with observations from previous studies [16, 31].
Furthermore, adding the baseline covariates to the IAb infor-
mation did not improve prediction performance, suggesting
that the nature of these covariates was inferior in predicting
diabetes risk compared with IAb information. However, other
studies have shown that using more detailed genetic informa-
tion, and other IAb characteristics such as epitope and affinity,
which are complementary to IAb type and level, improves
prediction performance [32]. We believe that including such
complementary information in our model would also help

0.60

0.65

0.70

0.75

0.80

0.85

0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00 4.00 5.00

IP
C

W
 C

 in
de

x

Interval from confirmatory visit to next test - W (years)  

Baseline + IAb levels (initial + confirmatory, 3rd) IAb levels (3rd) 

0.60

0.65

0.70

0.75

0.80

0.85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IP
C

W
 C

 in
de

x

Follow-up observation -T (years)

Baseline + IAb levels (initial + confirmatory) IAb levels (confirmatory)a

b

Fig. 2 Comparison of type 1
diabetes prediction performance
(IPCW concordance index [C
index] with 95% CI) for two
models. The first model (blue)
used only the most recent IAb
levels at the prediction start time
(‘time 0’); the second model
(grey) added baseline covariates
and IAb levels from the initial and
confirmatory visits to the most
recent IAb levels. (a)
Performance for various follow-
up periods (T) ranging from 1 to
15 years. The prediction start time
(‘time 0’) was the seroconversion
confirmatory visit. (b)
Performance for various test
intervals (W) ranging from 0.25 to
5 years (W=0 is the confirmatory
visit). In this analysis, the
prediction time point (‘time 0’)
was the time of the third visit
(confirmatory visit+W). The
follow-up period starts from the
prediction time point and was
fixed at 10 years
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improve performance. However, in order to obtain this kind of
information, additional testing and analyses would have to be
performed.

By varying the length of the follow-up period (T), we
gained insight into how well rapid and slow progression to
diabetes can be predicted using IAb levels. Prediction

performance was significantly better for short follow-up
periods (i.e. rapid progression to diabetes) than for longer
follow-up periods (i.e. overall diabetes progression, including
both rapid and slow progression) but prediction became more
challenging as the follow-up period increased. Similar
patterns of decreasing prediction performance with longer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.8116 0.8211 0.7864 0.7779 0.7685 0.7686 0.7586 0.7572 0.7582 0.7571 0.7569 0.7516 0.7456 0.7390 0.7370

0.25 0.7922 0.8170 0.7836 0.7762 0.7735 0.7742 0.7674 0.7671 0.7706 0.7690 0.7698 0.7633 0.7559 0.7506 0.7496

0.50 0.8155 0.8207 0.7843 0.7791 0.7743 0.7758 0.7732 0.7708 0.7737 0.7728 0.7748 0.7698 0.7632 0.7573 0.7535

1.00 0.8455 0.8162 0.7796 0.7867 0.7818 0.7842 0.7780 0.7760 0.7779 0.7762 0.7783 0.7746 0.7680 0.7618 0.7618

1.50 0.8657 0.8535 0.7803 0.7804 0.7708 0.7757 0.7705 0.7693 0.7727 0.7741 0.7737 0.7697 0.7650 0.7586 0.7558

2.00 0.8714 0.8678 0.7902 0.7786 0.7716 0.7730 0.7706 0.7695 0.7693 0.7704 0.7746 0.7711 0.7718 0.7681 0.7626

2.50 0.8751 0.8771 0.8030 0.7953 0.7846 0.7838 0.7761 0.7770 0.7754 0.7764 0.7790 0.7746 0.7720 0.7657 0.7630

3.00 0.8843 0.8840 0.8444 0.8165 0.7978 0.7951 0.7846 0.7840 0.7836 0.7854 0.7893 0.7855 0.7838 0.7761 0.7740

4.00 0.8902 0.8907 0.8537 0.8410 0.8064 0.7962 0.7860 0.7866 0.7867 0.7875 0.7911 0.7861 0.7825 0.7797 0.7743

5.00 0.8885 0.8917 0.8582 0.8465 0.8379 0.8047 0.7891 0.7867 0.7828 0.7819 0.7867 0.7800 0.7763 0.7725 0.7610
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Fig. 3 (a) Type 1 diabetes prediction performance (IPCW concordance
index [C index]) for various follow-up periods (T), ranging from 1 to 15
years, along the horizontal axis, and various intervals from confirmatory
visit to the next test (W), ranging from 0.25 to 5 years, along the vertical
axis (W=0 is the confirmatory visit). In this analysis, the prediction time
point (‘time 0’) was the time of the third visit (confirmatory visit+W). The
follow-up period starts from the prediction time point. All prediction
models used just three covariates: GADA, IA-2A and IAA levels from
the third visit. Darker shading indicates better performance. A standalone

version of the table can be found as ESM Table 1. (b) Type 1 diabetes
prediction performance for various follow-up periods (T) ranging from 1
to 15 years, with the test intervalW fixed at 1.5 years. (c) Type 1 diabetes
prediction performance for various test intervals (W) ranging from 0.25 to
5 years (W=0 is the confirmatory visit), with follow-up period (T) fixed at
5 years. (d) ORs for developing type 1 diabetes for a 1-, 2-, 5- and 10-fold
increases in the levels of GADA, IA-2A and IAA separately for a predic-
tion time point of W=1.5 years and a follow-up period (T) of 5 years.
Confirm, confirmatory; y, years
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prediction windows have been observed for other clinical
outcomes such as hypoglycaemia [33], heart failure [34] and
mortality [35]. However, prediction performance remained
high (i.e. C index >0.75) for follow-up periods up to 11 years,
suggesting that IAb levels around the time of seroconversion
are robust predictors of progression to diabetes within the
subsequent decade.

By changing the prediction time point (‘time 0’) to after the
seroconversion confirmatory visit, and varying the time inter-
val (W) for this visit, we were able to assess the behaviour and
characteristics of the various IAb types and the timing of IAb
measurements required for robust prediction of diabetes onset.
We explored various combinations of covariates, and found
that a child’s baseline characteristics and previous IAb infor-
mation were not critical for diabetes risk prediction if current
IAb information was available. This suggests that using only
the most recent IAb levels may be sufficient for diabetes onset
prediction, which, in addition to simplifying the model, is also
closer to actual clinical situations where an individual’s sero-
conversion time may not be precisely known and the IAb
levels at seroconversion may not be available.

For longer follow-up periods (T>5 years), using IAb levels
from a visit 1.0–1.5 years after the confirmatory visit improved
prediction performance, but using IAb levels beyond that time
frame did not improve the prediction performance further. This
suggests that there are important changes in the IAb levels
within approximately 1.5 years after seroconversion that are
useful for predicting diabetes onset. This aligns with a recom-
mendation from a prior study that diabetes risk stratification
based on IAb levels should focus on time points soon after
seroconversion [9]. However, for shorter follow-up periods (T
≤5 years), prediction performance continued to improve with
larger values ofW, indicating that the latest IAb levels remained
important for predicting rapid-onset diabetes risk.

For both IAA and IA-2A with longer follow-up periods (T
>5 years), the most recent IAb levels measured after serocon-
version remained moderate to strong predictors of diabetes,
regardless of how long after seroconversion they were
measured. IAA levels have shown a consistent association
with diabetes progression, whether the level was measured
at the time of seroconversion in birth cohort studies [7, 12,
13] or in cross-sectional studies [6]. Similarly, a positive asso-
ciation between higher IA-2A levels and progression to diabe-
tes has also been repeatedly observed, both in birth cohorts
[13] and cross-sectional studies with older participants [6].
However, GADA levels more than 1 year after seroconversion
were not as useful for predicting diabetes onset as levels
measured shortly after the time of seroconversion. Results
from cross-sectional studies with older autoantibody-positive
participants did not find a significant association between
GADA levels and diabetes [6]. In the TEDDY study, it was
observed that GADA levels had a positive association with
disease only in the first 12 months after seroconversion [9].

With shorter follow-up periods (T≤5 years), IA-2A levels
closer to the time of seroconversion appear to be better predic-
tors of rapid-onset diabetes risk than levels measured later. In
contrast, recently measured IAA levels appear to be stronger
predictors of rapid-onset diabetes risk than ones measured
around the time of seroconversion. GADA levels had a low
association with diabetes, regardless of when they were
measured. For example, when W=1.5 years and T=5 years,
the changes in the OR for developing type 1 diabetes resulting
from a 5-fold increase in the level of GADA, IA-2A and IAA
were 12%, 34% and 59%, respectively (Fig. 3d). Because all
values for IAb levels were included in the analysis regardless
of positivity status, and many of the IAb measurements were
below the positivity threshold at the respective prediction time
point (ESM Fig. 7), these effects should be considered conser-
vative estimates.

Although we found that GADA levels had a low to moder-
ate association with diabetes, the strength of the association
increased with longer follow-up periods (i.e. were more useful
in predicting slower progression to diabetes). This is consis-
tent with other studies that found that GADA, as a primary
autoantibody, is associated with a slower progression to diabe-
tes compared with other autoantibodies [36, 37]. In contrast,
IAA and IA-2A levels showed a moderate to strong associa-
tion with diabetes, with IAA contributing particularly to the
prediction of rapid progression to diabetes. This is consistent
with several previous findings: one study found that infants in
whom IAA was the first autoantibody detected were more
likely to develop diabetes within the first 2 years than infants
with other autoantibodies at seroconversion [36], another
study found that lower initial IAA levels independently
predicted slower progression to diabetes [10], and another
study showed that IA-2A levels have a stable and consistent
association with risk of progression to diabetes after serocon-
version [9].

This study has some limitations. First, the autoantibody
levels were measured using different assays across the study
sites. Although the levels were harmonised, some residual
biases may remain. In addition, the current data are based on
radiobinding assay results as newer assay technologies
[38–40] were not available when the data were collected.
Second, due to differences in the visit intervals in the study
protocols, it is possible that the actual time of the earliest IAb
positivity was missed, with the consequence that the measure-
ment time is biased. Off-schedule visits may also affect the
timing of the initial and confirmatory visits. Third, predomi-
nantly white children with increased genetic and familial risk
for development of islet autoimmunity and diabetes were
enrolled into the studies, which may limit the generalisability
of the results to the general population. Fourth, the results
have not been validated using external independent datasets.

There are several possible directions for future work. First,
the analyses should be replicated using higher time-resolution
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datasets with more frequent prospective follow-up (e.g.
TEDDY [41]). Second, validation in independent cohorts with
broader inclusion criteria (e.g. the Fr1da [42] or ASK [43]
studies) should be undertaken. Third, the utility of IAb levels
as a continuous variable should be explored in other tasks such
as modelling of diabetes disease progression [44, 45].

In summary, this study used harmonised IAb levels across
multiple birth cohorts and quantified their utility for predicting
type 1 diabetes onset in IAb-positive children. We found that
IAb levels add to IAb positivity when predicting diabetes onset
from seroconversion, that predictive power was maintained
when using IAb levels alone, that prediction performance was
better for shorter follow-up periods (i.e. rapid-onset diabetes)
but remained reasonable for longer follow-up periods (up to 11
years), and that a third IAb test added to predictive power and
that a suitable interval between confirmed seroconversion and
the third test was approximately 1.5 years. Our findings suggest
the utility of monitoring IAb levels approximately 1.5 years
after seroconversion, especially IAA and IA-2A, as they appear
to be important predictors of diabetes risk in children. The
results of this study may contribute to improved risk counsel-
ling for families of affected children and improved screening
for participants for intervention therapy trials aimed at prevent-
ing or delaying progression to clinical diabetes.
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