
Citation: Bessa, W.M.; Lima, G.d.S.

Intelligent Control of Seizure-like

Activity in a Memristive

Neuromorphic Circuit Based on the

Hodgkin–Huxley Model. J. Low

Power Electron. Appl. 2022, 12, 54.

https://doi.org/10.3390/

jlpea12040054

Academic Editors: Huanglong Li and

Si Wu

Received: 13 August 2022

Accepted: 8 October 2022

Published: 12 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Article

Intelligent Control of Seizure-like Activity in a Memristive
Neuromorphic Circuit Based on the Hodgkin–Huxley Model
Wallace Moreira Bessa 1,* and Gabriel da Silva Lima 2

1 Department of Mechanical and Materials Engineering, University of Turku, 20500 Turku, Finland
2 Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal 59078-970, Brazil
* Correspondence: wmobes@utu.fi

Abstract: Memristive neuromorphic systems represent one of the most promising technologies to
overcome the current challenges faced by conventional computer systems. They have recently been
proposed for a wide variety of applications, such as nonvolatile computer memory, neuroprosthetics,
and brain–machine interfaces. However, due to their intrinsically nonlinear characteristics, they
present a very complex dynamic behavior, including self-sustained oscillations, seizure-like events,
and chaos, which may compromise their use in closed-loop systems. In this work, a novel intelligent
controller is proposed to suppress seizure-like events in a memristive circuit based on the Hodgkin–
Huxley equations. For this purpose, an adaptive neural network is adopted within a Lyapunov-based
nonlinear control scheme to attenuate bursting dynamics in the circuit, while compensating for
modeling uncertainties and external disturbances. The boundedness and convergence properties of
the proposed control scheme are rigorously proved by means of a Lyapunov-like stability analysis.
The obtained results confirm the effectiveness of the proposed intelligent controller, presenting a
much improved performance when compared with a conventional nonlinear control scheme.

Keywords: intelligent control; memristors; neural networks; neuromorphic systems

1. Introduction

Neuromorphic circuits are based on the underlying principles of the nervous system
and are intended to be employed in brain-inspired machines. They represent an important
alternative to deal with contemporary challenges faced by conventional computer systems,
such as the von Neumann bottleneck and the end of both Moore’s law and Dennard
scaling [1–4]. Standard computer systems are commonly based on classic von Neumann
architecture, where the memory part is separate from the central processing unit (CPU).
This continuous data transfer between the CPU and the memory unit generates unavoidable
latency and power consumption issues [3]. As matter of fact, along with the increased
energy consumption caused by the von Neumann bottleneck, scaling problems related
to Moore’s law also cause overheating. Neuromorphic systems, on the other hand, are
considered low-power devices and allow for a much lower thermal budget [5]. In this
context, they have recently been employed in a wide range of applications, from robotics [6]
and computer vision [7] to neuroprosthetics and brain–machine interfaces [5,8].

Among the available options for hardware deployment of neuromorphic systems,
memristive devices have been recognized as one of the most promising technologies [2,3,9–11].
Memristors can be defined as two-terminal electrical components that are characterized
by a state-dependent Ohm’s law [11]. They were theoretically proposed by Leon O. Chua
in 1971 [12], but their first physical realization had to wait until 2008, when R. Stanley
Williams and his team at the Hewlett-Packard laboratories introduced a resistive switching
device based on nanoscale titanium dioxide (TiO2 and TiO2−x) films [13,14]. Memristive
(or resistive switching) neuromorphic devices present a stimulus response comparable to
the synaptic strengthening/weakening process, being intrinsically capable of emulating
important brain learning mechanisms, such as short- and long-term plasticity [10,11,15].
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Due to their ability to store resistance values indefinitely, requiring energy only to
switch or read their states, memristive systems can be used as nonvolatile resistive random-
access memory (RRAM), which are (much) more energy efficient than capacitor-based
dynamic random access memory (DRAM) devices [14]. Furthermore, for the same reason,
they also represent the most natural choice for the physical implementation of artificial
neural networks (ANN) [3,4,16]. However, despite the promising prospects of using
memristive neuromorphic circuits, they are still subject to accuracy issues due to their
nonlinear dynamic behavior [3] and disturbances caused by sneak-path currents [17].

In addition to proposing the existence of memristors, Leon O. Chua and his colleagues
also suggested that memristive components are essential for an accurate representation
of the Hodgkin–Huxley (HH) model [18,19]. The HH model consists of a set of nonlinear
differential equations that quantitatively describe current flow through the neuronal mem-
brane [20]. It was introduced seventy years ago from studies carried out with the giant axon
of the Loligo squid [21–25] and represents the basis of modern neuroscience [26]. Because
of its capacity to describe the excitable dynamics of action potentials in neurons and to emu-
late a diversity of spiking patterns [27], the HH model plays an essential role in the research
of epilepsy [28–31], Parkinson’s disease [32–34], and other neuropathies [35–37]. However,
its rich and nonlinear dynamics can also exhibit self-sustained oscillations [38,39], seizure-
like events [29,40], and chaotic behavior [41,42], which in fact challenges the adoption of
conventional control strategies.

In this work, we introduce a novel intelligent controller for the suppression of seizure-
like events in a memristive neuromorphic circuit based on the Hodgkin–Huxley model. For
this purpose, an adaptive neural network is incorporated into a Lyapunov-based nonlinear
control scheme, which allows the attenuation of bursting dynamics, even assuming that
there is no prior knowledge of the mathematical model of the circuit. By means of a
Lyapunov-like stability analysis, the boundedness and convergence properties of the
closed-loop signals are rigorously proved. The obtained numerical results confirm that
the intelligent control law is capable of dealing with the nonlinear behavior of memristive
components, as well as with uncertainties and external disturbances, presenting a much
superior performance when compared with a conventional nonlinear controller.

The remainder of this paper is structured as follows: Section 2 presents the adopted
memristive Hodgkin–Huxley model; Section 3 introduces the novel intelligent controller
for the neuromorphic circuit and presents the Lyapunov-like stability analysis; Section 4
presents the obtained numerical results; and Section 5 summarizes the concluding remarks.

2. Memristive Neuromorphic Circuit

The memristor was originally introduced in 1971 by Leon O. Chua [12] as the missing
fourth passive circuit element whose properties could not be obtained by any combination
considering only the other three, namely resistor, inductor, and capacitor. Following the
modern definition, a memristor can be understood as a 2-terminal resistive switching
component with an associated state-dependent Ohm’s law [43,44]:

I = G(x1, x2, . . . , xn)V (1)

where V is the voltage between the two terminals, I represents the electric current, and
G stands for the conductance (or memductance) that depends on the state variables xn,
with n representing a measure of the order of complexity of the memristor dynamics.

The state variables xn, in turn, can be described by a set of n autonomous ordinary
differential equations:

ẋ1 = f1(x1, x2, . . . , xn; V)

ẋ2 = f2(x1, x2, . . . , xn; V)

...

ẋn = fn(x1, x2, . . . , xn; V)

(2)
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By applying a periodic voltage with positive and negative values to the memristor
terminals, a pinched hysteresis loop is formed in the corresponding V × I plane. According
to Chua [11,44], this is the main property of the memristor and can be considered its
fingerprint. Figure 1 depicts the memristor symbol and a typical pinched hysteresis loop.

V

I

I

G

+

−

V

(a) (b)

Figure 1. Memristor (a) symbol and (b) typical pinched hysteresis loop.

Furthermore, Chua and his colleagues have also suggested that memristors are the
ideal components for the correct implementation of the Hodgkin–Huxley equations [18,19].
The HH model was introduced seventy years ago by Alan Hodgkin and Andrew Huxley to
mathematically describe the flow of electric current through the axon membrane [25]. Orig-
inally, Hodgkin and Huxley represented the voltage-gated ion channels of the membrane
by means of time-varying resistances. This assumption is actually not consistent with basic
circuit theory and has led to some paradoxes and anomalous phenomena, as reported in the
literature over the years [19]. By replacing the time-varying resistors with time-invariant
memristors, however, it became possible to obtain a rigorous biophysical basis for the
HH model.

Figure 2 shows the memristive HH circuit and the pinched hysteresis loops associated
with the two voltage-gated ion channels. For the circuit presented in Figure 2a: Cm stands
for the membrane capacitance and V its corresponding voltage; GNa, VNa, INa, and ENa
represent, respectively, the memductance, the voltage, the current, and the battery voltage
related to the sodium-gated channel; GK, VK, IK, and EK are, respectively, the memductance,
the voltage, the current, and the battery voltage associated with the potassium-gated
channel; GL, VL, IL, and EL stand for the leakage conductance, voltage, current, and battery
voltage, respectively.

Thus, recalling the Kirchhoff’s Current Law to the memristive circuit shown in
Figure 2a, and considering an external current Iext through the axon membrane, we obtain
the following ordinary differential equation [18,19]:

Cm
dV
dt

= −GNa(V + ENa)− GK(V − EK)− GL(V + EL) + Iext (3)

where the memductance functions are given by

GNa(x1, x2) = gNax3
1x2 (4)

GK(x3) = gKx4
3 (5)

with the dynamics of the internal states x1, x2, and x3 being defined according to

ẋ1 =
(1− x1)(V + 25)

exp[0.1(V + 25)]− 1
− 4 exp(V/18)x1 (6)

ẋ2 = 0.07(1− x2) exp(0.05V)− x2

exp[0.1(V + 30)] + 1
(7)
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ẋ3 =
0.1(1− x3)(V + 10)
exp[0.1(V + 10)]− 1

− 0.125 exp(V/80)x3 (8)

Equations (3)–(8) represent the four-dimensional vector field that mathematically
describes the memristive Hodgkin–Huxley circuit shown in Figure 2a. Regarding the
memristors, note that by applying a sinusoidal voltage of 50 sin ωt mV across their ter-
minals, the typical pinched hysteresis loop can be clearly observed for both sodium and
potassium ion channels, shown in Figure 2b and Figure 2c, respectively. Moreover, as stated
by Chua [19], the shape of their pinched hysteresis loops tends to a straight line as the
frequency ω increases.

Table 1 presents the parameters for the memristive circuit.

Table 1. Parameters for the memristive circuit.

Cm ENa EK EL gNa gK GL

1 µF 115 mV 12 mV 10.599 mV 120 mS 36 mS 0.3 mS

It is worth recalling that the conductances given by Equations (4) and (5) were first
proposed by Hodgkin and Huxley in 1952 [25] and later were also adopted by Chua to
mathematically describe the memristors in the memristive version of the Hodgkin–Huxley
circuit [11,18,19,44]. As defined by Hodgkin and Huxley [25], the internal states x1, x2, and
x3 are dimensionless variables, which can vary between 0 and 1. Thus, the proper dimension
of the conductances is actually given by the parameters gNa and gK, as can be seen in
Table 1. Moreover, the nonlinearities present in the Hodgkin–Huxley model provide its
rich and complex dynamic behavior, which is indeed essential for neuroscience and epilepsy
research, as it allows a wide range of spiking and burst-firing patterns [27,42]. As a matter of
fact, bursting dynamics can be easily emulated with HH equations. By applying an external
electric current such as Iext = −28 sgn{cos(2πt/T) cos[−2πt/(3T)]} µA, with T = 103,
it is possible to observe the emergence of seizure-like events, as seen in Figure 3. The
membrane voltages presented in Figure 3 were obtained from Equations (3)–(8) by means
of a C++ implementation of the Euler–Maruyama method, using a time step of 10−3 s and
considering Gaussian noise of null mean and variance of 0.4 mV2.

Brain electrical activity usually has irregular waveforms, but during seizure events,
high-amplitude burst patterns can be clearly observed [28]. The bursting activity observed
in Figure 3 is in fact quite similar to those previously reported in the literature for both
numerical [29,40] and experimental procedures [45,46]. The ability to precisely control the
bursting dynamics of the HH model plays an essential role for a better understanding
of the treatment of many neuropathies [37]. For this reason, a novel intelligent control
scheme is introduced in the next section to suppress seizure-like events in a memristive
Hodgkin–Huxley circuit.
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Figure 2. (a) Schematic representation of the memristive circuit that describes the action potentials
in the axon membrane. Pinched hysteresis loops for the memristors related to (b) sodium- and
(c) potassium-gated channels with a voltage of 50 sin ωt mV, three different frequency values and
model parameters adopted according to Table 1.
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Figure 3. Seizure-like events with the memristive neuromorphic circuit.

3. Intelligent Control

Due to its ability to deal with highly uncertain systems, adequately compensating
for modeling inaccuracies and external disturbances, intelligent control presents itself as a
very suitable approach for bio-inspired devices [47]. Intelligent control schemes are able to
adapt, learn from experience, and predict the dynamic behavior of the controlled system.
They have been successfully employed in the control of robotic [48], underactuated [49]
and chaotic systems [50].

Thus, let us start by assuming that the memristive neuromorphic circuit can be de-
scribed by an uncertain first-order nonlinear system:

V̇ = f + b Ic (9)

where Ic represents the control input, b stands for the input gain, and f is a nonlinear
function that represents the plant dynamics.

The input signal Ic is introduced to the memristive circuit by means of a controlled
current source, as shown in Figure 4.

Cm

−

+

V

Im INa

GNa

+

−

VNa

ENa

IK

GK

+

−

VK

EK

IL

GL

+

−
VL

EL

Ic Iext

Figure 4. Memristive neuromorphic circuit with controlled current source.

It should be noted that when choosing the first-order plant (9) to represent the entire
fourth-order memristive circuit, it is necessary to ensure that the controller is capable
of handling not only parametric uncertainties and the unknown external electric cur-
rent Iext but also the unmodeled dynamics of the internal states of the memristors, as in
Equations (6)–(8).

Then, considering that the plant is subject to modeling uncertainties, i.e., f = f̂ + ∆ f
and b = b̂ + ∆b, with f̂ and b̂ being estimates of f and b, respectively, Equation (9) can be
rewritten as follows:

V̇ = f̂ + b̂ Ic + d (10)

where d comprises the modeling uncertainties ∆ f and ∆b.
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By evoking the universal approximation properties of artificial neural networks [51],
we propose the adoption of an ANN to deal with both modeling inaccuracies and un-
modeled dynamics. The chosen network architecture considers one input and one output,
in addition to a hidden layer with n neurons, as shown in Figure 5.

ψ1

ψ2

ψ3

ψn

Σ d̂

...

Ṽ

w
1

w
2

w3

wn

Input Hidden layer Output

Figure 5. Architecture chosen for the artificial neural network.

The single-hidden layer network depicted in Figure 5 is mathematically described by

d̂ = w>ψ(Ṽ) (11)

where w = [w1 . . . wn] is the weight vector and ψ = [ψ1 . . . ψn] stands for the vector of
activation functions ψi.

Now, following the feedback linearization method [52], a nonlinear control law for the
uncertain first-order system (9) can be designed as follows:

Ic = b̂−1(− f̂ − d̂ + V̇d − λṼ) (12)

with λ being a strictly positive constant and Ṽ = V − Vd representing the control error
associated with the desired state Vd.

By applying the control law (12) to (10), the closed-loop dynamics becomes

˙̃V + λṼ = d− d̂ (13)

Equation (13) shows that the error dynamics are constantly driven by the approxima-
tion error d− d̂. However, recalling that the adopted ANN is a universal approximator,
an arbitrary precision ε can be ensured for the uncertainty/disturbance estimation:

d = d̂∗ + ε (14)

with d̂∗ being the optimal estimate and |ε| ≤ ε.
Let us now evaluate the boundedness and convergence properties of the closed-loop

signals by defining positive definite Lyapunov candidate function L:

L(t) =
1
2

Ṽ2 +
1

2η
δ>δ (15)

where η is a strictly positive constant and δ = w−w∗, with w∗ being the optimal weight
vector that minimizes the approximation error.
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Since δ̇ = ẇ, the time derivative of L is

L̇(t) = Ṽ ˙̃V + η−1δ>ẇ

= Ṽ[−λṼ + d− d̂] + η−1δ>ẇ

= Ṽ[−λṼ + d̂∗ + ε− d̂)] + η−1δ>ẇ

= Ṽ[−λṼ + ε− (w−w∗)>ψ] + η−1δ>ẇ

= Ṽ[−λṼ + ε− δ>ψ] + η−1δ>ẇ

= −[λṼ − ε] Ṽ + η−1δ>[ẇ− ηṼψ]

Hence, by updating w according to ẇ = ηṼψ, the time derivative becomes

L̇(t) = −[λṼ − ε] Ṽ ≤ −[λ|Ṽ| − ε]|Ṽ| (16)

According to (16), it can be seen that V̇ is negative definite only when |Ṽ| > ε/λ. In
order to ensure an upper bound on w when |Ṽ| ≤ ε/λ, the projection algorithm [53] can
be employed:

ẇ =


ηṼψ if ‖w‖2 < µ or

if ‖w‖2 = µ and ηṼw>ψ < 0(
I − ww>

w>w

)
ηṼψ otherwise

(17)

with µ being the desired upper bound for ‖w‖2 (the Euclidean norm of w).
By adopting (17), we ensure that the weight vector always remains within the convex

region W = {w ∈ Rn : w>w ≤ µ2} as long as ‖w(0)‖2 ≤ µ, and the control error
converges to the closed region V = {Ṽ ∈ R : |Ṽ| ≤ ε/λ} as t→ ∞.

4. Numerical Results

The efficacy of the proposed intelligent controller was evaluated by means of numerical
simulations carried out at a sampling rate of 100 Hz. As in the numerical studies presented
in Section 2, the memristive circuit represented by Equations (3)–(8), now including a
controlled current source being defined by the intelligent scheme, were simulated using
a C++ implementation of the Euler–Maruyama method, with a time step of 10−3 s and a
Gaussian noise of null mean and variance of 0.4 mV2. Assuming that no prior knowledge
about the plant was available to the control system designer, we defined b̂ = 1 and f̂ = 0.
The control parameter λ was set to 6.

Regarding the artificial neural network, the weight vector was initialized as w = 0
and is updated according to (17), with learning rate η = 300. The activation functions were
of the Gaussian type:

ψi(Ṽ; ci, σi) = exp

[
−1

2

(
Ṽ − ci

σi

)2]
, i = 1, . . . , 6 (18)

with corresponding centers ci and widths σi being defined as in Table 2.

Table 2. Parameters of the Gaussian-type activation functions.

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

Centers −10.00 −2.50 −1.25 1.25 2.50 10.00
Widths 10.00 6.67 3.33 3.33 6.67 10.00

Figures 6 and 7 show the obtained results.
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Figure 6. Control performance of the conventional scheme: (a) seizure-like activity still present
despite of the (b) control signal with higher amplitude when compared with the intelligent scheme.
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Figure 7. Control performance of the intelligent scheme: (a) seizure-like activity successfully sup-
pressed and (b) control signal with lower amplitude when compared with the conventional scheme.
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The influence of the adaptive neural network on the control performance is evaluated
by comparing the proposed intelligent approach with a conventional nonlinear controller,
namely the feedback linearization scheme. In fact, the feedback linearization controller can
be easily obtained from the intelligent scheme by simply disregarding the contribution of
the neural network to the control signal, i.e., by setting d̂ = 0.

Comparing the results obtained with a conventional nonlinear controller and the
intelligent scheme, Figures 6 and 7 respectively, the effectiveness of the proposed intelligent
approach can be clearly ascertained. As a matter of fact, the conventional controller was not
able to suppress the bursting activity, shown in Figure 6a, despite the higher amplitude of
the associated control signal, shown in Figure 6b. The proposed intelligent controller, on the
other hand, was able to successfully suppress seizure-like events, as shown in Figure 7a,
with a much lower amplitude of the associated control signal, shown in Figure 7b, when
compared with the conventional approach.

In order to allow a quantitative comparison of the performance obtained with the two
control schemes, the Integral Absolute Error (IAE) and the Integral Absolute Control Input
(IACI) were calculated for the numerical results presented in Figures 6 and 7.

IAE =
∫ t2

t1

|Ṽ(t)|dt and IACI =
∫ t2

t1

|Ic(t)|dt

Table 3 shows the IAE and IACI obtained for the conventional and intelligent con-
trollers, taking into account the numerical results presented in Figures 6 and 7 for t1 = 2 ks
and t2 = 7 ks.

Table 3. Integral Absolute Error (IAE) and the Integral Absolute Control Input (IACI) for both
conventional and intelligent controllers with corresponding achieved percentage reductions.

Conventional Intelligent Percentage Reduction

IAE [mV s] 1151.00 4.67 99.59%
IACI [µC] 6907.27 4330.15 37.31%

From Table 3, it can be seen that the intelligent controller provided a total control
error (IAE) 99.59% lower and also granted a reduction of 37.31% in the overall control
effort (IACI). These results confirm the efficiency of the intelligent scheme, being able to
drastically reduce the error with a total control effort even lower than the conventional
one.

As a matter of fact, the improved performance of the intelligent controller is due
to the adaptive neural network, which is able to recognize the dynamics of the mem-
ristive neuromorphic circuit and adequately compensate the disturbance caused by the
unknown external current. Figure 8 shows the estimate d̂, as computed by the adaptive
neural network.

1 2 3 4 5 6 7
−80

−40

0

40
Controller activation

t [s]

d̂
[m

V
/s
]

×103

Figure 8. Disturbance/uncertainty estimate with the intelligent control scheme.



J. Low Power Electron. Appl. 2022, 12, 54 11 of 14

Now, to show that the intelligent scheme is also capable of tracking different references,
the desired output is changed during the control phase, causing the controller to stabilize
the voltage at distinct setpoints. Figure 9 shows the obtained results.

Figure 9a shows that, after activating the controller, the setpoint is then intentionally
changed to different voltage levels: Vd = 15 mV, Vd = 0 mV, Vd = −15 mV, Vd = 0 mV, and
Vd = 15 mV, successively. As can be verified, the controller is not only able to suppress
seizure-like events but also manages to drive the voltage to the desired levels. The control
signal, in this case, is adjusted as needed for the different setpoints, as can be seen in
Figure 9b. Once again, it is important to emphasize that this stabilization capability is
granted by the neural network embedded into the intelligent controller. By interacting with
the plant, the adaptive neural network is able to learn online how to ensure that the desired
voltage levels are properly achieved.

Finally, based on the obtained results, the main features of the proposed intelligent
controller can be highlighted as follows:

1. The intelligent control scheme can adequately handle the unknown external electric
current Iext and the uncertainties associated with the unmodeled internal states of
the memristors, which in fact may allow other different memristive circuits to be
controlled by means of the same control framework;

2. Online learning, rather than offline training, is adopted to allow the controller to
continuously improve its overall performance, even when subjected to dynamically
changing circumstances;

3. The neural network can learn to compensate for uncertainties and disturbances by
minimizing the control error, making direct measurements of the signal to be estimated
(which is not possible in real applications) completely unnecessary;

4. By combining the artificial neural network with a nonlinear control method, the com-
putational demands on the ANN are minimized, which allows its implementation on
low-power embedded hardware and the adoption of the online learning scheme.
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Figure 9. Control performance of the intelligent scheme: (a) seizure-like activity successfully sup-
pressed, even for different setpoints, and (b) corresponding control signal.
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5. Concluding Remarks

This work introduces a novel intelligent control scheme for the suppression of seizure-
like events in a memristive neuromorphic circuit. The neuromorphic circuit is based
on the Hodgkin–Huxley equations, with memristors representing the voltage-gated ion
channels. Regarding the intelligent controller, an adaptive neural network is embedded
within a Lyapunov-based nonlinear control law. Moreover, even by assuming that no
prior knowledge about the plant is available to the control system designer, the proposed
model-free controller is able to identify the unmodeled dynamics of the memristors, as well
as the unknown external current, and compensate them accordingly. The boundedness
and convergence properties of the closed-loop signals are rigorously addressed through a
Lyapunov-like stability analysis. The improved performance of the intelligent controller
is confirmed by means of a comparative numerical study. It is important to note that by
combining the artificial neural network with a nonlinear control method, the computational
demands on the ANN are minimized, which allows its implementation on low-power
embedded hardware and the adoption of an online learning scheme. In fact, the reduced
complexity of the proposed control scheme makes it a promising candidate for the develop-
ment of neuroprostheses and brain–machine interfaces. Finally, the online learning feature
of the adaptive neural network enables proper identification and automatic compensation
of unknown plant dynamics, which allows the proposed control scheme to be employed in
a wide variety of memristive neuromorphic systems.
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