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Abstract: The 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) is the central enzyme of the
shikimate pathway to synthesize the three aromatic amino acids in fungi, plants, and prokaryotes.
This enzyme is the target of the herbicide glyphosate. In most plants and prokaryotes, the EPSPS
protein is constituted by a single domain family, the EPSP synthase (PF00275) domain, whereas in
fungi, the protein is formed by a multi-domain structure from combinations of 22 EPSPS-associated
domains. The most common multi-domain EPSPS structure in fungi involves five EPSPS-associated
domains of the shikimate pathway. In this article, we analyze 390 EPSPS proteins of fungi to determine
the extent of the EPSPS-associated domains. Based on the current classification of the EPSPS protein,
most fungal species are intrinsically sensitive to glyphosate. However, complex domain architectures
may have multiple responses to the herbicide. Further empirical studies are needed to determine the
effect of glyphosate on fungi, taking into account the diversity of multi-domain architectures of the
EPSPS. This research opens the door to novel biotechnological applications for microbial degradation
of glyphosate.

Keywords: glyphosate; herbicide; domain architecture; fungi; multi-domain enzymes; enzyme;
sensitivity; shikimate pathway

1. Introduction

Glyphosate-based products are the herbicide most used against weeds worldwide.
The herbicide targets an almost universal enzyme in plants, the 5-enolpyruvylshikimate-
3-phosphate synthase (EPSPS), also known as aroA [1,2]. The EPSPS is a key enzyme in
the shikimate pathway for the synthesis of Tyrosine, phenylalanine, and tryptophan [3].
Because the epsps gene is not found in animals, the use of glyphosate is supposed to be
safe for human health. However, the epsps gene is also present in most fungal and bacterial
species. Thus, glyphosate may have an effect on microbial communities of free-living and
host-associated microorganisms [4–7]. Recent studies of the EPSPS-glyphosate relationship
have provided clues on the potential effect of the herbicide on the microbiota [8]. A
comprehensive analysis of the potential sensitivity of the EPSPS protein has shown the
potential impact of the herbicide on several species of plant, fungi, and bacteria [4,5]
(e.g., the herbicide has the potential to affect half of the human gut microbiota [4]). The
current classification of the EPSPS enzyme includes four EPSPS classes (class I: potentially
sensitive and class II–IV: potentially resistant) based on amino acid markers in the EPSPS
single-domain protein characteristic of plants and bacteria. However, the multi-domain
EPSPS structure in fungi may lead to a complex response to the herbicide that has been
largely overlooked.

Here, we analyze the evolution of the EPSPS domain in fungi and the distribution of
additional EPSPS-associated domains. The EPSPS enzyme, at least in its single-domain
structure characteristic of plants and prokaryotes, closes after its interaction with the two
substrates, shikimate 3-phosphate (S3P) and phosphoenol pyruvate (PEP) [9]. Most of the
EPSPS protein structures in the Protein Data Bank are in the closed form [10], and there are
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no representatives of any multi-domain EPSPS structure characteristic of fungi. The target-
site sensitivity to glyphosate, also known as intrinsic sensitivity, was estimated based on
the presence of amino acid markers in the EPSPS active site [4]. In addition, there are non-
target-site factors (e.g., levels of gene expression of the epsps gene) that highly contribute to
modulating the response of organisms to the herbicide [11–13]. The intrinsic sensitivity of
the EPSPS to the herbicide has been largely studied in bacteria [4,5,14], and the results are in
agreement with empirical microbiome studies [15–19]. Although more than 90% of fungal
species have been classified as potentially sensitive to glyphosate (n = 789; 726 sensitive,
6 resistant, and 57 unclassified) [4], the response of a fungal multi-domain EPSPS to the
herbicide glyphosate is yet unclear. The results of our survey of EPSPS-associated domains
in fungi will help determine the effect of glyphosate on fungal species. Moreover, finding
intrinsically resistant fungal strains is relevant in the development of agro-biotechnological
applications to identify novel strategies for microbial degradation of glyphosate.

2. Materials and Methods
2.1. Dataset

EPSPS-associated domains present in EPSPS proteins were obtained from the PFAM
(http://pfam.xfam.org, accessed on 8 July 2022), a comprehensive database of protein
domains [20]. The dataset of EPSPS proteins was gathered from https://ppuigbo.me/
programs/EPSPSClass, accessed on 20 July 2022 [4], and included 1175 EPSPS proteins
with multi-domain structure prokaryotes and eukaryotes. The dataset included a subset of
390 out of 422 fungal proteins with multi-domain EPSPS structure (Supplementary Table S1).

2.2. Bipartite Network

A bipartite network of protein domains in fungal species was built with the program
Cytoscape [21]. This network was used to visualize the presence and absence of EPSPS-
associated domains and the distribution of the different architectures of the multidomain
EPSPS protein in fungi.

2.3. Phylogenetics Analysis

EPSPS domains, from the dataset of EPSPS protein sequences of fungi, were aligned
with the programs MUSCLE [22] and curated with Gblocks [23]. The program FastTree2 [24]
was used to build a phylogenetic tree of the EPSPS domain. We utilized Dollon parsimony
with the program Count [25] to analyze the evolution of the EPSPS-associated domains
in fungi.

2.4. Potential Sensitivity to Glyphosate

The potential sensitivity to glyphosate was estimated using the EPSPSClass web server
(https://ppuigbo.me/programs/EPSPSClass, accessed on 20 July 2022) [4]. EPSPS proteins
are currently divided into four main classes (class I, sensitive; class II–IV, resistant).

3. Results and Discussion
3.1. Functional Characterization of EPSPS-Associated Domains

EPSPS proteins were defined by the EPSPS domain, which is approximately
1350 nucleotides long (450 amino acids) [4]. However, there were variations in length
of the EPSPS protein, depending on the total number of EPSPS-associated domains and
ranges between 163 (A0A101J2R9_9PORP) and 3206 (A0A094CHT8_9PEZI) amino acids. A
multi-domain EPSPS structure was observed in most fungi, but it was rarely observed in
plants and bacteria. Usually, multi-domain EPSPS genes of bacteria and plants are formed
by two domains, whereas the fungal EPSPS is a larger sequence composed of more than five
EPSPS-associated domains. Although most of the EPSPS-associated domains are involved
in the shikimate pathways for the synthesis of the aromatic amino acids, promiscuous
domains were also present (Table 1 and Supplementary Table S2).

http://pfam.xfam.org
https://ppuigbo.me/programs/EPSPSClass
https://ppuigbo.me/programs/EPSPSClass
https://ppuigbo.me/programs/EPSPSClass
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Table 1. Most common functions of the EPSPS-associated domains.

Domains Freq Sp D Function

EPSPS 1448 8249 111 Shikimate pathway (SP), EPSP Synthase

SKI 424 8075 171 SP, phosphorylates shikimate

DHQ_synthase 420 7663 95 SP, removes a phosphate from DHAP

DHquinase_I 416 2247 135 SP, 3-dehydroquinate dehydratase

Shikimate_DH_N 402 7829 185 The substrate binding domain of the shikimate dehydrogenase

HTH_3 218 9596 752 A major structural motif capable of binding DNA (Helix-turn-helix)

Shikimate_DH 160 6879 139 SP, quinate 5-dehydrogenase

PDH 127 1584 1551 Part of tyrosine biosynthesis (Prephenate dehydrogenases)

Cytidylate_kin 88 6928 37 Kinase of cytidine 5’-monophosphate

PF13193 17 8190 3379 AMP-binding enzyme C-terminal domain for PF00501

Domains: domain names; Freq: frequency of the domain in the subset of proteins with more than one domain;
Sp: number of species in the pfam database (on May 2022) with at least one copy of the domain; D: number of
domain architectures in pfam database (on May 2022); and Function: description of the product. This table has
been modified with permission by authors from [26].

The EPSPS-associated domains can be classified into four main functional categories:
shikimate (involved in shikimate pathway proteins), enzymes (proteins with catalytic
function), expression (domains involved in gene expression), and structural function
(proteins that do not have a catalytic function, such as binding sites, histones, and helix-turn-
helix domains). The distribution of the EPSPS-associated domains in a dataset of 1175 multi-
domain proteins showed certain dominance of the domains EPSP_synthase (as a marker of
the EPSPS proteins), Shikimate kinase (SKI), 3-dehydroquinate synthase (DHQ_synthase),
3-dehydroquinate dehydratase (DHquinase_I), and Shikimate dehydrogenase substrate
binding domain (Shikimate_dh_N; Table 1 and Supplementary Table S2). In some proteins,
the multi-domain structure of the EPSPS included more than one hit to the EPSPS domain
in pfam (e.g., S8DP49_FOMPI and A0A067M4R2_9AGAM).

3.2. Distribution of the EPSPS-Associated Domains in Fungi

Most of the EPSPS-associated in fungi were involved in the shikimate pathway (e.g.,
SKI, DHQ_synthase, DHquinase_I) and in the synthesis of aromatic amino acids (e.g., Shiki-
mate_dh_N, PDH). There were also some promiscuous domains (e.g., HTH_3) associated
with the EPSPS in some fungal species. Infrequent, but amply distributed, EPSPS-associated
domains in fungi were involved in DNA modification and gene expression. A total of
22 domains were present in diverse domain architectures of the EPSPS protein, across
390 fungal species (Supplementary Table S3). However, in fungi, the most common multi-
domain structure of the EPSPS consisted of five EPSPS-associated domains (Figure 1),
mostly involved in the shikimate pathway, such as SKI (n = 374); DHQ_synthase (n = 374);
DHquinase_I (n = 367); Shikimate_dh_N (n = 366); and Shikimate/quinate 5-dehydrogenase
(Shikimate_DH; n = 136). In fungi, 16 out of 22 EPSPS-associated domains were only present
in less than three proteins (Supplementary Table S3).

We have analyzed the distribution of the EPSPS-associated domains in different
taxonomic groups of fungi (ascomycota, basidiomycota, mucoromycota, chytridiomycota,
blastocladiomycota, zoopagomycota) (Figure 2). Ascomycota was the most variable phylum
in terms of EPSPS-associated domains and contained several infrequent domains. Moreover,
the least number of Shikimate_DH domains were present in ascomycota (e.g., this domain
was least prevalent in Eurotiomycetes, Dothideomycetes, and Leotiomycetes). Most multi-
domain architectures (n = 220) contained structures with five domains involved in the
shikimate pathway, and approximately 1/3 of the protein sequences (n = 134) had all
six domains of the shikimate pathway. Thus, the overall trend in fungal EPSPS proteins,
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as shown in the bipartite network, was an association of the EPSPS domain with other
domains of the shikimate pathway.
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3.3. Phylogenetics Analysis of the EPSPS Protein in Fungi

The EPSPS multi-domain structure in fungi was heterogeneous across the phylogenetic
tree. However, most of the species had five or six domains in the EPSPS protein (Figure 3).
Our analysis indicated that a protein sequence with all six most abundant domains (i.e., a
six-domain multi-domain structure) was the original EPSPS sequence in fungi (Table 1).
Thus, the majority of sequences with five multi-domain structures raised by loss of the
Shikimate_DH independently in different branches of the evolutionary tree. Moreover,
many domains have been independently lost at early and late stages in the evolution of
fungi. Notice that in some sequences, the Shikimate_DH (located at the C-term of the
EPSPS protein) was disrupted. We speculate that in some cases, this domain was lost in a
crossover event without affecting the functionality of the shikimate pathway. Moreover,
we do not know if the domain function was preserved in a different protein. On the other
hand, the Dollon parsimony analysis of the fungal phylogeny (Figure 3) indicated that
infrequent domains were late inclusions into the multi-domain structure.

3.4. Potential Sensitivity to Glyphosate in Fungi

Here, we analyzed the frequency and evolution of EPSPS-associated domains to
determine variations in the intrinsic sensitivity of the EPSPS protein to glyphosate. In
bacteria and plants, the EPSPS protein sequence has a single domain, whereas fungal
EPSPS proteins contain several domains [4]. Therefore, the EPSPS protein folding in
fungi may result in a different interaction with the herbicide compared to the plant and
bacteria EPSPS [8]. These potential effects of the multi-domain structure of the EPSPS have
been mostly neglected. Moreover, additional non-target mechanisms of resistance (e.g.,
efflux pumps, vacuolar sequestration, and metabolization of glyphosate) or sensitivity
(e.g., toxic effect on the mitochondria) to glyphosate modulate the intrinsic sensitivity
status in the EPSPS protein [8,27] and may have a differential effect on fungal species.
Several experimental and field studies have shown a negative effect of glyphosate on
fungal communities in soil [28] and underground host-associated interactions [29]. Other
fungi have developed non-target site resistance mechanisms (e.g., Purpureocillium lilacinum
is able to degrade glyphosate and use glyphosate as a nutritional source [30]). The EPSPS
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of P. lilacinum (PWI66746.1) is sensitive to glyphosate. Moreover, it has been suggested that
the carbon-phosphorus bond in glyphosate is the major metabolic degradation mechanism
utilized by fungi [31].
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Figure 2. A bipartite network of EPSPS-associated domains in fungal species. Letters stand for
different phylums and classes of fungi. On the left side, there are fungi of the phylum ascomy-
cota (A), and on the right side, there are fungi of phylum Basidiomycota (B), Mucoromycota (M),
Chytridiomycota (C), Blastocladiomycota (Bl), Zoopagomygota (Z), and Unknown taxa (U). Numbers
correspond to fungal multi-domain: (1) DH synthase, (2) EPSP synthase, (3) SKI, (4) DHquinase_1,
(5) Shikimate_dh_N, and (6) Shikimate_DH. Arrows on the bottom of the figure note the num-
ber of domains in the multi-domain, which ranges from two to eight domains. Subphylum and
class starting from the upper left are Pezizomycotina: Sordariomycetes (APS), Eurotiomycetes
(APE), Dothideomycetes (APD), Leotiomycetes (APL), Pezizomycetes (APP), Orbiliomycetes (APO),
and Xylonomycetes (APX); Saccharomycotina: Saccharomycetes (ASS); Taphrinomycotina: incertae
sedis (AT?), Taphrinomycetes (ATT), Schizosaccharomycetes (ATS), and Pneumocystidomycetes
(ATP); Agariomycotiina: Agaricomycetes (BAA), Dacrymycetes (BAD), and Tremellomycetes (BAT);
Ustilaginomycotina: Exobasidiomycetes (BUE), Malasseziomycetes (BUM), and Ustilaginomycetes
(BUU); Pucciniomycotina: Pucciniomycetes (BPP), Microbotryomycetes (BPMb), and Mixiomycetes
(BPMx); Wallemiomycotina: Wallemiomycetes (BWW); Mucoromycotina: Mucoromycetes (MMM);
Chytridiomycota: Chytridiomycetes (C-C) and Monoblepharidomycetes (C-M); Blastocladiomycota:
Blastocladiomycetes (BI-B) and Entomophthoromycotina: Entomophthoromycetes (ZEE).
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Figure 3. Phylogenetic conservation of the multi-domain structure of the EPSPS protein in 390 fungi.
The ancestral domain structure includes the EPSPS (PF00275; green) and EPSPS-associated domains
Shikimate_DH (PF01488l; maroon), Shikimate_dH_N (PF08501; light blue), DHQuinase_I (PF01487;
pink), SKI (PF01202, yellow), and 3-dehydroquinate synthase (PF01761; blue). Figure modified
from [4] with permission. A detailed view of the phylogenetic tree is freely accessible at https:
//itol.embl.de/tree/13023210641470501567596434, accessed on 20 December 2021.

The EPSPS is a two-substrate enzyme with an open (without ligand) and closed (with
ligand) conformation. Glyphosate’s mode of action is competitive against the PEP and
noncompetitive against the S3P [9]. However, the dual conformation of the EPSPS has been
mostly studied in single-domain proteins of plants and bacteria; thus, its effect in a multi-
domain structure is quite uncertain [8]. Our results showed that 354 (90.8%) fungi were
potentially sensitive to glyphosate, 5 (1.3%) were resistant, and 31 (7.9%) were unknown
(i.e., unclassified EPSPS proteins based on the current classification system). Interestingly,
all EPSPS resistant species were class III, a not yet fully understood mechanism of resistance
to glyphosate only present in a very small fraction of species [4]. However, the general
trend changed depending on the number of domains (Figure 4). Multi-domain structures
of the EPSPS protein with less than five domains had a significantly larger amount of
unclassified sequences (Figure 4). Thus, further experimental evidence and new models
are needed to determine the sensitivity of fungal organisms to glyphosate.

https://itol.embl.de/tree/13023210641470501567596434
https://itol.embl.de/tree/13023210641470501567596434
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4. Conclusions

In fungi, the most common multi-domain structure of the EPSPS ranges from two to
eight domains. The ancestral state of the EPSPS protein included six domains (DHquinase_I
DHQ_synthase, EPSPS, SKI, Shikimate_DH, and Shikimate_dH_N), as shown in the phy-
logenetic analysis. The wide diversity of EPSPS multi-domain structure in fungi is the
product of several independent rearrangements of domains throughout evolution. Analy-
ses of the EPSPS enzyme showed that most fungi are potentially sensitive to glyphosate.
However, the total number of EPSPS-associated domains have an effect on the potential
sensitivity status. Future analyses will be necessary to determine how different EPSPS
multi-domain architectures affect the sensitivity of the EPSPS enzyme to glyphosate. These
studies may have a substantial contribution to the development of novel biotechnological
applications for microbial degradation of glyphosate.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biotech11030028/s1. Table S1: List of EPSPS proteins with more
than one domain in fungi analyzed; Table S2: List of EPSPS-associated domains; Table S3: List of
EPSPS-associated domains in fungi.
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