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Autism spectrum disorder (ASD) is a brain condition characterized by

diverse signs and symptoms that appear in early childhood. ASD is also

associated with communication deficits and repetitive behavior in affected

individuals. Various ASD detection methods have been developed, including

neuroimaging modalities and psychological tests. Among these methods,

magnetic resonance imaging (MRI) imaging modalities are of paramount

importance to physicians. Clinicians rely on MRI modalities to diagnose

ASD accurately. The MRI modalities are non-invasive methods that include

functional (fMRI) and structural (sMRI) neuroimaging methods. However,

diagnosing ASD with fMRI and sMRI for specialists is often laborious and

time-consuming; therefore, several computer-aided design systems (CADS)

based on artificial intelligence (AI) have been developed to assist specialist

physicians. Conventional machine learning (ML) and deep learning (DL) are

the most popular schemes of AI used for diagnosing ASD. This study aims to

review the automated detection of ASD using AI. We review several CADS that

have been developed using ML techniques for the automated diagnosis of

ASD using MRI modalities. There has been very limited work on the use of DL
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techniques to develop automated diagnostic models for ASD. A summary of

the studies developed using DL is provided in the Supplementary Appendix.

Then, the challenges encountered during the automated diagnosis of ASD

using MRI and AI techniques are described in detail. Additionally, a graphical

comparison of studies using ML and DL to diagnose ASD automatically

is discussed. We suggest future approaches to detecting ASDs using AI

techniques and MRI neuroimaging.

KEYWORDS

ASD diagnosis, neuroimaging, MRI modalities, machine learning, deep learning

Introduction

A complex intricate network of millions of neurons is
responsible for monitoring and controlling each part of the
human body and brain (Sparks et al., 2002; Brieber et al., 2007;
Ecker et al., 2015). These networks consist of many neurons
that need to be directly interconnected and synchronized (Sato
et al., 2012; Hernandez et al., 2015). It has been suggested
that certain disorders in the human body arise when brain
networks are incorrectly connected to manage a specific activity
(Gautam and Sharma, 2020; Noor et al., 2020; Khodatars
et al., 2021; Loh et al., 2022). Disorders of this type can
be classified into three groups based on their psychological
or neural characteristics and threaten the health of many
individuals across the globe. Autism spectrum disorder (ASD)
(Yang et al., 2022), schizophrenia (Sadeghi et al., 2022), attention
deficit hyperactivity disorder (ADHD) (Bakhtyari and Mirzaei,
2022), epilepsy (Shoeibi et al., 2021a), Parkinson’s disease
(Sahu et al., 2022), and bipolar disorder (BD) (Highland and
Zhou, 2022) are some of the most known neurodevelopmental
disorders.

Autism spectrum disorder is a neurodevelopmental disorder
that manifests in childhood and causes a variety of challenges to
individuals (Ecker et al., 2015). Those with ASD have difficulties
with verbal and non-verbal communication, cognitive skills,
social behavior, and entertaining activities (Aghdam et al., 2019;
Ahmed et al., 2020a,b). ASD begins in the early stages of
embryonic development, according to research results. Autism
is thought to be caused by specific signal patterns in the
cortex, abnormalities in the immune system, growth hormone
fluctuations, and abnormalities in the neural mirror system
in the embryonic stage (Chen et al., 2022; Jayanthy and Din,
2022). The overall ASD prevalence is one in 44 children aged
8 years, and ASD is around 4 times as prevalent among boys
as among girls (Rakić et al., 2020; Maenner et al., 2021). In
addition to lifelong social and adaptive disorders, one of the
major consequences of autism is its negative impact on quality
of life (Choi, 2017; Brown et al., 2018; Bengs et al., 2020; Byeon
et al., 2020; D’Souza et al., 2020; Cao et al., 2021; Chen Y. et al.,

2021; Chen H. et al., 2021; Chu et al., 2022). Therefore, early
diagnosis and treatment of ASD are paramount for improving
the quality of life of ASD children and their families (Kasari and
Smith, 2013).

According to the DSM-3, mental health professionals
originally divided autism into five categories, including
Asperger’s syndrome, Rett syndrome, childhood disintegrative
disorder (CDD), autistic disorder, and Pervasive developmental
disorder-not otherwise specified (PDD-NOS) (Volkmar et al.,
1992; Matson et al., 2009). Using this method, physicians
observed the symptoms of autistic individuals and compared
their observations to those in the DSM-3 to diagnose the
specific type of autism (Volkmar et al., 1986, 1992; Matson
et al., 2009). In 2013, the DSM-5 was published, making
significant changes to the categorization of autism (Volkmar
and Mcpartland, 2014). DSM-5 categorizes autism severity
into three levels, and more information is given in Volkmar
and Mcpartland (2014). According to DSM-5, the lower the
severity level of autism, the less support the child requires.
Autism individuals with the second and third severity levels
show moderate to severe symptoms and therefore require more
frequent support. Although the DSM-5 provides explanations
of the autism spectrum, these explanations are incomplete
and do not provide guidance on the specific support that
autistic children may require. In addition, some individuals
simply do not fall into any of these categories, and ASD
can change and intensify over time (Kim et al., 2014;
Volkmar and Mcpartland, 2014).

Early diagnosis of ASD is of utmost importance for
specialist physicians (Akhavan Aghdam et al., 2018; Anirudh
and Thiagarajan, 2019; Arya et al., 2020; Al-Hiyali et al., 2021;
Almuqhim and Saeed, 2021; Bayram et al., 2021). Hereafter,
clinical screening methods for diagnosing ASD are introduced,
including autism diagnostic interview-revised (ADI-R),
childhood autism rating scale (CARS), social responsiveness
scale, autism diagnostic observation schedule (ADOS), and
Joseph picture self-concept scale (Thabtah and Peebles,
2019). Clinical screening methods have been proven effective in
diagnosing ASD and are of great interest to specialist physicians.
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Additionally, these methods assist in treating and preventing
the development of ASD in the early stages (Thabtah and
Peebles, 2019). As well as their many advantages, the mentioned
methods always pose challenges for specialists (Thabtah and
Peebles, 2019). These procedures involve long questionnaires,
so they are very time-consuming and require different specialist
physicians to analyze the questionnaire, which has led to many
criticisms of clinical screening methods.

Additionally, some ASD diagnosis tools have been provided
by neurologists and psychologists, including autism spectrum
quotient (AQ), a modified checklist for autism in toddlers
(M-CHAT), and a childhood Asperger syndrome test (CAST)
(Thabtah and Peebles, 2019). Various items in these tools can
be used to diagnose different types of autism; however, these
methods face different challenges in the diagnosis of ASD
(Thabtah and Peebles, 2019). These tools, for example, are
not considered definitive screening methods for diagnosing
ASD. Because, in most cases, ASD is diagnosed by them
without the presence of a specialist physician (Thabtah and
Peebles, 2019). However, some of these methods do not meet
DSM-5 requirements (Thabtah and Peebles, 2019). Due to
this, it is necessary to provide tools that are compatible with
DSM-5.

Neuroimaging techniques are one group of methods
used for diagnosing neurological and mental disorders such
as ASD. These methods comprise structural and functional
neuroimaging modalities, which are of special interest to
physicians, particularly in diagnosing various brain disorders
(Shoeibi et al., 2021b, 2022c). The fMRI is one of the major
functional neuroimaging methods that records data in a non-
invasive manner. fMRI has a high spatial resolution, making it
an excellent method for examining functional connectivity in
the brain. fMRI data is classified into two categories: T-fMRI
and rs-fMRI. Furthermore, fMRI data are composed of a 4-
dimensional tensor, which permits the 3D volume of the brain
to be segmented into smaller areas, and the activity of each area
is recorded for a predetermined time period. Although fMRI
has provided satisfactory results in diagnosing a variety of brain
disorders, these techniques are costly and too sensitive to motion
artifacts (Ghassemi et al., 2020; Shoeibi et al., 2022b).

Structural and DTI have been used to examine brain
anatomy and the interaction between brain regions, respectively.
The structural neuroimaging modalities offer the advantage of
cost-effectiveness and the availability of imaging protocols in
most treatment facilities (Ghassemi et al., 2020). Physicians
use sMRI modalities to diagnose autism in autistic individuals
using (i) geometric features and (ii) volumetric features, which
physicians have used to demonstrate that autistic people
demonstrate superior brain development in comparison to
normal people (Brambilla et al., 2003; Siewertsen et al., 2015;
Zürcher et al., 2015; Zhang and Roeyers, 2019). Hazlett
et al. (2005) studied the brain structure of 51 autistic
children and 25 normal children (1.5–3 years of age). Their
findings indicated that the Cerebellum white matter volume

of autistic children was 2–4 times greater than that of normal
children.

Although MRIs offer many advantages, MRI artifacts
reduce the accuracy with which clinicians are able to
diagnose autism. Additionally, ASD individuals’ MRI data
is recorded with multiple slices and different protocols.
Consequently, it takes considerable time to examine all MRI
slices accurately, and clinicians should be highly precise. The
fatigue of the physician may lead to an incorrect diagnosis
of ASD in many cases. In addition, MRI data is problematic
because most physicians are inexperienced in interpreting
these images and may find diagnosing ASD in its early
stages difficult.

Numerous treatment methods have also been provided for
ASD patients so far, some of which are listed here. Transcranial
magnetic stimulation (TMS) and transcranial direct current
stimulation (tDCS) are two non-invasive methods to diagnose
and treat various neurological and mental disorders such as
ASD (Khodatars et al., 2021). Using them, the areas of the brain
where ASD occurs are selected by specialist physicians. Electrical
pulses are then applied to these areas to treat or control ASD
(Khodatars et al., 2021). Additionally, some researchers have
provided rehabilitation systems based on AI techniques to treat
ASD. For example, Cai et al. (2013) presented a virtual reality
(VR) system for treating ASD. They proposed a VR program
for people with ASD to interact with dolphins in their work.
This tool enables people with ASD to virtually be at the pool as
dolphin trainers, aiming to help people with ASD learn different
types of non-verbal communication through hand movements
with virtual dolphins.

To improve the accuracy of ASD diagnosis, AI techniques
can be used. The use of AI in diagnosing various diseases has
been studied (Nogay and Adeli, 2020; Ahmadi-Dastgerdi et al.,
2021; Shoeibi et al., 2022a). Several studies have demonstrated
that AI techniques, along with MRI neuroimaging modalities,
increase the accuracy of ASD diagnosis (Nogay and Adeli,
2020; Ahmadi-Dastgerdi et al., 2021). An increasing number of
studies have been conducted on detecting ASD using ML and
DL methods. Researchers first demonstrated that ASD could
be diagnosed from ML using MRI neuroimaging technologies
(Shoeibi et al., 2022a). Based on ML algorithms, feature
extraction, dimension reduction, and classification algorithms
in CADS are selected through trial and error (Parikh et al.,
2019; Alizadehsani et al., 2021). Choosing an appropriate
algorithm for each CADS section can be challenging without
adequate knowledge of AI (Mohammadpoor et al., 2016; Parikh
et al., 2019; Alizadehsani et al., 2021; Wang et al., 2021a,c).
Furthermore, ML techniques are not suitable for small data
sets (Ghassemi et al., 2021). Therefore, these methods do not
contribute to developing software for detecting ASDs using MRI
neuroimaging modalities.

Various studies are being conducted to diagnose various
diseases and disorders by using these methods to overcome
the challenges inherent in ML techniques (Noor et al., 2019;
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Al-Shoukry et al., 2020; Altinkaya et al., 2020; Yao et al., 2020).
For example, in contrast to ML methods, DL uses deep layers
for feature extraction and classification and requires fewer
implementation steps in diagnosing ASD (Goodfellow et al.,
2016). Furthermore, DL-based CADS can be more efficient and
accurate with large input data.

An overview of studies relating to the detection of
ASD using MRI neuroimaging methods is presented in
this comprehensive systematic review. The first step was
to systematically review all publications on ASD detection
using MRI modalities and ML techniques. A recent review
by the authors of this review discussed the use of different
neuroimaging modalities and DL architectures to detect
ASD (Khodatars et al., 2021). Supplementary Appendix A
presents a review paper describing ASD detection in different
neuroimaging modalities using DL techniques to compare ML
and DL studies.

The following sections describe the following. Section 2 is a
search Strategy based on PRISMA guidelines. Section 3 reviews
the review papers in AI techniques for ASD diagnosis. Section
4 describes the CADS based on AI to detect ASD from MRI
neuroimaging images. Section 5 presents a comparison between
ML and DL studies to ASD detection using MRI modalities.
Section 6 examines the most critical challenges for detecting
ASD using AI methods. Future directions and conclusion
sections are presented in sections 7 and 8, respectively.

Search strategy based on PRISMA
guideline

The PRISMA protocol was used to select and review papers
in this study (Sadeghi et al., 2022). Papers on the diagnosis
of ASD by MRI modalities and AI models (ML and DL)
published from 2016 to 2022 were included in this study.
In this review paper, various citation databases, including
IEEE, Wiley, Frontiers, ScienceDirect, SpringerLink, ACM, and
ArXiv were used to search for papers in the field of ASD
detection. Furthermore, Google Scholar has been used to search
for the article entirety. Here are the keywords, including
“ASD classification,” “Feature extraction,” “fMRI,” “sMRI,” and
“Autism Spectrum Disorder,” which were used to search for
articles relating to the diagnosis of ASD using ML algorithms.
To search for articles related to DL, the keywords used were
“Autism Spectrum Disorder,” “ASD,” fMRI,” “sMRI,” and “Deep
Learning.”

As stated above, papers were selected and reviewed based
on the PRISMA protocol at three different levels. In the first
level, 34 out of 316 downloaded papers were eliminated as they
were out of the scope of this study. Then, 28 papers were also
excluded as they did not use MRI datasets in the ASD diagnosis,
followed by excluding further 21 papers due to no use of AI
techniques. Therefore, 233 papers were finally selected and used
in this review paper. Figure 1 shows the selection procedure of

FIGURE 1

Papers selection process based on the PRISMA guidelines.

papers based on the PRISMA protocol on three levels. The key
criteria for the inclusion and exclusion of papers on the ASD
diagnosis based on the PRISMA protocol are shown in Table 1.

Artificial intelligence techniques
for autism spectrum disorder
diagnosis

For researchers in cognitive sciences, autism is a well-
recognized neurodevelopmental disorder with a high prevalence
in recent years. Challenges in the ASD diagnosis for physicians
have resulted in extensive studies on this brain disorder.
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TABLE 1 The exclusion and inclusion criteria for diagnosis of ASD.

Inclusion Exclusion

1. sMRI neuroimaging modalities 1. Treatment of ASD

2. fMRI neuroimaging modalities 2. Clinical methods for ASD treatment

3. Different Types of Autism 3. Rehabilitation systems for ASD
detection (Without AI techniques)

4. DL models

5. Feature extraction methods

6. Dimension reduction methods

7. Classification methods

Scholars in AI, and cognitive sciences seek to develop a
real diagnostic tool for ASD using various AI techniques.
Accordingly, extensive studies have focused on ASD diagnosis
using neuroimaging modalities and AI techniques, outlined in
this section by reviewing articles in the field of ASD diagnosis
using these techniques.

Pagnozzi et al. (2018) reviewed 123 articles on ASD
diagnosis using sMRI modalities and reported further
developments in some brain areas of ASD individuals
than those of HC. They also explained that ASD caused
changes in the structure of patients’ brains, including
increased volume of frontal and temporal lobes, increased
thickness of the frontal cortex, and increased cerebrospinal
fluid volume. This study assists scholars in applying AI
techniques in ASD diagnosis from sMRI modalities in future
studies.

Nogay and Adeli (2020) published a review article on
ASD diagnosis using brain imaging and ML techniques. They
reviewed studies on ASD diagnosis for sMRI, fMRI and
combined data using ML techniques and found a higher
accuracy of ASD diagnosis at younger ages. They hope to
develop a practical ASD diagnostic tool based on ML techniques
from MRI modalities.

In another study, Xu et al. (Shoeibi et al., 2022a) reported
methods and tools associated with ASD diagnosis from MRI
data based on ML techniques. Initially, they introduced the most
important ML-based algorithms, including feature extraction,
feature selection and reduction, training and test models, and
evaluation parameters.

Parlett-Pellerit et al. (Ahmadi-Dastgerdi et al., 2021)
reviewed studies on unsupervised ML techniques for ASD
diagnosis. In this study, various clinical data and medical
imaging data were discussed for ASD diagnosis using
unsupervised ML techniques.

The most important feature selection and classification
algorithms for ASD diagnosis were studied in Rahman et al.
(2020) paper. Their input data comprises various psychological
tests such as ADOS and MRI modalities. They claimed that this
study could assist scholars in developing future studies on ADS
diagnosis.

A review article on the diagnosis of ASD and ADHD
using AI techniques was published by Eslami et al. (2021a).
They discussed DL and ML-based studies on ASD and ADHD
diagnosis from MRI modalities and the most important AI
techniques (DL and ML). In the ML section, the authors
presented the most important feature extraction techniques,
such as effective dynamic connectivity, and outlined various
popular DL techniques.

Khodatars et al. (2021) presented a review paper on ASD
diagnosis and rehabilitation using DL techniques. They initially
introduced the public neuroimaging modalities datasets, such
as MRI, pre-processing techniques, and DL models, an ASD
diagnosis. Then, they summarized the studies conducted in this
field in a table. They also discussed studies in the field of autism
rehabilitation using DL techniques.

In this section, the most important review papers on ASD
diagnosis from various data and AI techniques were discussed.
In our study, ASD diagnosis papers using MRI data and various
AI techniques (ML and DL) were reviewed. This paper reports
all ASD diagnosis articles from 2010 to 2022. Also, the most
important challenges and future works for diagnosing ASD from
MRI modalities are presented. To the best of our knowledge, no
similar review article has been provided, and our review article
has outstanding innovations.

Computer-aided design systems
for aided design systems diagnosis
by magnetic resonance imaging
neuroimaging modalities

The application of CADS based on AI techniques is
presented in this section and illustrated in Figure 2. The steps
involved in CADS using ML for ASD detection are outlined
in Figure 2. As shown in Figure 2, CADS input consists of
datasets containing MRI modalities. Standard preprocessing
(low-level) methods for MRI neuroimaging modalities were
demonstrated as a second step. Next, we will discuss these
preprocessing methods for MRI neuroimaging modalities. The
third step involves feature extraction. Feature reduction or
selection techniques (dimension reduction) are considered to be
the fourth step in the CADS based on ML. The final step involves
the use of classification algorithms. The only difference between
DL-based and ML-based CADS is the feature extraction to the
classification step. This procedure is carried out in deep layers
in CADS based on DL. This enables the extraction of features
from MRI data without the user’s intervention. Moreover, in
CADS based on DL, diagnostics of ASD may be possible in case
there are more input data, allowing the development of actual
software for the detection of ASD. The details of ASD detection
from MRI neuroimaging modalities using DL architectures are
given in Supplementary Appendix (A). Here we present the
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FIGURE 2

Block diagram of CADS- based on ML techniques for automated
ASD diagnosis.

details of CADS based on ML and some of the most important
algorithms in each section.

Magnetic resonance imaging
neuroimaging autism spectrum
disorder datasets

Various MRI modalities datasets for ASD diagnosis
are available to researchers, including UCI (Last Access
19/07/2022a), NDAR (Last access 19/07/2022b), AGRE
(Last access 19/07/2022d), NIMH Repository and Genomics
Resource, n.d. (Last access 19/07/2022f), Gene Expression
Omnibus [GEO], n.d. (Last access 19/07/2022e), SSC
(Last access 19/07/2022h), Simons VIP SFARI (Last access
19/07/2022g), and autism brain imaging data exchange
(ABIDE/) (Khodatars et al., 2021). Table 2 and Supplementary
Table 1 summarize studies of ASD diagnosis using ML and
DL techniques. As can be seen, the ABIDE database has a
special place in research. ABIDE is recognized as the most
complete and freely available database of MRI modalities for
the automatic diagnosis of ASD (Khodatars et al., 2021). This
dataset has two parts, ABIDE 1 and ABIDE-II, containing
sMRI data, rs-fMRI data, and phenotypic data. 1112 datasets
are involved in ABIDE I, and 1114 datasets are included in

ABIDE II (Khodatars et al., 2021). ABIDE 1 also contains
preprocessed data from MRI modalities for research, known as
the preprocessed connectomes project (PCP) (Khodatars et al.,
2021). Additionally, other available datasets, such as NDAR,
UCI, and NRGR, have been used in ASD diagnostic. The results
show that these datasets have been able to achieve satisfactory
results. The datasets used for each study are summarized in
Table 2 and Supplementary Table 1.

Preprocessing techniques for
functional and structural modalities

Preprocessing techniques are needed to help CADS to
achieve promising results. The sMRI and fMRI neuroimaging
modalities have implemented fixed preprocessing steps using
different software packages. The most common software
packages are brain extraction tools (BET) (Soltaninejad et al.,
2014), FMRIB software libraries (FSL), statistical parametric
mapping (SPM), and FreeSurfer (Khodatars et al., 2021). The
following is the standard preprocessing steps for fMRI and
sMRI neuroimaging modalities. Some of them are common
for both fMRI and sMRI modalities, so we will introduce
them in the fMRI-related section. Figure 3 shows the standard
fMRI and sMRI techniques. Also, the pipeline preprocessing
techniques for ABIDE datasets will be introduced in another
section.

The standard Preprocessing is a necessary step in fMRI,
and if preprocessing is not carried out properly, it will lead
to reduced performance of automated diagnosis of ASD.
This step aims to extract regions suspected of having ASD
and examine the function of brain neurons in those regions.
The preprocessing steps of fMRI include delineation of the
brain region, removal of the first few volumes, slice timing
correction, inhomogeneity correction, motion correction,
intensity normalization, temporal filtering, spatial smoothing,
and ultimately registration standard atlas (Khodatars et al.,
2021). As mentioned earlier, this step is usually carried out by a
toolbox, including BET (Khodatars et al., 2021), FSL (Khodatars
et al., 2021), SPM (Anand and Sahambi, 2010; Khodatars
et al., 2021), FreeSurfer (Lee and Xue, 2017; Khodatars et al.,
2021), etc. In reference (Khodatars et al., 2021), the details for
standard preprocessing steps of fMRI modalities are elaborately
explained.

The preprocessing of sMRI data extracts helps physicians
examine regions with suspected ASD more accurately. Besides,
low-level sMRI preprocessing methods help AI-based CADS
to process important information. This process increases the
accuracy and efficiency of diagnosis of ASD CADS. The most
important standard sMRI covers intensity standardization,
de-oblique, re-orientation, Denoising, and segmentation
(Khodatars et al., 2021). In reference (Khodatars et al., 2021),
each step of standard preprocessing for sMRI modalities is
explained.
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TABLE 2 Automated diagnosis of ASD with MRI neuroimaging modalities using ML methods.

References Dataset Number
of cases

Modalities Atlas +
Pipeline

Feature
extraction

Feature
selection

Classification The best
performance
criteria (%)

Haweel et al.,
2020

NDAR 39 ASD rs-fMRI Brainnetome
(BNT) Atlas

GLM Features RFE RF Acc= 72

sMRI MNI-152 Atlas

Yang X. et al.,
2019

ABIDE 505 ASD, 530
HC

rs-fMRI CC400 Atlas +
CPAC Pipeline

Different Features Nilearn Ridge Acc= 71.98
Pre= 71.53
Rec= 70.89

Zhang X. et al.,
2020

NDAR 30 ASD, 30 HC sMRI NA Cortical Path Signature
Features

− Siamese Verification
Model

Acc= 87
Sen= 83
Spe= 90

Bi et al., 2019 ABIDE 103 ASD, 106
HC

rs-fMRI AAL Atlas +
DPARSF
Pipeline

Graph-Theoretic
Indicators
(Dimensional Features)

− GERSVMC Acc= 96.8

Sartipi et al.,
2018

ABIDE 222 ASD, 246
HC

rs-fMRI HO Atlas +
CPAC Pipeline

GARCH Model T-test SVM Acc= 75.3

Saad and Islam,
2019

UMCD 51 ASD, 41 HC DTI NA Graph Theory-based
Features

PCA SVM Acc= 75
Sen= 81.94
Spe= 70
Pre= 70.42

Liu W. et al.,
2020

ABIDE 250 ASD, 218
HC

rs-fMRI AAL Atlas +
CPAC Pipeline

Dimensional Feature
Vectors

− Elastic Net Acc= 83.33

Zhuang et al.,
2018b

Clinical 20 ASD sMRI NA GLM Different Feature
Selection
Methods

RF NA

rs-fMRI

Zheng et al.,
2019

ABIDE 66 ASD, 66 HC sMRI NA Morphological and
MFN Features

RFE SVM Acc= 78.63
Sen= 80
Spe= 77.27

ElNakieb et al.,
2019

NDAR 122 ASD, 141
HC

DTI MNI-152 Atlas Global and Local
Feature Extraction

Signal to Noise
Ratio (s2n) Filter
Based Feature
Ranking

SVM Acc= 71
Sen= 72
Spe= 70

Ge et al., 2018 NDAR 57 ASD, 34 HC sMRI NA Morphometrical
Features

− K-Means Clustering NA

Stevens et al.,
2019

NA 2400 ASD Different
modalities

NA Latent Clusters +Bayesian
Information
Criterion

Linear Regression
(LR)

Intensity= 94.29

Wang J. et al.,
2020

ABIDE 175 ASD, 234
HC

rs-fMRI AAL Atlas Patch-based Functional
Correlation Tensor
(PBFCT) Features, FC
Features

MSLRDA, T-test Multi-View Sparse
Representation
Classifier (MVSRC)

NA

Dekhil et al.,
2019

NDAR 72 ASD, 113 HC sMRI Desikan-
Killiany (DK)
Atlas

Morphological,
Volumetric, and
Functional
Connectivity Features

− KNN, RF Acc= 81
Sen= 84
Spe= 79.2

rs-fMRI

Abdullah et al.,
2019

NA 189 ASD, 515
HC

AQ NA Different Features Chi-Squared
Test, LASSO

LR Acc= 97.54
Sen= 100
Spe= 96.59

Demirhan, 2018 UCI 104 ASD ASD Scan Data NA Different Features Grid Search
Method

RF Acc= 100
Sen= 100
Spe= 100

Syed et al., 2017 ABIDE 392 ASD, 407
HC

rs-fMRI DPARSF
Pipeline

ICA + Different
Features (Reproducible
REs, NMI Values, AC
Maps)

gRAICAR K-Means Clustring Acc= 82.4
Sen= 77
Spe= 87

Liu W. et al.,
2020

ABIDE 1 403ASD, 468
HC

rs-fMRI AAL Atlas +
CPAC Pipeline

Dynamic Functional
Connectivity (DFC)
and Mean Time Series
Features

MTFS-EM SVM Acc= 76.8
Sen= 72.5
Spe= 79.9

Wang Y. et al.,
2020

ABIDE 255 ASD, 276
HC

rs-fMRI DPARSF
Pipeline

Functional
Connectivity Features

RFE SVM Acc= 90.6
Sen= 90.62
Spe= 90.58

Xiao et al., 2017 Clinical 46 ASD, 39 DD
(Developmental
Delay)

sMRI DK Atlas Neuroanatomical
Features (Regional
Cortical Thickness,
Cortical Volume,
Cortical Surface Area)

− RF Acc= 80.9
Sen= 81.3
Spe= 81
AUC= 88

Eill et al., 2019 CFMRI 46 ASD, 47 HC Different
Modalities

Johns Hopkins
(JH), HO Atlas

Anatomical Variables,
Cortical, Mean
Diffusivity Values,
Connectivity Matrices,
and DTI Features

− Conditional
Random Forest
(CRF)

Acc= 92.5
Sen= 97.8
Spe= 87.2
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TABLE 2 (Continued)

References Dataset Number
of cases

Modalities Atlas +
Pipeline

Feature
extraction

Feature
selection

Classification The best
performance
criteria (%)

Sarovic et al.,
2020

Clinical 24 ASD, 21
HC

sMRI NA Morphological Features
of Subcortical Volumes

− LR Acc= 73.2

Zhao F. et al.,
2017

ABIDE 54 ASD, 57
HC

sMRI Different
Atlase +
DPARSF
Pipeline

Regional Morphological
Features

HSL-CCA, PCA Linear SVM Acc= 81.6
F1-S= 81.4

t-fMRI

Dekhil et al.,
2018

NDAR 123 ASD, 160
HC

sMRI All Atlases PICA (Spatial
Components,
Correlation Values,
Power Spectral
Densities)

SAE SVM Acc= 92
Sen= 93
Spe= 89

rs-fMRI

Yang M. et al.,
2019

ABIDE 1 260 ASD, 308
HC

rs-fMRI AAL Pipeline − − Attention Based
Semi-Supervised
Dictionary Learning
(ASSDL) Model

Acc= 98.2

Jiang et al., 2019 ABIDE 1 250 ASD, 218
HC

rs-fMRI AAL Atlas +
CPAC Pipeline

Multi-Center Domain
Adaptation (MCDA)
Method

− KNN Acc= 73.45
Sen= 69.23
Spe= 79.17

Madine et al.,
2020

ABIDE 1 155 ASD, 186
HC

sMRI DK Atlas Low-Order
Morphological
Connectivity Network
(LON), Single Cell
Interpretation via
Multi-Kernel Learning
(SIMLR), Similarity
Matrix

− Hypergraph Neural
Network (HGNN)

Acc= 75.2

Thomas and
Chandran, 2018

ABIDE NA sMRI NA GLCM − ANN NA

rs-fMRI

Haweel et al.,
2019b

Clinical 30 ASD, 30
HC

t-fMRI BNT Atlas GLM Feature Extraction − Stacked
Non-negativity
Constraint
Auto-Encoder
(SNCAE)

Acc= 75.8
Sen= 74.8
Spe= 76.7

Huang F. et al.,
2019

ABIDE 1 109 ASD, 144
HC

rs-fMRI AAL,
Dosenbach 160,
CC 200 Atlas +
DPARSF
Pipeline

Sparse Low-Rank
Functional Connectivity
Network

Different Feature
Selection
Methods

SVM Acc= 81.74
Sen= 71.83
Spe= 89.50

Benabdallah
et al., 2018

ABIDE 1 870 Subjects rs-fMRI AAL,
multi-subject
dictionary
learning
(MSDL) Atlas +
CPAC Pipeline

ROIs Extraction,
Connectivity Graphs
Construction +
Minimum Spanning
Trees Extraction

MSTs
Elimination

SVM Acc= 74,89
Sen= 24,19
Spe= 93,59

Haweel et al.,
2019a

Clinical 30 Subjects t-fMRI BNT Atlas Multi-Level GLM +
GLM3 Parameters,
Z-Stats Maps for All
Brain Areas

RFE RF Acc= 78

Alvarez-Jimenez
et al., 2020

NDAR 22 ASD, 25
HC

t-fMRI Proposed Atlas GLM Analysis − Stacked Autoencoder
With Non-Negativity
Constraint (SNCAE)

Acc= 94.7

sMRI

Chaitra et al.,
2020

ABIDE 1 34 ASD, 34
HC

sMRI HO Atlas Curvelet Transform +
Coefficient Distribution
Per Curvelet Sub-Band

Generalized
Gaussian
Distribution
(GGD)

SVM Different Results

ABIDE II 42 ASD, 41
HC

Fan et al., 2020 ABIDE 1 432 ASD, 556
HC

rs-fMRI CC200 Atlas +
DPARSF
Pipeline

Graph-Theoretic
Measures, Traditional
FC Data

Recursive-
Cluster-
Elimination
(RCE)

SVM Acc= 70.1
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TABLE 2 (Continued)

References Dataset Number
of cases

Modalities Atlas +
Pipeline

Feature
extraction

Feature
selection

Classification The best
performance
criteria (%)

Mellema et al.,
2020

ABIDE 1 145 ASD, 157
HC

rs-fMRI CC200
Atlas +
CPAC
Pipeline

Two-Group
Cross-Localized Hidden
Markov Model

Likelihood
Values

SVM Acc= 74.9

ElNakieb et al.,
2018

IMPAC 418 ASD, 497
HC

rs-fMRI All Atlases Tangent-Space Embedding
Metric

Permutation
Feature
Importance
(PFI)

DenseFFwd Acc= 75.4–80.4

Ke et al., 2019 Different
Datasets

72 ASD, 113
HC

sMRI DK Atlas Anatomical and
Connectivity Matrix
Features

− KNN, RF, and SVM Acc= 81
Sen= 78
Spe= 83.5

rs-fMRI

Ke et al., 2019 Different
Datasets

97 ASD, 56
HC

DTI JH Atlas Global Features (FA, MD,
AD) + Feature Mapping to
Atlas + Local Feature
Extraction (PDFs of
Features for Each WM
Area in the Atlas)

− KNN, RF, and SVM Acc= 81
Sen= 78
Spe= 83.5

Mostafa et al.,
2019a

NAMIC 2 ASD, 2 HC sMRI NA Adaptive Independent
Subspace Analysis (AISA)
Method, Texture Analysis +
Different Features

t-SNE KNN Acc= 94.7
Sen= 92.29
Spe= 94.82
F1-S= 93.56

Bernas et al.,
2018

ABIDE 1 403 ASD, 468
HC

rs-fMRI NA Eigenvalues and Topology
Centralities Features

Backward
Sequential
Feature
Selection
Algorithm

LDA Acc= 77.7

sMRI

Dekhil et al.,
2020

Clinical 12 ASD, 12
HC

rs-fMRI NA Group Independent
Component Analysis
(gICA) + Wavelet
Coherence Maps Extraction

− SVM Acc= 86.7
Sen= 91.7
Spe= 83.3

ABIDE 12 ASD, 18
HC

Yassin et al.,
2020

ABIDE 1 561 ASD, 521
HC

sMRI DK, AAL
Atlas + CCS
Pipeline

Anatomical Feature
Extraction + Functional
Connectivity Analysis

− KNN Different Results

rs-fMRI

Soussia and
Rekik, 2018

Clinical 36 ASD, 106
HC

sMRI NA Cortical Thickness, Surface
Area, and Subcortical
Volume Features

PCA SVM Different Results

Xiao et al., 2017 ABIDE 1 155 ASD, 186
HC

sMRI DK Atlas Low-Order Morphological
Network Construction
(LON), High-Order
Morphological Network
Construction (HON)
Features

t-SNE,
K-Means
Clustering

SVM Acc= 61.7

Zhao F. et al.,
2018

Clinical 46 ASD, 39
DD

sMRI Talairach,
DK Atlas

Regional Cortical
Thickness, Cortical
Volume, And Cortical
Surface Area

− RF Acc= 80.9
Sen= 81.3
Spe= 81

Fredo et al.,
2018

ABIDE 54 ASD, 46
HC

rs-fMRI AAL Atlas +
DPARSF
Pipeline

LON and HONs Features LASSO Ensemble Classifier
with Multiple Linear
SVMs

Acc= 81

Bi et al., 2018 ABIDE 160 ASD, 160
HC

rs-fMRI HO Atlas Functional Connectivity
Matrix

CRF SVM Acc= 65
Sen= 65
Spe= 65

Tejwani et al.,
2017

ABIDE 61 ASD, 46
HC

rs-fMRI AAL Atlas Graph Theory − Random SVM
Cluster

Acc= 96.15

Tang et al., 2019 ABIDE 147 ASD, 146
HC

rs-fMRI CC200
Atlas +
DPARSF
Pipeline

Two Different Features Sets − SVM Acc= 61.1
Sen= 61.8
Spe= 60

Reiter et al.,
2021

ABIDE 42 ASD, 37
HC

rs-fMRI NA Functional Connectivity
Matrix

− Different Classifiers AUC= 97.75

Rane et al., 2017 ABIDE 306 ASD, 350
HC

rs- fMRI NA Functional Connectivity
Matrix

CRF RF Acc= 73.75

Tolan and Isik,
2018

ABIDE 1 539 ASD, 573
HC

rs-fMRI CPAC
Pipeline

Feature Extraction (All
Voxels Within Gray Matter
Template Mask in MNI152
Space)

− SVM Acc= 62
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TABLE 2 (Continued)

References Dataset Number
of cases

Modalities Atlas +
Pipeline

Feature
extraction

Feature
selection

Classification The best
performance
criteria (%)

Elnakieb et al.,
2020

UMCD 79 Functional
and 94
Structural
Connectomes

rs-fMRI NA Graph Theory +
Global, Nodal
Measurements, and
Gender Information

Relief Algorithm Ensemble Learning Acc= 67
pre= 0.67
Recall= 70

DTI Acc= 68
Pre= 0.73
Rec= 70

Crimi et al.,
2017

NDAR 124 ASD, 139
HC

DTI JH Atlas Global and Local
Features

Signal to Noise
Ratio (S2n) Filter

SVM Acc= 73
Sen= 70
Spe= 76

Jahedi et al.,
2017

ABIDE II 31 ASD, 23 HC rs-fMRI AAL Atlas Connectivity Matrix − SVM Acc= 72.34

DTI

sMRI

Bhaumik et al.,
2018

ABIDE 126 ASD, 126
HC

rs- fMRI NA Functional
Connectivity Matrix

CRF SVM Acc > 90

Clinical 42 ASD, 30 HC

Savva et al., 2020 ABIDE 167 ASD, 205
HC

rs-fMRI CCS Pipeline Functional
Connectivity Matrix

− SVM Different Results

Mathur and
Lindberg,

ABIDE 1 403 ASD, 465
HC

rs-fMRI HO Atlas +
CPAC Pipeline

sFC, dFC, and Haralick
Texture Features

− SVM −

Eill et al., 2019 ABIDE Whole Dataset rs-fMRI AAL Atlas +
DPARSF
Pipeline

Pearson Correlation
Coefficient, Graph
Measures, and Mean
Intensities Features

− Adaboost Acc= 66.08

Zhuang et al.,
2018a

Clinical 46 ASD, 47 HC sMRI JH Atlas Functional
Connectivity Matrix
Features

− CRF Acc= 92.5
Sen= 97.8
Spe= 87.2

DWI HO Atlas

rs-fMRI

Kazeminejad
and Sotero, 2019

Clinical 19 ASD t-fMRI NA Elastic Net Regression − RF NA

ABIDE 64 ASD rs-fMRI

[129] ABIDE 1 816 Subjects rs-fMRI AAL Atlas +
CPAC Pipeline

Graph Theoretical
Metrics

Sequential
Forward Floating
Algorithm

SVM Acc= 95
Sen= 97
Spe= 91

Song et al., 2019 ABIDE 1 119 ASD, 116
HC

rs-fMRI AAL, CC200
Atlas +
DPARSF
Pipeline

Community Pattern
Quality Metrics
Features

− LDA, KNN Acc= 75
Prec= 76.07
Rec= 71.67

ABIDE II 97 ASD, 117
HC

Cordova et al.,
2020

Clinical 64 ASD, 66
ADHD, 28 HC

rs-fMRI NA 43 Executive Functions
(EF)

− Functional Random
Forest (FRF)

Different Results

Sadeghi et al.,
2017

Clinical 29 ASD, 31 HC sMRI Different Atlas Graph Theory +
Different Features

Statistical
Analysis

SVM Acc= 92

20 ASD, 20 HC t-fMRI

Zhang L. et al.,
2020

ABIDE 1 21 ASD, 26 HC rs-fMRI AAL Atlas +
DPARSF
Pipeline

Fast Entropy
Algorithm + Important
Entropy

− SVM AUC= 62

Shi et al., 2020 ABIDE 1 59 ASD, 46 HC rs-fMRI AAL Atlas +
DPARSF
Pipeline

Function
Connectivity +
Minimum Spanning
Tree (MST)

− SVM Acc= 86.7
Sen= 87.5
Spec= 85.7

Richards et al.,
2020

ABIDE 1 437 ASD, 511
HC

sMRI − Computing the Brain
Asymmetry with The
BrainPrint +
Asymmetry Values

− LR Models NA

Payabvash et al.,
2019

Clinical 14 ASD, 33 HC MRI, DTI DK Atlas Different Features − Naïve Bayes, RF,
SVM, NN

Acc= 75.3
Sen= 51.4
Spec= 97.0

Huang H. et al.,
2019

ABIDE 45 ASD, 47 HC rs-fMRI AAL Atlas Modified Weighted
Clustering Coefficients

T-test and
SVM-RFE

Multi-Kernel Fusion
SVM

Acc= 79.35
Sen= 82.22
Spec= 76.60

Huang et al.,
2020a

ABIDE I 505 ASD, 530
HC

rs-fMRI CC200 Atlas +
CPAC Pipeline

Functional
Connectivity

Graph-Based
Feature Selection

MMoE Model Acc= 68.7
Sen= 68.9
Spec= 68.6

Jung et al., 2019 ABIDE, 86 ASD, 83
ADHD, 125
HC

sMRI, rs-fMRI DK Atlas Functional
Connectivity

Univariate T-test
and Multivariate
SVM-RFE

SVM Acc= 76.3
Sen= 79.2
Spec= 63.9
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References Dataset Number
of cases

Modalities Atlas +
Pipeline

Feature
extraction

Feature
selection

Classification The best
performance
criteria (%)

DSouza et al.,
2019

ABIDE 24 ASD, 35
HC

rs-fMRI AAL Atlas Mutual Connectivity
Analysis with Local
Models (MCA-LM)

Kendall’s τ

Coefficient
RF and AdaBoost Acc= 81

Devika and
Oruganti, 2021

ABIDE II 23 ASD, 15
HC

rs-fMRI AAL Atlas +
AFNI Pipeline

Functional Connectivity ANOVA F-Score SVM Acc= 80.76

Ahammed et al.,
2021

ABIDE 1 74 ASD, 74
HC

fMRI DPARSF, CCS
Pipeline

Bag-of-Feature (BoF)
Extraction

− SVM Acc= 81
Sen= 81
Spec= 86

Yap and Chan,
2020

ABIDE 70 ASD, 74
HC

fMRI NA Functional Connectivity Elastic SCAD
SVM

SVM Acc= 90.85
Sen= 90.86
Spec= 90.90

Wang et al.,
2019c

ABIDE 250 ASD, 218
HC

rs-fMRI AAL Atlas +
CPAC Pipeline

Functional
Connectivity +
Low-Rank
Representation
Decomposition (maLRR)

− KNN, SVM Acc= 73.44
Sen= 75.79
Spec= 69.52

Karampasi et al.,
2020

ABIDE 399 ASD, 472
HC

rs-fMRI CC200 Atlas +
CPAC Pipeline

Feature Extraction (Static
FC, Demographic
Information, Haralick
Texture Features,
Kullback-Leibler
Divergence)

Feature Selection
Algorithms
(RFE-CBR,
LLCFS, InfFS,
mRMR,
Laplacian Score)

SVM, KNN, LDA,
Ensemble Trees

Acc= 72.5
Sen= 94
Spec= 64.7

Graña and Silva,
2021

ABIDE 408 ASD, 476
HC

rs-fMRI CPAC Atlas 5 Methods for Functional
Connectivity Matrix
Construction

6 Feature
Extraction/
Selection
Approaches

9 Classifiers −

Yamagata et al.,
2019

Clinical 30 Pairs of
Biological
Siblings

rs-fMRI Social Brain
Connectome
Atlas

Functional Connectivity Sparse LR (SLR) Bootstrapping
Approach

Acc= 75
Sen= 76.67
Spec= 73.33

Conti et al., 2020 Clinical 26 ASD, 24
CAS, 18 HC

sMRI − Feature Extraction Statistical
Analysis

SVM AUC= 73

Deshpande
et al., 2013

Clinical 15 ASD, 15
HC

Task-fMRI − Functional
Connectivity + Effective
Connectivity

− RCE-SVM Acc= 95.9
Sen= 96.9
Spec= 94.8

Kazeminejad
and Sotero, 2020

ABIDE 1 − rs-fMRI CC200, AAL
Atlas + CPAC
Pipeline

Graph Extraction +
Feature Extraction

PCA MLP Different Results

Song et al., 2019 ABIDE 119 ASD, 116
HC

rs-fMRI AAL Atlas +
DPARSF
Pipeline

Resting-State Functional
Network Community
Pattern Analysis

RFE LDA Acc= 74.86
Prec= 76.07
Recall= 71.67

Tang et al., 2019 ABIDE 42 ASD, 37
HC

rs-fMRI − Functional
Connectivity + Joint
Symmetrical
Non-Negative Matrix
Factorization (JSNMF)

− SVM AUC= 97.75

Mhiri and
Rekik, 2020

ABIDE 245 ASD, 272
NC

rs-fMRI DPARSF
Pipeline

Different Features NAG-FS SVM Acc= 65.03

Itani and
Thanou, 2021

ABIDE 1 201 ASD, 251
HC

rs-fMRI AAL Atlas +
CPAC Pipeline

Graph Construction +
Graph Signal Processing
(GSP)

Fukunaga-
Koontz
Transform
(FKT)

DT Acc= 75

Zhan et al., 2021 ABIDE 1 133 ASD, 203
HC

rs-fMRI, sMRI − Functional Connectivity Statistical
Analysis

Sparse LR Acc= 82.14
Sen= 79.70
Spec= 83.74

ABIDE II 60 ASD, 89
HC

Wismüller et al.,
2020

ABIDE II 24 ASD, 35
HC

rs-fMRI AAL Atlas large-scale Extended
Granger Causality
(lsXGC)

Kendall’s Tau
rank correlation
coefficient

SVM Acc= 79

Deshpande
et al., 2013

Clinical 15 ASD, 15
HC

fMRI NA Functional Connectivity,
Effective Connectivity,
and Fractional anisotropy
(FA) From DTI,
Behavioral Scores

Recursive
Cluster
Elimination

SVM Acc= 95.9

Jiao et al., 2010 Clinical 22 ASD, 16
HC

MRI Cortical Atlas Thickness and
Volume-Based Features

Surface-Based
Morphometry

Different Classifiers
(SVM,FT, LMT)

Acc= 87
Sen= 95
Spe= 75

Ecker et al.,
2010b

Clinical 22 ASD, 22
HC

MRI NA GLM, Different Features RFE-SVM SVM Spe= 86
Sen= 88

Chen et al., 2013 ABIDE 126 ASD, 126
HC

rs-fMRI NA Pearson Correlation
Matrix, Connectivity
Measures

PSO-SVM SVM -RFE Acc= 66
Sen= 60
Spe= 72
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Feature
extraction

Feature
selection

Classification The best
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Uddin et al.,
2011

ABIDE 24 ASD, 24
HC

sMRI NA Multivariate Statistical
Pattern, Morphological
Feature

NA SVM Acc= 80

Ingalhalikar
et al., 2011

Clinical 45 ASD, 30
HC

DTI EVE FA (Fractional
Anisotropy), MD Mean
diffusivity, Anatomical
ROI’s

Signal-To-
Noise (s2n)
Ratio
Coefficient
Filter

SVM Spe= 84
Sen= 74

Varol et al., 2012 Clinical 81 ASD, 50
HC

MRI NA Feature Extraction
[Voxelwise Tissue
Density Maps For GM,
WM, and ventricles
(VN)]

Welch’s T-test SVM Acc= 73.28
Sen= 71.6
Spe= 76

Murdaugh et al.,
2012

Clinical 13 ASD,15
HC

fMRI NA Functional ROIs,
Functional
Connectivity,
Seed-Based Connectivity

T-test Logistic regression Acc > 96.3

Bloy et al., 2011 Clinical 23ASD,22 HC MRI NA Orientation Invariant
Features of Each ROI’s
Mean FOD

PCA SVM Acc= 77

Giuliano et al.,
2013

Clinical 76 ASD,76
HC

sMRI NA Sequences Of The
Intensity Values Of The
GM Segments

SVM-RFE SVM Sen= 82
Spe= 80

Deshpande
et al., 2013

Clinical 15 ASD, 15
HC

Task-fMRI NA Functional
Connectivity, Effective
Connectivity

NA RCE-SVM Acc= 95.9
Sen= 96.9
Spec= 94.8

Ecker et al.,
2010a

Clinical 20 ASD, 20
HC

MRI NA Morphological
Parameters Including
Volumetric and
Geometric Features

NA SVM Sen= 90
Spe= 80

Li et al., 2012 Clinical 10 ASD,10
HC

DTI JHU-DTI-
MNI

Brain Connectivity
Network

Network
Regularized
SVM-RFE

SVM Acc= 100

Bryant et al.,
2012

Clinical 31 Klinefelter
syndrome, 8
XYY
Syndrome 75
HC

sMRI NA Statistical
Parametric Mapping
[Gray Matter Volume
(TGMV) A Volume
(TWMV) Measures]

RFE SVM NA

Vigneshwaran
et al., 2013

Clinical, ABIDE 79 ASD,105
HC

MRI NA Voxel Locations of VBM
Detected Brain Region

T-test PBL-McRBFN Acc (Mean)= 70
Sen (Mean)= 53
Spe (Mean)= 72

Sato et al., 2013 Clinical 82 ASD, 84
HC

sMRI NA Inter-Regional
Thickness Correlation
(IRTC) Using Pearson
Correlation Between the
Cortical Thicknesses of
Each Region.

NA Support Vector
Reression

NA

An et al., 2010 Clinical DTI Data: 5
b0 iImages,
followed by
30 Diffusion
Weighted
Images, Child
Control
dataset

fMRI Brodmann Fiber Connectivity
Feature, ROIs
Extraction, Functional
Connectivity
Information

NA mv-EM Max Percent Error:
mv-EM: 8.55

DTI

Sadato and
Tanabe, 2012

Clinical 21 ASD,21HC fMRI NA Neural Substrates And
Inter-Individual
Functional Connectivity

T-test NA Acc= 74.2∓1.9

Filipovych et al.,
2012

BLSA 17 MCI (mild
cognitive
impairment)

MRI NA Tissue Density Maps,
Top-Ranked Features
Wavelet Decomposition
Level

Wavelet-Based
Data
Compression

JointMMCC Different Results

Calderoni et al.,
2012

Clinical 38 ASD, 38
HC

sMRI NA Volumetric Variables
(GM, WM, CSF, TIV),

SVM-RFE,
T-test

SVM AUC= 80

Jiao et al., 2011 Clinical 13 ASD MRI NA Regional Cortical
Thicknesses And
Volumes

NA Three
Decision-Tree-Based
Models, SVM,
logistic Model Tree

Acc > 80
Spe > 34
Sen > 92

Nielsen et al.,
2013

ABIDE 447 ASD, 517
HC

rs-fMRI NA Functional Connectivity
From a lattice of ROIs
Covering The Gray
Matter

NA leave-one-out Acc= 60
Spe= 58
Sen= 62
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Jiao and Lu,
2011

Clinical 22 ASD, 16 HC MRI NA Using Surface-based
morphometry For
Cortical Features
(Average thickness,
Mean Curvature,
Gaussian curvature,
Folding index,
Curvature index)

NA SVM,FT,LMT Acc (SVM)= 74
Acc (FT)= 76
Acc (LMT)= 76

Retico et al.,
2016a

Clinical 76 ASD, 76 HC sMRI NA GM Volumes RFE SVM AUC= 82

Retico et al.,
2016b

Clinical 41 ASD, 40 HC sMRI NA Regional Features − SVM AUC= 81

Subbaraju et al.,
2017

ABIDE 505 ASD, 530
Neurotypical
Subjects

rs-fMRI NA Spatial Feature-based
Detection Method
(SFM) (Mean
Connectivity Matrices,
Discriminative
Log-variance Features)

Feature Selection
Based on top m
Signals

SVM Acc= 95

Gori et al., 2016 Clinical 41 ASD, 40 HC sMRI NA ROI Features − SVM AUC= 74

Lu et al., 2015 Clinical 35 ASD, 51 TD,
39 No Known
Neuropsychiatric
Disorders

fMRI NA Individual Difference
Measures in BOLD
Signals

− LR Sen= 63.64
Spe= 73.68

Chen et al., 2016 ABIDE 112 ASD, 128
HC

rs-fMRI NA Functional
Connectivity Values

F-score Method SVM Acc= 79.17

Wee et al., 2014 NDAR 58 ASD, 59 HC sMRI NA Regional and
Interregional
Morphological Features

T-test SVM Acc= 96.27
AUC= 99.52

mRMR

Zhou et al., 2014 ABIDE 127 ASD, 153 TD sMRI NA Quantitative Imaging
Features (Regional
Gray Matter and
Cortical Thickness
Volumes)

mRMR SVM Acc= 70

Pipeline methods
The pipelines are a preprocessed version of ABIDE data

using standard preprocessing procedures, which researchers
can use to avoid the problems of variations in the output
between different studies as a result of preprocessing.
The most popular ABIDE pipelines include neuroimaging
analysis kit (NIAK), data processing assistant for rs- fMRI
(DPARSF), the configurable pipeline for the analysis of
connectomes (CPAC), and connectome computation system
(CCS) (Khodatars et al., 2021).

Feature extraction

Representing data that allows ML algorithms to reason
about them is the key to any related research. If this is not
done, high performance cannot be achieved. Most commonly
used feature extraction schemes for fMRI and sMRI are
statistical, texture, morphological, non-linear, graph, functional
connectivity, and structural connectivity schemes.

Statistical features
Autism spectrum disorder is typically detected with MRI

modalities using statistical features, the most straightforward
group of features. Despite their simplicity, these features
are usually informative and can also serve as a benchmark

for evaluating other methods of feature extraction as well.
Additionally, the process of extracting these features is
not time-consuming in comparison to other methods.
However, these methods do not reveal non-linear or
subtle patterns in data. Using statistical features for ASD
diagnosis, Dekhil et al. (2019) extracted various statistical
features from MRI data and then applied KNN and SVM
algorithms in the classification step. The authors reported 81%
accuracy.

Texture features
As a group of features, spatial patterns form an indispensable

group, possibly the most important group, since the cognitive
system of the human is mostly dependent on them. Gray-level
co-occurrence matrix (GLCM) (Jafarpour et al., 2012) feature
extraction is one of the most widely used methods in various
research studies (Thomas and Chandran, 2018) among various
textures-based features. Haweel et al. (2020) presented an ASD
diagnostic method based on MRI data. Texture features and the
RFE technique were used in the feature extraction and feature
selection steps. Then, the authors used the RF technique for
classifying features and reached an accuracy of 72%. In another
study, scholars used various methods, such as Haralick, in the
feature extraction step from sMRI data. Then, the authors tested
different feature selection methods and reached an accuracy
of 72.5%.

Frontiers in Molecular Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnmol.2022.999605
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-15-999605 September 28, 2022 Time: 15:22 # 14

Moridian et al. 10.3389/fnmol.2022.999605

A B

FIGURE 3

Standard preprocessing methods for MRI neuroimaging modalities: (A) preprocessing for fMRI data, (B) preprocessing for sMRI data.

Morphological features
Morphological operation is an important feature

extraction technique frequently used in image processing
(Usha and Perumal, 2019). In these methods, features are
extracted from the appearance and shape of the image.
Morphological operation is often used to process binary
images, but they can also be used for gray and color-level
images (Gupta et al., 2019). Morphological features are
also commonly used for diagnosing brain diseases from
sMRI modalities. Zheng et al. (2019) proposed the idea of
ASD diagnosis using morphological features. After feature
extraction, RFE and SVM were tested for feature selection
and classification, respectively. An accuracy of 78.63% was
obtained.

Non-linear features
A non-linear characteristic of biological data is emphasized

when considering non-linear features. The performance
of CADS for ASD is significantly enhanced through the
use of these features (Anand and Sahambi, 2010). In
reference (Mellema et al., 2020), non-linear-based features
of likelihood are used to detect autism using MRI neuroimaging
methods. Entropies are one of the most important non-
linear methods that are widely used to extract features from
signals and brain images (Georgiadis et al., 2008). Functional
imaging modalities are non-linear and chaotic, which has
led researchers to use entropy-based non-linear features
to diagnose brain disorders (Saritha et al., 2013; Wang
et al., 2022). Zhang L. et al. (2020) introduced a novel ASD
diagnostic method using fMRI data and a new entropy method.
This study initially used fast entropy for feature extraction
from preprocessed fMRI data. Then, they used the SVM
algorithm for feature classification and obtained satisfactory
results.

Graph features
This group of features is highly relevant to the analysis of

MRI data. Graph-based features are derived first by shaping
the data into a graph, and then, from the constructed graph,
local and global features are extracted (Lee and Xue, 2017).
Researchers have explored graph features to diagnose ASD
using fMRI data in many studies. Bi et al. (2019) employed rs-
fMRI from the ABIDE database for ASD diagnosis using graph
and genetic-evolutionary random SVM cluster (GERSVMC)
for feature extraction and classification steps, respectively, and
obtained an accuracy of 62%. Saad and Islam (2019) presented
an ASD diagnostic method based on graph features in another
study. After feature extraction via the graph method, PCA
and SVM techniques were used for feature reduction and
classification, which resulted in an accuracy of 75% for ASD
diagnosis.

Connectivity matrix
In order to process sMRI and fMRI neuroimaging images,

feature extraction methods based on connectivity matrix
methods are typically employed (Zeng et al., 2018; Yeh et al.,
2021). Such features provide information about the brain’s
structure and function. The functional connectivity matrix
(FCM) (Zhou and Wang, 2007; Yan and Zhang, 2015) and
structural connectivity matrix (SCM) (Yang et al., 2016; Ma et al.,
2019) are the measures employed for fMRI and sMRI modalities,
respectively. Connectivity features are mostly used in diagnosing
brain disorders. Table 2 and Supplementary Table 1 outline
studies on ASD diagnosis from MRI modalities using various AI
techniques. Table 2 shows that connectivity methods are most
frequently used for feature extraction from MRI modalities.
Liu W. et al. (2020) used dynamic functional connectivity
(DFC) in the feature extraction step of rs-fMRI data. The
feature selection step was also conducted by the MTFS-EM
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method. Finally, they used the SVM method for classification
and obtained an accuracy of 76.84%. In another study, Mathur
and Lindberg, utilized DFC and static functional connectivity
(SFC) in the feature extraction step. Then, the SVM was
tested for connectivity-based classification of features. Authors
could finally obtain satisfactory results for ASD diagnosis using
connectivity features.

Feature reduction/selection methods

It has been shown that increasing the number of
extracted features can help algorithms to represent data in
a more meaningful and robust way; however, the curse
of dimensionality (Fodor, 2002) may cause it to backfire
and reduce performance. Several methods for reducing
dimensionality and selecting features have been proposed to
prevent this from occurring. In addition, these methods are
widely used to increase the performance of CADS for detecting
autism spectrum disorders. Several methods have previously
been used in research papers, including principal component
analysis (PCA) (Wold et al., 1987), recursive feature elimination
(RFE) (Yan and Zhang, 2015), T-test (Zhou and Wang, 2007),
autoencoder (AE) (Yang et al., 2016), conditional random forest
(CRF) (Ma et al., 2019), Chi-squared (Ye and Yang, 2010),
and least absolute shrinkage and selection operator (LASSO)
(Muthukrishnan and Rohini, 2016). The following is a brief
description of these methods.

Principal component analysis
Principal component analysis is arguably the most common

dimensionality reduction method (Wold et al., 1987). It works
by finding and representing data by the principal components,
i.e., the vectors that preserve the most data variance. One of the
benefits of PCA is its ability to find a minimal number of features
required to preserve a specified variance ratio (Wold et al.,
1987). Principal component analysis (PCA) is one of the most
popular feature reduction techniques in medical applications
and has also been used in ASD diagnosis research (Zhao F.
et al., 2017; Soussia and Rekik, 2018; Saad and Islam, 2019;
Kazeminejad and Sotero, 2020).

Recursive feature elimination
Recursive feature elimination is more of a wrapper-type

algorithm, meaning that it is applied to a classification algorithm
to find the best subset of features. As the name explains,
this algorithm works by eliminating features one by one to
reach the optimal number. First, a classification algorithm is
trained on the dataset, ranking feature importance’s. The least
important feature is then eliminated and repeated until the
number of remaining features matches the desired number (Yan
and Zhang, 2015). Haweel et al. (2020) proposed a novel ASD
diagnostic method using the GLM feature extraction technique.
After feature extraction from MRI data, the RFE technique was

used for feature reduction. The RF method was also tested in the
classification step with an accuracy of 72%.

T-test
To find the best set of features, T-test calculates a score for

each feature, then ranks them based on that score and picks the
top features as selected ones. The score shows whether the values
of a feature for a class are significantly different from those for
another class by calculating the mean and standard division
(STD) of each feature in each class (Zhou and Wang, 2007).
A new ASD diagnostic method from MRI data was introduced
by Sartipi et al. (2018). First, the graph technique was used for
feature extraction from sMRI modalities. Then, they applied
the T-test and SVM algorithms for the feature selection and
classification steps and acquired an accuracy of 75%.

Chi-squared
Chi-Square is suitable when the features are categorical,

and the target variable is also categorical, such as classification.
Chi-Squared measures the degree of association between two
variables; thus, features that connect with the targets can be
picked (Ye and Yang, 2010). When the features are numerical,
we can use a T-test, or Chi-Square can be used for the
numerical variable by discretizing them (Ye and Yang, 2010).
In reference (Dekhil et al., 2019). The authors proposed a new
ASD diagnostic method using various ML techniques from MRI
data. Various methods were used for feature extraction. Then,
the Chi-squared method was tested for the feature selection step.
Next, the LR classification algorithm was applied, which resulted
in a promising performance.

Least absolute shrinkage and selection
operator

Least absolute shrinkage and selection operator is mainly a
regression method; however, this algorithm can also be used for
feature selection (Muthukrishnan and Rohini, 2016). Notably,
linear regression with L1 regularization is called Lasso. After
training, the lasso assigns a weight to each feature for the
regression (Muthukrishnan and Rohini, 2016). Using these
weights, there are two methods to pick the best features,
first, pick the K highest valued weights; second, pick all the
weights which have a value higher than a specified threshold
(Muthukrishnan and Rohini, 2016). Fredo et al. (2018) proposed
a new ASD diagnostic method based on Hons and Lon
features. Their paper used LASSO and SVM methods for
feature selection and classification. They reported an accuracy
of 81%.

Classification methods

This section discusses the various classification algorithms
used in CADS for ASD. As mentioned earlier, classification
is the last step in a CADS based on ML methods. Support
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vector machine (SVM) (Noble, 2006; Suthaharan, 2016), linear
discriminant analysis (LDA) (Zhang et al., 2007), k-nearest
neighbor (KNN) (Liao and Vemuri, 2002), and random
forest (RF) (Oshiro et al., 2012) are arguably among the
most popular methods used in CADS created for ASD.
Table 2 and Supplementary Table 1 show the classification
algorithms used for ASD detection. A summary of classification
algorithms used for automated detection of ASD are presented
below.

Support vector machine
Support vector machines are among the oldest classification

and has been widely used in many applications (Noble, 2006;
Suthaharan, 2016). SVM tries to find the best hyperplane to
separate data points; however, it only needs the dot product
between every two data points (Noble, 2006; Suthaharan, 2016).
Consequently, to transform data into another space, only a
function that gives the dot product of two points in that
space would suffice; this is also named kernel trick and is
used widely in other fields. Using an appropriate kernel, SVM
can usually yield high classification performances (Noble, 2006;
Suthaharan, 2016).

Random forest
Random forests are an ensemble learning-based method

proposed to make the decision trees robust to outliers (Oshiro
et al., 2012). The basic idea is to train many trees and determine
the final output based on voting among their outputs. To make
the final results robust, each tree is trained only on a fraction of
the data, and also each tree sees a fraction of all features. The
picked ratio for both of these is the square root of the available
number.

Linear discriminant analysis
Used as a tool for dimension reduction, classification, and

data visualization (Zhang et al., 2007). It is simple and robust
and yields interpretable classification results (Zhang et al., 2007).
It works by dividing the data space into K disjoint regions that
represent all the classes; then, in the testing phase, the label is
determined by finding the region in which the data belongs.
LDA can be used as the first benchmarking baseline before
other, more complicated ones are employed for real-world
classification problems (Zhang et al., 2007).

K-nearest neighbor
This classifier is among the simplest yet efficient algorithms;

its main idea is to assign the label of each data point based on the
label of those closest (Liao and Vemuri, 2002). Consequently,
there is no training phase; however, for each test subject,
the distance to all training points must be calculated, which
scales with the size of the dataset; thus, this method is not
applicable to enormous datasets. After finding the closest
points, the final label is determined using a voting scheme
(Liao and Vemuri, 2002).

Challenges in detecting autism
spectrum disorder with magnetic
resonance imaging neuroimaging
modalities and artificial
intelligence techniques

This section introduces the challenges facing ASD detection
from MRI neuroimaging modalities and AI techniques. The
challenges mentioned in this section cover dataset limitations,
lack of access to multimodal datasets, AI techniques, and
suitable hardware resources. They are briefly described below.

Unavailable magnetic resonance
imaging neuroimaging datasets with
different autism spectrum disorder
patient

All datasets available involve two classes of ASD and control
fMRI or sMRI modalities (Heinsfeld et al., 2018; El-Gazzar
et al., 2019; Felouat and Oukid-Khouas, 2020). However, there
are different types of ASD, and this poses a serious obstacle
for researchers in AI wishing to develop systems that can
detect different types of disorders. Datasets with different types
of ASD can help pave the way for accurate diagnosis of
various types of ASD.

Unavailable multi-modalities datasets
for autism spectrum disorder diagnosis

In medical research, specialists have shown that
neuroimaging multimodalities can effectively improve diagnosis
of brain disorders. Neuroimaging modality fusion is one of
the newest methods for diagnosing brain disorders such
as ASD (Jones et al., 2011), SZ (Bora et al., 2011), and
ADHD (Sibley et al., 2022). Physicians usually use MRI
data with other neuroimaging modalities to diagnose brain
disorders. To diagnose neurological and mental disorders,
fMRI-MEG (Kober et al., 1993), MRI-PET (Loeffelbein et al.,
2012), and EEG-fMRI (Valdes-Sosa et al., 2009) are the most
important multimodalities. Unfortunately, the neuroimaging
multimodalities datasets are not available for studies on ASD
diagnosis. Such datasets might lead to practical and interesting
studies in ASD diagnosis.

Challenges in artificial intelligence
algorithms in diagnosing autism
spectrum disorder

Computer-aided design systems based on ML algorithms are
highly time-consuming and complex to design. However, if the
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appropriate algorithms are selected, it can accurately diagnose
ASD (Iglesias et al., 2017; Khosla et al., 2019; Hiremath et al.,
2020; Leming et al., 2020, 2021). DL methods automatically
perform the steps from feature extraction to classification. By
using intelligent feature extraction, DL eliminates the need for
supervision on features, which may reduce the performance
of a CADS based on DL compared to ML. Therefore, when
ML methods are combined with DL, promising results can be
obtained in CADS for the diagnosis of ASD.

Challenges in hardware’s

The lack of access to appropriate hardware resources
is another problem encountered by researchers in the field
of automated ASD detection. ASD detection datasets that
are available publicly, such as ABIDE, have a lot of data;
this poses many challenges for storing and processing these
datasets on ordinary computers. In contrast, research in
CAD implementation on cloud servers has not been seriously
conducted to eliminate hardware resource problems. As a result,
cloud servers are not yet extensively used for data storage and
processing. Recently, some DL models called deep compact
CNN models have been introduced to be implemented on
hardware systems with limited resources (Zhang Z. et al., 2020).
Deep compact-size CNN models require fewer hardware sources
than other CNN methods (Tian et al., 2018; Wong et al.,
2019). Some deep compact-size CNN methods include FBNetV3
(Srinivas et al., 2019), MobileNet (Michele et al., 2019), and
TinyNet (Wu et al., 2018).

Discussion

This paper presents and compares the research about
automated ASD detection with MRI neuroimaging modalities

and AI methods. First, this section comprehensively compares
the conducted studies on ASD detection using ML and
DL techniques. In subsection one, the number of studies
conducted annually in ASD detection from MRI neuroimaging
modalities using different ML and DL techniques is presented.
In subsection two, the MRI datasets employed in studies
on the automated diagnosis of ASD using ML and DL
techniques are compared. In subsection three, the number
of MRI studies conducted annually on ASD detection
from MRI neuroimaging modalities is discussed. The
employed atlas in ML and DL studies for ASD detection
is introduced in subsection four. Finally, section five
discusses MRI pipeline techniques in the diagnosis of ASD
research using ML and DL methods. Ultimately, different
classification algorithms for ML and DL-based diagnosis of
ASD are compared.

Comparison between the numbers of
papers published each year for
machine learning and deep learning
research

This section presents the number of published papers
annually on ASD detection using AI techniques. Studies on
the ASD detection from MRI modalities and ML and DL
techniques began in 2017. Table 2 represents the papers
on ASD detection in MRI neuroimaging modalities using
ML methods. In addition, articles in ASD detection in MRI
neuroimaging modalities using DL techniques are introduced in
Supplementary Appendix A. Figure 4 illustrates the number of
papers published annually on ML and DL techniques for ASD
detection.

As demonstrated in recent years, researchers’ interest in
using DL architectures has significantly grown compared to

FIGURE 4

Shows the number of papers published in ASD detection using ML and DL methods.
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ML techniques. According to Figure 4, DL models are used
more in studies on the automated diagnosis of ASD with
MRI modalities than ML models. Therefore, implementing
CADS based on DL techniques is promising for developing
applied software for ASD detection with MRI neuroimaging
modalities in the future. For automated diagnosis of ASD
with MRI modalities, various datasets are proposed in ABIDE.
Besides, various toolboxes are available for the implementation
of different DL models. These reasons are the foundation for
many studies on the automated diagnosis of ASD using DL
models.

Comparison between the numbers of
datasets used in the machine learning
and deep learning research

As stated in the neuroimaging modalities section, limited
datasets are accessible. ABIDE is the most important dataset
available in this field, which includes two datasets, ABIDE I and
ABIDE II. Figure 5 demonstrates the types of datasets employed
in the automated ASD diagnostic research using DL and ML
techniques.

It can be noted from Figures 5A,B that a greater number
of ABIDE datasets are employed in studies on the automated
diagnosis of ASD. The major reason for the wide use of
this dataset in various studies on the automated diagnosis of
ASD is the availability of many subjects and different MRI
modalities.

Comparison between the numbers of
neuroimaging modalities used in the
machine learning and deep learning
research

The different structural and functional MRI neuroimaging
modalities and ML and DL methods play an essential role
in automated ASD detection. Table 2, reports studies on
automated ASD detection using ML techniques and different
MRI neuroimaging modalities have been presented. Moreover,
Supplementary Table 1 discusses ASD detection using DL
techniques. Figures 6A,B describes the annual research
carried out to detect automated ASD using sMRI and fMRI
neuroimaging modalities.

As shown in Figures 6A,B, the rs-fMRI modalities are most
used in studies on ASD detection using ML and DL methods. As
mentioned earlier, ASD is a neurological disorder that negatively
affects brain function. Accordingly, researchers have used rs-
fMRI modalities most widely in studies on ASD detection using
AI methods.

Comparison between the numbers of
atlases used in the machine learning
and deep learning research

In another part of Table 2 and Supplementary Table 1, the
types of Atlases for MRI neuroimaging modalities have been
provided. Atlases are considered an important preprocessing

FIGURE 5

Number of datasets used for automated ASD detection. (A) DL and (B) ML methods.
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FIGURE 6

(A) Shows the number of MRI neuroimaging modalities used in the CADS based on ML methods. (B) Shows the number of MRI neuroimaging
modalities used in the CADS based on DL methods.

step discussed in part of this section. The number of atlases
employed in ML and DL research are described in Figure 7.

As shown in Figures 7A,B, the AAL atlas is most used
in studies for ASD detection in MRI neuroimaging modalities
using AI methods.

Comparison between the numbers of
pipelines used in the machine learning
and deep learning research

Pipelines play a significant role in preprocessing of MRI
modalities. The pipelines employed in ASD data preprocessing
are presented in Table 2 and Supplementary Table 1. The
number of pipelines utilized in DL and ML research is shown in
Figure 8. The results of the studies reveal that the CPAC pipeline
is the most widely used.

Comparison between the numbers of
classification methods in the machine
learning and deep learning research

Classification is the last step of CADS with ML or
DL methods. So far, various classification methods have
been proposed in ML and DL, presented in Table 2 and
Supplementary Table 1. The types of classification algorithms
applied in CADS using DL and ML are depicted in Figure 9. As

shown in this Figures 9A,B, it may be noted that the Softmax
method is most used in DL architectures. In addition, SVM
is the most widely applied in ML methods compared to other
classification methods.

Future works

Lack of access to huge public datasets with various ASD
disorders researchers is a big challenge. As mentioned in the
introduction, autism has different types (Sparks et al., 2002),
and the availability of datasets containing different types of ASD
is of paramount importance for researchers. Hence, presenting
MRI datasets of different types of autism disorder need to
be addressed in future works. These datasets help researchers
conduct more studies and compare their studies with other
researchers on the automated diagnosis of ASD. As mentioned
in previous sections, ABIDE is a free dataset available for
researchers and consists of different cases and MRI modalities of
ASD patients. But it does not have many cases of DTI modalities
for the diagnosis of ASD. DTI modality is one of the popular
methods in ASD detection. Publicly providing more datasets
of this type of modality could increase research in the ASD
diagnosis field using the DTI modality.

Another future work is to provide multimodal datasets,
such as fMRI-EEG, for the diagnosis of ASD. In clinical studies
(Cociu et al., 2017), it has been indicated that using multimodal
neuroimaging, such as fMRI-EEG, plays a pivotal role in
diagnosing ASD. In addition, providing datasets with combined
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FIGURE 7

Number of Atlas used for ASD detection. (A) ML and (B) DL methods.

FIGURE 8

Number of pipelines used for ASD Detection: (A) ML and (B) DL methods.

modalities paves the way for new studies on the diagnosis of
ASD using different AI methods.

Automated diagnosis of ASD with MRI using ML
techniques can be the other future work. Various methods
have been proposed for feature extraction from MRI data
for the diagnosis of ASD, which are summarized in Table 2.
According to Table 2, fuzzy-based feature extraction techniques
have not been used in the diagnosis of ASD, and they
can be introduced in future work. Fuzzy techniques are
important in medical applications and allow researchers to
develop software close to human logic (Chanussot et al., 1999;
Davidson et al., 2001; Javed et al., 2013; Jiang et al., 2017; Meena
and Agilandeeswari, 2020; Ullah et al., 2020). Hence, providing
graph models based on fuzzy theory can be addressed in the
future, leading to the accurate diagnosis of ASD with MRI
modalities. Connectivity techniques are an essential feature

extraction method for structural and functional neuroimaging
modalities (Bhattacharya et al., 2006; Rowe et al., 2010; Smith
et al., 2012; Gilson et al., 2018; Park et al., 2018; Zarghami and
Friston, 2020). Proposing new feature extraction methods based
on connectivity for structural and functional neuroimaging
modalities is another field for future work. Table 2 also indicates
classification algorithms. In this section, fuzzy type 1 and 2
techniques can be used for data classification as future work
on the diagnosis of ASD (Melin and Castillo, 2013, 2014; de
Aguiar et al., 2017). Furthermore, in the future, graph theory-
based classification methods can also be used to increase the
performance of the CADS for automated diagnosis of ASD (Cai
et al., 2018; Wu et al., 2020).

The reliability of AI models for medical diagnosis
(Balagurunathan et al., 2021; Durán and Jongsma, 2021)
poses another challenge for researchers, which needs to be
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FIGURE 9

Number of classifiers used in CADS for ASD detection: (A) ML and (B) DL methods.

solved before these models are usable in real-life. There is more
than one direction that contributes toward this end, such as
designing test and validation protocols to ensure the validity
of reported results, necessitating papers to include enough
information to make results reproducible (such as protocols
used in top-tier conferences such as NeurIPS) and also working
on explainability and interpretability of models in addition to
their performances (Afnan et al., 2021).

In Supplementary Appendix (A), different studies on the
automated diagnosis of ASD using MRI modalities and DL
techniques is presented. It may be noted that conducted studies
have used standard DL methods to diagnose ASD. In future
works, graph theory (Zhang Z. et al., 2020; Ma et al., 2021),
representation learning (Hamilton et al., 2017; Zhang et al.,
2018), zero-shot learning (Wang et al., 2019d), Q-learning (Jang
et al., 2019), attention learning (Li et al., 2018c), and advanced
models of adversarial networks (Liu and Tuzel, 2016; Creswell
et al., 2018) can be used for the automated diagnosis of ASD
with MRI modalities.

Feature fusion technique is a new field in diagnosing
different diseases, and many studies are being conducted in
this field (Antropova et al., 2017; Fan et al., 2018; Hermessi
et al., 2019; Liu et al., 2021; Wang et al., 2021b; Amemiya et al.,
2022). The DL features can be extracted from MRI images for
automated ASD detection. Ultimately, ML and DL features can
be used to obtain high performance in the automated diagnosis
of ASD.

Conclusion

Autism spectrum disorder is a neurological disorder with
unknown symptoms that begins in childhood and cause

problems in communication, social relationships, perception
processing, and repetitive behaviors. In few studies, physicians
have stated that ASD usually occurs due to genetic mutations
or the inability of the fetus’s brain cells to obey regular growth
patterns during the first steps (Sparks et al., 2002; Brieber et al.,
2007; Sato et al., 2012; Ecker et al., 2015; Hernandez et al., 2015).

Physicians use different ASD detection methods, among
which different neuroimaging modalities are of paramount
importance (Parisot et al., 2018; Mellema et al., 2019; Ronicko
et al., 2020). Among different neuroimaging modalities, MRI-
based functional and structural modalities are mostly used
to diagnose ASD. sMRI and fMRI provide physicians with
important information on the structure and function of the
brain, respectively (Sserwadda and Rekik, 2021; Tummala,
2021). However, accurate diagnosis of ASD from sMRI and
fMRI is sometimes time-consuming and challenging. Moreover,
factors such as tiredness or different noises in MRI modalities
may lead to clinicians’ wrong diagnosis of ASD.

For this purpose, many studies are being conducted on
the automated diagnosis of ASD using AI techniques, aiming
to increase the performance of automated diagnosis of ASD.
In general, studies on the automated diagnosis of ASD from
MRI modalities using AI cover ML and DL methods. In
few papers, researchers have conducted a review study in
ASD detection based on DL (Khodatars et al., 2021) and ML
(Brihadiswaran et al., 2019; de Belen et al., 2020; Hosseinzadeh
et al., 2021; Kollias et al., 2021; Song et al., 2021; Tawhid et al.,
2021) methods with different neuroimaging modalities.

This work is a comprehensive review of studies conducted
on ASD detection using AI methods in different MRI
neuroimaging modalities. First, AI-based CADS for ASD
detection from different MRI neuroimaging modalities was
introduced. Then, the steps of the CADS based on ML
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algorithms for automated ASD detection in MRI neuroimaging
modalities were studied. Also, in this section, papers on the
automated ASD detection in MRI neuroimaging modalities
using ML methods are summarized in Table 2. Previously,
some authors of this study previously published a review
paper about automatic ASD detection in different neuroimaging
modalities using DL techniques (Khodatars et al., 2021), which
is summarized in Supplementary Table 1.

The most critical challenges in ASD detection in MRI
neuroimaging modalities and AI methods were presented in
another section. Also, this section studied the most important
challenges in the automated diagnosis of ASD using MRI
modalities and AI techniques. The most important challenges
in the diagnosis of ASD are the lack of access to public datasets
with different MRI modalities, multimodal datasets, such as
fMRI-EEG, AI algorithms, and hardware resources.

In the discussion section, first, the number of published
annual papers on ASD detection using ML methods and DL
techniques were discussed. Then, the number of datasets used
in ML and DL studies was presented. In addition, the number
of different MRI neuroimaging modalities with ML and DL
methods used in annual studies in ML and DL was also
indicated. Also, a comparison was made between different
atlases used in MRI neuroimaging preprocessing for ASD
detection. In another subsection, the number of pipelines in
the preprocessing step of the MRI neuroimaging modalities
for CADS based on various AI methods is also examined and
compared. Finally, the number of classifier algorithms used in
ML and DL studies for ASD detection was discussed.

In section 7, the future works for ASD detection in MRI
neuroimaging modalities and AI methods were addressed. In
this section, future works on MRI datasets for the diagnosis of
ASD were first discussed. Then, future works on the diagnosis
of ASD using AI techniques were addressed. Besides, future
works on the automated diagnosis of ASD with MRI modalities
were introduced. The final section also recommended the
idea of using feature fusion for the diagnosis of ASD with
MRI modalities in future works. Studies on ASD detection
using AI techniques indicate that researchers will use the
proposed methods in the future. The proposed methods are
promising in developing real software for ASD detection using
MRI modalities and help clinicians quickly diagnose ASD in
the early stage.

Also, research on DL-based methods for the diagnosis of
ASD has experienced significant attention in recent years. In
standard mode, sMRI and fMRI data are recorded in 3D and
4D. However, in most papers, researchers have utilized 2D DL
models to diagnose ASD using MRI neuroimaging modalities.
Due to the high computational cost of 3D DL models for
diagnosing ASD, there has been less research in this field.
Providing 3D DL models based on quantization techniques
reduces hardware resources and increases speed. Thus, DL
models using quantization techniques (Liang et al., 2021) can

be exploited to diagnose ASD in the future. Memory constraints
are one of the research challenges of ASD diagnosis using MRI
neuroimaging modalities. In medicine, cloud computing is one
of the novel technologies to address storage and data processing
issues (Chen and Ran, 2019). Using cloud computing in future
work may lead to other valuable research in ASD diagnosis. In
this way, MRI data is first sent to the cloud for storage. Next, the
implementation of DL algorithms for the diagnosis of ASD can
be carried out on their computing servers.
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