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The equation of state of cold dense matter is not well known. The models for 

cold dense matter can be constrained through the measurement of neutron stars, as 

they are the densest directly observable objects in the universe. Their mass-radius 

relation is determined by their equation of state, making it an important observable. 

This thesis discusses various methods to measure the masses and radii of neutron 

stars using X-ray observations. A new model for the optical depth of the accretion 

funnel of accreting neutron stars is presented. 

The thermal emission spectrum of neutron stars can be used for mass-radius mea- 

surement. The observed flux depends on the distance and the apparent size of the 

emitting body. Due to relativistic effects, the apparent size is dependent on both the 

mass and the radius. The biggest uncertainties in this method lie with the difficulty 

of measuring distance and the modeling of the emission spectrum itself. 

Periodic pulsations in the X-ray flux of neutron stars can be similarly utilized. It is 

caused by one or more hot spots on the neutron star surface created through some 

source of uneven heating. The pulse profile is affected by several relativistic effects, 

which gives its shape a dependence on mass and radius. This method is independent 

of distance, however it contains multiple difficult to measure parameters such as the 

geometry of emission. 

In accreting neutron stars, the pulse profile is affected by the absorption of light 

through the accreting plasma. The optical depth is dependent on the direction 

of emission, causing a dip in brightness when the spot is closest to the observer. 

The effect can be modeled using simple approximations for the density profile and 

geometry of the accretion flow. This correction is capable of recreating the secondary 

minimum seen in certain pulse profiles. 

Keywords: MSc thesis, neutron stars, equation of state of dense matter, theoretical 

models.
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1 Introduction 

Neutron stars are the densest observable objects in the universe. Their existence 

was theoretically predicted in the early 1930s and they were first observed in 1967. 

They are remnants of supernova explosions of massive stars [1]. A general estimate 

for their mass is ∼ 1 . 4 M⊙ 

(solar masses), and for their radius ∼ 12 km [2]. Their 

extreme properties make them excellent laboratories for many fields of physics. This 

thesis will focus on their use in the study of the cold dense matter equation of state. 

Neutron stars can be categorized into several different types. Radio pulsars, 

or rotation powered pulsars, are rapidly rotating neutron stars exhibiting periodic 

radio emission. They were the first type of neutron star observed thanks to their 

characteristic pulsation. Magnetars are strongly magnetic young neutron stars, the 

emission of which is believed to be caused by the decay of their magnetic fields. 

They are known to undergo strong outbursts. The drag created by the magnetic 

fields of rotation powered pulsars and magnetars causes their spin rates to decrease 

over time [3]. 

Accretion powered pulsars, such as X-ray pulsars, are neutron stars in binary 

systems that accrete gas from their companion. This process releases a large amount 

of energy as X-ray and gamma ray radiation, and it increases their spin rate over 

time. So-called recycled pulsars are radio pulsars with an especially high spin rate 

caused by a past period of accretion [4]. 

The inner structure of neutron stars is not well known. Most of their mass is 

situated in their core, the density of which is believed to be 5-10 times the nuclear 

saturation density ρ0 

∼ 2 . 8 × 1014 g / cm3. The equation of state (EoS) of such cold 

dense matter remains an unsolved problem. The extremes of such matter has not 

been possible to create under laboratory conditions, but neutron stars can be used 

as natural laboratories to probe the EoS [5]. 

Theoretical modeling of cold dense matter is a complex problem that involves 

many body interactions in quantum chromodynamics (QCD). The EoS can be ex- 

perimentally probed at around nuclear saturation density using heavy ion colliders, 

which gives limits for the EoS at lower densities. The results of such experiments 

are still model dependent, but they can be used to rule out certain EoS models [5]. 

Under extreme densities matter might exist in exotic phases such as quark-gluon 

plasma or strange matter. Due to their complexity, the predictions given by different 

EoS models vary greatly [6]. 

The hydrostatic equilibrium of neutron stars follows the Tolman-Oppenheimer- 

Volkoff (TOV) equation:

 

d p

 

d r 

= − 

G

 

c2 

( p + ϵ )( m + 4 π r3 p/c2)

 

r2[1 − 2 Gm/ ( r c2)] 

, (1) 

d m

 

d r 

= 4 π r2 

ϵ

 

c2 

. (2)

 

Importantly, the EoS defines the pressure-energy relation in the TOV equation. If 

the mass-radius ( M − R ) relation of neutron stars is measured, the EoS models can 

be constrained further [7]. Figure 1 shows multiple different EoS models and their 

corresponding M − R relations [8]. 
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Figure 1: Plots of various models for the equation of state and their corresponding 

M − R relations. 
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2 The cold dense matter EoS and its effects on neu- 

tron stars 

2.1 The internal structure of neutron stars 

The structure of neutron stars is important to the cold dense matter EoS. A vast 

majority of a neutron star’s mass is located in its core. The density of the outer core 

is about ∼ 1 − 2 ρ0 

and it consists of protons and neutrons in a superfluid state. The 

inner core is much more dense, with densities even as high as 5 − 15 ρ0. The predicted 

composition of the inner core depends on the EoS model. Some models predict the 

presence of various exotica such as hyperons and deconfined quarks. Next from the 

core is the crust, which can be divided into outer and inner parts. The density of 

the inner crust exceeds the neutron drip density, so the matter becomes increasingly 

more neutron rich at higher depths through inverse β -decay. The outer crust, which 

consists of ions and electrons, is followed by a ∼ 100 m thick layer known either as 

the ocean or the envelope. It is the boundary between the isothermal interior and 

the effective temperature of the visible surface. The atmosphere surrounding the 

ocean is only a few centimeters thick, and it has a steep temperature gradient. An 

illustration of this structure is presented in figure 2 [2].

 

Figure 2: An illustration of the inner structure of neutron stars. 

2.2 Limits for neutron stars 

The EoS imposes several limits to the physical properties neutron stars. Each model 

predicts a maximum density, which sets a limit for the maximum stable mass. Mod- 

els that cannot accommodate observed neutron star masses can be ruled out. Neu- 

tron star masses can be accurately measured through pulsar timing, which involves 

measuring the orbital parameters of neutron stars in binary systems. Millisecond 

pulsars have an exceptionally stable period, so measuring the time delays of their ra- 

dio pulses can be used to determine their orbital motion. Pulsar timing has yielded 

the most accurate mass measurements thus far, and the various factors affecting 
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the timing model are well understood. The method has been widely used and has 

resulted in strong EoS constraints [9, 10]. 

Two mass measurements that have resulted in strong constraints are M = 2 . 01 ± 

0 . 04 M⊙ 

for pulsar J0348+0432 [11] and M = 2 . 14+0 . 10 

− 0 . 09 

M⊙ 

for pulsar J0740+6620 

[12]. Both of them are millisecond pulsars with white dwarf companions. Higher 

mass neutron stars have been observed, but the observational accuracy has been too 

low to provide constraints [13, 14]. 

Secondly, the EoS sets a maximum spin rate for neutron stars. The curve of 

constant maximum spin rate in the M − R diagram limits the possible masses and 

radii for neutron stars according to the relation

 

R < 10 C2 / 3 

[︃ 

M

 

M⊙ 

]︃1 / 3 

[︃ 

f

 

1 kHz 

]︃− 2 / 3 

km , (3)

 

where R is the radius of a non-rotating star and C is an EoS dependent constant, 

the value of which for neutron stars is about 1 . 08 KHz . If a neutron star is observed 

to have a spin rate larger than one allowed by an EoS model, that model can be 

ruled out. However, the highest observed spin rate so far is 716 Hz , which is not 

high enough to constrain any EoS models [15]. There are two possible reasons 

why neutron stars with higher spin rates have not been observed: either they are 

obfuscated by their accretion disks, or there is some process limiting spin rates. 

There is no known mechanism that makes the discovery of high spin rate neutron 

stars less likely, but better instrumentation would make finding them easier [16]. 

Two possible phenomena that could limit the spin rate are the spin-disk interaction 

and gravitational wave emission. Neither have observational evidence, however [17]. 

2.3 The tidal deformability limit 

In 2017, the first binary neutron star (NS-NS) merger, GW170817, was detected 

through gravitational waves emitted by the event. When two neutron stars spiral 

in closer to one another, their orbital period decreases. The accelerating rotation 

generates gravitational waves, the frequency of which increases over time, which can 

be seen in figure 3 [18]. Many phenomena affect the increase in frequency, one being 

the deformation of the merging neutron stars caused by tidal forces. The influence 

of tidal deformability is fairly small, but it is related to the neutron star EoS. After 

they collide, the neutron stars merge into a supermassive neutron star, after which 

it probably collapses into a black hole. Supermassive neutron stars are unstable, 

and the spectrum of gravitational radiation produced by their oscillations can in 

principle be connected to the EoS. However, these oscillations are at too high a 

frequency to be detectable with current instruments [19, 20]. 

Since only one measurement of neutron star tidal deformability has been made, 

the possible constraints for the equation of state are limited. To accurately determine 

the EoS using this method, ∼ 10 mergers must be observed. One other NS-NS 

merger candidate has been observed, GW190425, but it has not resulted in any 

EoS constraint [21]. Despite the limited data, the upper limit for the binary tidal 

deformability of GW170817 is one of the strongest EoS constraints. Limiting the 
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Figure 3: Time resolved gravitational wave spectrum of the NS-NS merger 

GW170817 measured by several observatories. 

lowest maximum mass to ≤ 2 M⊙ 

narrows the number of possible of EoS models 

down to about 5 × 105, and adding the deformability limit halves that number [22]. 

2.4 Challenges in modeling the EoS 

The behaviour of matter at densities present in neutron star cores is described by the 

many-body nucleon-nucleon interaction. The two-body nucleon-nucleon potential 

is incredibly complicated and depends on many parameters, and expanding it to 

many-body interactions is everything but trivial. There are two main approaches 

to model the potential, Ab-initio and phenomenological models. The former begin 

from a realistic model for the two-body interaction and expand it to calculate the 

EoS. Phenomenological models on the other hand attempt to replicate the properties 

of nuclear matter through a number of parameters. As there are multiple ways to 

approach the problem, there are a huge number of possible EoS models [5]. 

One problem that neutron star EoS models have is the predicted presence of 

hyperons. Under conservative assumptions, the forces involving hyperons soften the 
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EoS so much that the maximum mass of neutron stars would be well below the 

observed limit. To solve this hyperon puzzle, either some additional repulsive force 

must be present, or some mechanism reduces the amount of hyperons at neutrons 

star densities. Similar problems exist with other exotica, like with the presence 

of dibaryons and ∆ isobars. Certain models explicitly allow for the presence of 

deconfined quark-gluon plasma. This would imply a phase transition occurs, however 

as it has not been observed, the effect might be weak or simply not present [6]. 
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3 Constraining the neutron star M-R relation with 

X-ray observations 

3.1 Spectrum fitting 

The observed flux of a star depends on several factors. In an ideal case, it is only 

affected by the star’s distance to the observer, its effective temperature, and the 

visible emitting area. Therefore, it is possible to measure the radius of a star if its 

thermal emission spectrum and distance are known. This method can in principle 

be applied to measure the radius of a neutron star through its thermal emission. 

However, this proves difficult due to the complexity of the neutron star spectrum and 

the often difficult to measure distance. A rather important factor in the observed 

flux of neutron stars is their strong gravity, as it makes relativistic light bending 

relevant, which makes the flux mass dependent. Thus, by modeling the spectrum of 

neutron stars and fitting it to observations, a simultaneous measurement forth both 

mass and radius can be obtained [23]. 

The mass dependence of the observed flux stems from gravitational lensing of 

the emitted photons under the neutron star’s own gravity. The light emitted from 

the other side of the neutron star becomes visible as a result of this bending, making 

the perceived radius larger. Therefore, a correction that takes this into account has 

to be added to the observed radius. Additionally, the rapid rotation of neutron stars 

can give them an oblate shape, which has to be taken into account at high spin rates. 

For extremely high spin rates the light bending is best represented by a Kerr metric, 

which has to be solved numerically [24]. For an ideal non-rotating, homogeneously 

emitting neutron star, the observed flux density is

 

Fν 

= Fν , ∞ 

R2 

∞

 

D2 

= 

Fν , (1+ z )

 

1 + z 

R2

 

D2 

, (4) 

1 + z = (1 − 2 GM /c2 R )− 1 / 2 , (5)

 

where Fν 

is the observed spectral flux density, R2 

∞ 

the observed radius at infinite 

distance, and Fν 

the emitted spectral flux density. The thermal emission spectrum 

of neutron stars does not usually resemble a perfect black body, as the energy 

dependence of scattering leads to high-energy photons being generated deeper in 

the atmosphere. However, the total thermal flux depends on effective temperature 

according to Stefan-Boltzmann’s law. A model spectrum fit can be used to measure 

the effective temperature, through which equation (4) takes the form [25]

 

F∞ 

= σSB 

Teff , ∞ 

R2 

∞

 

D2 

, 

Teff , ∞ 

= 

Teff

 

1 + z 

,

 

where σSB 

is the Stefan-Boltzmann constant. 
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3.1.1 Neutron star surface emission spectrum 

There are two major factors that differentiate neutron star spectra from the Planck 

spectrum: the extremely strong magnetic field and surface gravity. Bound-free and 

free-free absorption are highly energy dependent and quickly drop off as energy 

increases. As a result, high energy photons are emitted from a larger depth where 

the temperature is higher. This significantly widens and hardens the spectrum 

when compared to the Planck spectrum at the same effective temperature. At high 

magnetic field strengths, the bound-free and free-free absorption become weaker and 

the spectrum becomes softer. Fitting a Planck spectrum to a neutron star spectrum 

results in a significantly over- or underestimated effective temperature, therefore 

modeling the radiative transfer through the atmosphere is very important [26]. 

Because the atmosphere is very thin, a plain-parallel approximation is sufficient 

for the atmospheric model. It can be modeled as a layer of gas that is heated from 

below. Assuming hydrostatic equilibrium and local thermodynamic equilibrium, 

the only factors determining the emergent flux are the atmospheric composition, 

surface gravity, the effective temperature, and the magnetic field strength. At low 

temperatures Thomson scattering dominates, and at high temperatures, such as 

during outbursts, Compton scattering becomes important. Depending on the level 

of ionization and the atmospheric composition, various spectral absorption features 

may be present. At low effective temperatures, heavier elements are only partially 

ionized, making their absorption features more apparent due to photoionization. The 

magnetic field becomes important if the electron cyclotron energy is significantly 

larger than the thermal energy. The magnetic field can split and widen spectral 

lines, and cyclotron absorption features may become visible. Additionally, strong 

magnetic fields create an anisotropy in the surface temperature, which can make the 

neutron star unsuitable for spectral fitting [27]. 

The most uncertain parameter in spectrum modeling is the atmospheric composi- 

tion. The surface gravity separates the various elements comprising the atmosphere 

into separate layers unless convection or accretion is present. At the lowest levels of 

the atmosphere the electrons are in a degenerate state, but this happens at such a 

depth that it is irrelevant for virtually all models. Because convection only becomes 

significant at temperatures near the peak of X-ray bursts, non-accreting neutron 

stars are assumed to have an atmosphere consisting purely of light elements. In 

accreting neutron stars, if the rate of accretion is faster than the time scale of grav- 

itational separation, the atmosphere has the same composition as the infalling gas. 

This critical accretion rate is not achieved during periods of quiescence. It is also 

possible for the atmosphere to consist of heavier elements. For example, carbon 

atmospheres are not fully ionized and the emergent spectrum is much harder as a 

result [25]. Figure 4 shows an example of a theoretical model for the spectrum of a 

hot metallic atmosphere [27]. 

3.1.2 Spectral line fitting 

It has been suggested that it would be possible to detect redshifted spectral lines 

from the thermal emission of a neutron star. The star’s own gravity and spin broaden 

the spectral lines, so identifying a sufficiently narrow line would allow for M − R 
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Figure 4: A model for the spectrum of a hot neutron star at different metallicities 

and temperatures. The green graphs represent the blackbody spectrum at the same 

temperature. 

measurement without many sources of external systematic error. Measuring this 

broadening of spectral lines can give independent values for both the mass and the 

radius of the neutron star. In the X-ray region, spectral lines are only detectable in 

atmospheres where heavy metals are present. In order for the thermal emission to be 

strong enough to detect spectral lines, the star must also be very hot. Both features 

suggest that the best candidates for detecting spectral lines are young neutron stars, 

but their magnetic fields are often strong enough that it causes a large source of 

systematic error [28]. 

The conditions for detecting spectral lines should be suitable during X-ray bursts, 

but the effect of the rapid spin of accreting pulsars may make the spectral lines too 

wide to be viable for this method. For these reasons, spectral lines have not yet 

been successfully utilized for M − R measurement [29, 30]. 

3.1.3 Burst spectra 

While the surface emission of accreting neutron stars is blocked by the accretion 

disk, they are still potential targets for spectral fitting during X-ray outbursts. An 

outburst is created when newly accreted matter undergoes thermonuclear burning in 

the neutron star’s ocean, which significantly increases its luminosity. On the onset 

of the burst the spectrum rapidly hardens to a maximum, after which it begins 

to soften in the cooling tail of the burst. During especially powerful bursts, the 

radiation pressure might grow enough to surpass the Eddington limit, increasing 

the size of the photosphere. Such photospheric radius expansion (PRE) bursts 

present multiple opportunities for M − R measurement [31]. The observed flux 

at the Eddington limit is

 

9



 

Fedd 

= 

GM c

 

κe 

D2 

1

 

1 + z 

, (6) 

1 + z = 

1
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1 − 2 GM /c2 R 

, (7)

 

where κe 

is the electron scattering coefficient, and 1+ z is the gravitational redshift 

factor. Due to Compton down-scattering of high energy photons off of cold electrons 

near the surface of the neutron star, burst spectra at high luminosities resemble 

diluted blackbody spectra. Such spectra can be approximated with [32]

 

Fe 

≈ 

1

 

f 4
c 

BE( fc 

Teff) ,

 

(8) 

where BE 

is the blackbody spectrum and fc 

= Tbb 

/Teff 

the color correction factor. 

In an ideal case, M − R measurement can be made using the Eddington flux and the 

apparent size of the neutron star A ≡ R∞(km) /D10, where D10 

= D / 10 kpc . This is 

done under the assumption that the Eddington limit is reached at the "touchdown" 

point, which is when the flux reaches its maximum and the apparent radius its 

minimum [33]. A downside of the touchdown method is that it is not entirely clear 

when the Eddington limit is reached. However it is widely agreed that it can be 

assumed to be at the touchdown point with good accuracy [34]. 

During the cooling tail of the burst, the apparent size of the star is presumed 

to no longer change. As a result, the spectral evolution is solely dependent on the 

evolution of the color correction factor fc, which is connected to the Eddington 

luminosity. A fit of the spectral evolution can therefore be used to measure the 

Eddington luminosity with only a weak dependency on other factors. As it uses the 

entire burst tail instead of just the touchdown point, the cooling tail method has 

significant advantages [35]. The distance dependent Eddington flux and apparent 

size can be connected to the distance independent Eddington temperature:

 

Tedd , ∞ 

= 

(︃ 

g c

 

σSB 

κe 

)︃1 / 4 

1

 

1 + z 

∝ AF
1 / 4 

edd ( Afc)
− 4 , (9) 

g = 

GM

 

R2 

(1 + z ) , (10)

 

where g is the surface gravity of the neutron star. The distance independence of the 

Eddington temperature is very useful, as it eliminates the large uncertainty often 

associated with distance. For a neutron star with a known distance, A , Tedd , ∞ 

and 

Fedd , ∞ 

can all be used to constrain possible values for the mass and radius [36]. 

Observed cooling tail spectra from low-mass X-ray binaries appear to fit the- 

oretical models quite well. However, there are several factors that can affect the 

burst spectrum. Continued accretion during the burst has a large effect on the 

burst evolution, and the passive cooling assumed by these models occurs most likely 

during hard spectral states. As a result, bursts during a period of noticeable accre- 

tion or a soft spectral state should not be used with this method. Figure 5 shows 

M − R constraints obtained from multiple hard-state PRE bursts using the cooling 

tail method, the shape of the confidence interval following the curve of constant Tedd 

[32]. 
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Figure 5: 68 % and 95 % confidence intervals for the mass and radius of multiple 

neutron stars measured from the cooling tail of hard state PRE bursts. The shape 

of the interval follows the curve of constant Eddington temperature. 
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3.1.4 Limitations of spectrum fitting 

Not every neutron star is suitable for M − R measurement using X-ray spectrum 

fitting. Non-thermal emission from accretion disks and magnetic fields obscure the 

thermal emission, and strong magnetic fields introduce anisotropies that make spec- 

tral fitting not viable. The measurement of the surface emission of an accretion pow- 

ered pulsar is best accomplished during periods of quiescence or during an outburst. 

The magnetic fields of accretion powered pulsars are expected to be sufficiently weak 

to not cause issues either [37]. 

Spectral methods can be used as an EoS probe using the M − R relation. Mul- 

tiple accurate measurements are required to achieve stringent constraints. The ma- 

jor challenges of this method are the many systematic uncertainties related to the 

thermal emission spectrum, atmospheric composition, and non-thermal emission of 

neutron stars. Additionally, external factors such as distance and interstellar extinc- 

tion are difficult to measure. Errors due to instrument calibration and CCD readout 

rate are also significant because spectral methods measure absolute flux [38]. 

Uncertainties related to distance in particular complicate spectral methods. At 

best, distances can be determined either by parallax or if the target is located in a 

globular cluster. There are multiple photometric methods commonly used to deter- 

mine distance to globular clusters, but they contain numerous systematic uncertain- 

ties. Geometrical methods such as parallax have a more well defined uncertainty, 

but it becomes less viable with increasing distance. The relative uncertainty of dis- 

tance for neutron stars is often as high as 10 − 50% [39]. Overall, the systematic 

sources of uncertainty in spectral methods are still too large to constrain the Eos 

with an accuracy of ≤ 5 − 10% , but new models and better instruments may achieve 

the required accuracy in the future. 

3.2 Pulse profile modeling 

The surface emission of neutron stars is not necessarily homogeneous; certain points 

on the surface of a neutron star may be hotter than its surroundings. There are 

multiple processes that create such "hot spots" on the surface. In rotation powered 

pulsars they are believed to be created by electron-positron pair production in the 

magnetosphere. When the positrons guided by the field lines collide with the surface, 

they heat the star’s magnetic poles. In accretion powered pulsars, uneven heating 

occurs when the infalling gas that is frozen in with the magnetic field lines and 

collides with the magnetic poles. X-ray bursts can also create locally heated areas 

on the surface of the star. 

The rotation of the hot spot relative to the observer creates a noticeable periodic 

change in the X-ray flux. This pulse profile is not simply sinusoidal, as several 

relativistic effects, such as Doppler shift, aberration, and light bending distort its 

shape. These phenomena depend on the mass and radius the neutron star, so a 

pulse profile model fit can be used for M − R measurement [2]. 
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Figure 6: The geometry of emission from a hot spot on the surface of a neutron star. 

n is the surface normal of the emitting spot, and k is the direction of emission. The 

dashed curve represents the light bending trajectory. 

3.2.1 Relativistic effects on the pulse profile 

The shape of the pulse profile is affected by many parameters. One big factor is the 

geometry of the emitting spot, which is shown in the figure 6. The position of the 

hot spot relative to the observer changes periodically as the neutron star rotates, 

which leads to a variability in the apparent surface area and the brightness of the 

spot. The variability depends on the colatitude of the spot from the axis of rotation 

θ0 

and the observer inclination i , as well as the shape and size of the spot. The 

angular dependence of the surface emission must also be taken into account as the 

observer sees the hot spot from many different angles. 

Another important factor influencing the shape of the pulse profile is gravita- 

tional light bending caused by the high compactness of neutron stars. The spacetime 

around a neutron star can be parameterized using the Schwarzschild metric if the 

effect of rotation is ignored. In the Schwarzschild metric, the light bending can be 

accurately calculated with [40]
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where ψ is the angle between the line of sight and the radial point of emission, α 

the angle between the initial photon trajectory and the radial point of emission, and 

Rs 

the Schwarzschild radius. An accurate analytical approximation for the relation 
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between the angles is [41]
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y = 1 − cos θ , (15)

 

where e is the root of the natural logarithm. Neutron stars rotate so rapidly that 

relativistic aberration and Doppler shift are also important factors in the pulse 

profile. The arrival time delays between photons emitted at the same rotational 

phase also distorts the pulse shape. These factors become relevant at high spin 

rates, and they give the pulse profile a further radius dependence. Taking everything 

except time delays into account, the observed flux at distance D is [42]

 

d FE 

= 

√

 

1 − u

 

D2 

δ3 I 

′( E 

′ , α 

′)
d cos α

 

d cos ψ
d S 

′ cos α 

′ , (16) 

δ = 

1

 

γ (1 − β cos ξ ) 

, (17) 

γ = 

1

 

√︁

 

1 − ( v /c )2 

, (18)

 

where I 

′ is the incident radiation spectrum, ξ the angle between the direction of 

emission and the spot velocity v , and d S 

′ cos α 

′ = d S cos α the photon beam cross- 

section [40]. A simulated pulse profile for a rapidly rotating neutron star is shown 

in Figure 7 [43].

 

Figure 7: A simulated pulse profile for a neutron star with a spin rate of 600 Hz , 

showing its deviation from a sinusoidal profile. The change in X-ray color due to 

Doppler boosting is plotted in red. 

3.2.2 Models for the space time metric and the neutron star shape 

The various approximations used in the pulse profile model are important in deter- 

mining its accuracy and the computational power it requires. The Schwarzschild 
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metric is not truly accurate for rotating objects, as their spin drags the curvature 

of spacetime. An accurate model for the spacetime around rotating objects is the 

Kerr metric, which does not have an analytically solvable relation for light bending, 

and therefore it must be solved numerically. Simulations have shown that the error 

due to the metric itself is relatively small in the Schwarzschild approximation, with 

the hitherto observed spin rates and the required measurement accuracy. However, 

rapidly rotating neutron stars are also flattened at the poles by the centrifugal force, 

causing significant changes in the pulse profile if its spin frequency is > 300 Hz [44]. 

Ignoring the oblateness of the neutron star at high spin rates causes a large error, 

so it should be included in the model for such targets. When deciding what approxi- 

mations to include for a given model, it is important to consider the requirements for 

computational power and accuracy. Numerical models using the Kerr metric require 

considerable computational power; modern computers take up to ten minutes to cal- 

culate the pulse profile, while a Schwarzschild metric-based model with a correction 

for oblateness takes less than a second. The oblate Schwarzschild approximation is 

commonly used because of this [45, 46]. 

3.2.3 Hot spot and accretion geometry 

Geometric parameters are often challenging to measure and are highly degenerate 

with the mass and radius, which complicates the process of M − R measurement from 

pulse profile fits. These include the shape and size of the hot spot, the location of 

the spot, and the observer inclination. To achieve an accurate M − R measurement, 

the values of these parameters must somehow be deduced. In many cases, hot spots 

are assumed to be very small to reduce the number of parameters, as the error 

stemming from this assumption is almost insignificant for hot spots of size ≤ 45◦ 

[47]. 

Numerical magnetohydrodynamical simulations of neutron star accretion have 

shown various possible hot spot geometries. In the case of disk accretion, the ac- 

cretion disk becomes disrupted by the magnetic field of the neutron star within 

the Alfvén radius. The accreting plasma then becomes frozen in with the field lines, 

guiding it towards the magnetic poles. The hot spots are created as this infalling gas 

collides with the surface of the neutron star. The dipole moment is often misaligned 

with the rotational axis, which affects the shape of the hot spot. If the misalignment 

is small, the hot spot becomes ringlike. At moderate magnetic colatitudes the hot 

spot takes a crescent shape as gas only flows from one side of the accretion disk. 

The location of the spot depends largely on the Alfvén and the corotation radius, 

and its width varies only weakly [48]. 

3.2.4 Emission models 

The beaming pattern of the hot spot is another highly important factor in the 

modeling of the hot spot as it can mimic the effects of light bending and Doppler 

boosting. The angular dependency of the surface emission depends on the emission 

mechanism, but in many cases the process is not well known. The profile of rotation 

powered pulsars is very stable and the emission pattern is in principle well under- 

stood, but there are still uncertainties with regards to the source of the heating. 
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For accretion powered pulsars, the pulse profile may change within a time scale of 

days, and their accretion disc can obscure the surface emission. During outbursts, 

the emission process is well known, but the shape and location of the hot spots are 

uncertain, and can change at different stages of the burst [49, 50, 51]. 

In rotation powered millisecond pulsars, the magnetic poles are heated by mag- 

netospheric return currents created through pair production. The depth at which 

the heating occurs is unknown as it depends on the energy distribution of the in- 

falling particles. Plane parallel atmosphere models show that the radiation pattern 

is significantly affected by the heating depth. Models that do not take return cur- 

rent heating into account introduce significant error to the beaming pattern as they 

ignore the heated upper layer of the atmosphere [52]. 

In accretion powered pulsars, the spectrum resembles a sum of blackbody compo- 

nents at low energies, with a power law component at higher energies. The accreting 

matter is believed to be stopped by a radiation dominated shock region just above 

the surface. The surface is heated by the hard x-ray emission of the shock, making 

it emit like a black body. The shock region acts as a Comptonizing slab, which 

explains the observed spectra as a result of thermal Comptonization. The power 

law component may be hardened at high energies by the presence of disk reflection 

[40, 53]. 

The polarization of light may help break down the degeneracies related to geo- 

metrical parameters. In rotation powered pulsars, the light is expected to be only 

weakly polarized. For accretion powered pulsars however, the light is scattered by 

the hot electrons in the accretion shock region, making it strongly polarized. Fits 

made with simulated data for the Imaging X-ray Polarimetry Explorer ( IXPE ) show 

much better constraints for the geometrical parameters than what could be previ- 

ously achieved [54]. 

3.2.5 Limitations of pulse profile modeling 

M − R measurement with pulse profile modeling is applicable to many different 

targets, making it a versatile method. It does not depend on external factors that are 

difficult to measure, such as distance, although knowledge of distance can improve 

accuracy. Pulse profile modeling has been applied to both accretion and rotation 

powered pulsars. To limit the EoS, several mass and radius measurements with 

an uncertainty of about ≲ 5 − 10% are required, which has only been achieved 

with pulse profile modeling of millisecond pulsars with the NICER X-ray telescope 

[24, 55]. Although obtaining an independent value for both mass and radius radius 

with good accuracy can be difficult with this method, measuring the mass through 

other methods can give a very accurate measurement of the radius [56]. 

3.3 Quasi-periodic oscillations and astroseismology 

Another possible observable for neutron star M − R measurement are quasi-periodic 

oscillations (QPOs). They are observed in the X-ray flux of accreting neutron stars 

and black holes. Even though there is no consensus about the underlying process, 

they are generally believed to be produced in the inner accretion disk. Kilohertz 

QPOs appear at frequencies that seem to match dynamic processes in the disk, and 
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therefore might be used to probe the accretion flow. The simplest models connect it 

to the orbital frequency of infalling matter, but more complex models that predict 

other QPO modes exist, such as relativistic precession and epicyclic resonance. As 

these effects depend on the geodesics of the space-time surrounding the neutron 

star, QPOs can be used to measure neutron star parameters. Thus far the method 

has only yielded rough mass estimates. In the future, testing the competing models 

with observations from more accurate instruments might make this a viable method 

for constraining the EoS [57]. 

Low-frequency QPOs have also been observed in particularly strong magnetar 

outbursts. These are believed to be caused by the seismic oscillations generated by 

the burst, enabling astroseismological study of the structure of neutron stars. From 

these QPOs it is possible to estimate the propagation speed of the oscillations, which 

in turn depends on the density, mass and radius of the star. Relativistic effects add 

an additional dependence on the spacetime metric. However, these models depend 

on many other factors, making it difficult to constrain the EoS with this method. 

These include, for example, the Alfvén velocity which depends on the magnetic 

field, and the composition of the crust and core, which adds effects of superfluidity 

and superconductivity. Furthermore, the core and crust oscillations are suspected 

to depend on each other so strongly that they cannot be observationally separated. 

Strong outbursts that can be used in this purpose are very rare, and QPOs in weaker 

outbursts are difficult to detect due to their short duration [58]. 

3.4 Constraints from X-ray observations 

The radii of neutron stars have not yet been measured with sufficient accuracy to 

serve as a good constraint for the EoS. The main reasons for this are systematic 

uncertainties and the limitations of current instruments [59]. To constrain the equa- 

tion of state with an accuracy of 10 % three measurements of mass and radius are 

required with a similar accuracy, and measurements with an accuracy of 5 % would 

make it possible to differentiate even similar EoS models from one another [56]. 

The cooling tail method has shown to be capable of measuring radius with good 

accuracy, but provides weaker constraints for mass unless an EoS is taken as a prior 

[60]. 

The only simultaneous M − R measurements with 10 % accuracy so far have 

been made with pulse profile modeling using the Neutron Star Interior composition 

explorer ( NICER ). The first NICER results were for the millisecond pulsar PSR 

J0030+045, which has a double-peak pulse profile which hints at several hot spots in 

the same hemisphere. Two groups made different models for the data, one explaining 

the geometry with three oval hot spots, the other with one circular hot spot and 

one crescent-shaped hot spot. The former model measured the mass and radius as 

M = 1 . 44+0 . 15 

− 0 . 14 

M⊙ 

and Req 

= 13 . 02+1 . 24 

− 1 . 06 

km [61], and for the latter M = 1 . 34+0 . 15 

− 0 . 16 

M⊙ 

and Req 

= 12 . 71+1 . 14 

− 1 . 19 

km (68 % confidence level) [62]. As the results are model 

dependent, they have not resulted in a consensus constraint of the EoS. The model 

geometries do not fit magnetic dipole models of hot spot formation and therefore 

multipole models might be needed [63]. Both groups used a non-heated atmosphere 

model, which might cause significant deviation in the predicted beaming pattern 
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[52]. 

The second NICER target was the millisecond pulsar PSR J0740+662, the neu- 

tron star with the highest accurately measured mass, M = 2 . 08 ± 0 . 07 M⊙. The 

previously measured mass provides a strong prior, however it is much less bright 

than PSR J0030+045. As with the previous target, the NICER collaboration made 

two separate analyses on the data. Both used models with two circular hot spots, 

their non-antipodal placement once again hinting at a non-dipole magnetic field. 

Neither group took the magnetospheric return current heating into account when 

modeling the beaming pattern, citing that the magnetic field configuration is too 

unknown and that it would make fits for lower magnetic field strengths less probable. 

The two radius estimates were 13 . 7+2 . 6 

− 1 . 5 

km (68 % interval) [64] and 12 . 39+2 . 63 

− 1 . 68 

km 

(95 % interval) [65]. 
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4 Optical depth correction for pulse profiles 

Some pulse profiles measured from accretion powered pulsars appear to show a dip 

at zero phase, which might be caused by the accretion flow dimming the light [66]. 

Thus far there has been no model accounting for the optical depth of the accretion 

funnel. In this chapter I will present a simple optical depth correction model that 

can be applied to pulse profiles. Optical depth can be defined as

 

dτ = κρ ds,

 

(19) 

where κ is the opacity, ρ is the density, and ds is the path element. If the ac- 

cretion region is radiation dominated, the Thomson scattering opacity is a viable 

approximation. This approximation is valid near the surface for accretion rates of 

≳ 10− 10 M⊙ 

/ yr . For significantly lower accretion rates the opacity can be approx- 

imated with the Kramer’s law, but due to its temperature dependence it is not 

considered here [67]. If Thomson scattering is used, only the density profile and the 

light path need to be modeled. The density can be roughly approximated with the 

continuity equation:

 

ρ ( r ) = 

Ṁ

 

2 A ( r ) vff 

,

 

(20) 

where A ( r ) is the area of the accretion funnel as a function of radius, and vff 

=√︁

 

2 GM /r is the free-fall velocity. For a path parameterized by the angle ψ , the 

path integral for the optical depth is

 

τ = κ 

∫︂ ψmax 

ψmin 

ρ ( r ( ψ )) 

√︄

 

dx

 

dψ 

2 

+ 

dy

 

dψ 

2 

+ 

dz

 

dψ 

2 

dψ ,

 

(21) 

where ψmax 

and ψmin 

are the range of the trajectory. 

Using these formula, a rough estimate for the optical depth can be made. Using 

basic parameters of M = 1 . 4 M⊙ 

, R = 12 km and Ṁ = 10− 10 M⊙ 

/ yr , assuming a 

circular hot spot with an angular radius of ω = 15◦, the density of the accretion 

funnel at the surface is ρ = 5 . 8 × 10− 7 g cm− 3. The minimum optical depth from 

the spot center to the edge is τ = 0 . 07 . 

The geometry of the spot and accretion funnel, the emission angle, and the 

accretion rate are the most important parameters affecting the optical depth. No- 

tably, smaller spot sizes lead to significantly higher optical depths, approximately 

by τ ∝ Ṁ ω 

− 2. 

4.1 Model for the Light Trajectory 

To parameterize the trajectory of the light, let’s define two vectors: the direction of 

the observer, k , and the surface normal of the emitting point, n . The angle between 

these two vectors is cos ψ∞ 

= k · n . In a coordinate system where the emitting point 

is aligned with the z-axis, the Cartesian components of the vectors can be written as 

n∗ = (0 , 0 , 1) and k 

∗ = (cos φ sin ψ∞ 

, sin φ sin ψ∞ 

, cos ψ∞) , where φ is the azimuth 

angle of the emitting direction. 
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The main parameter of the path is the angle ψ between k and an arbitrary point 

along the trajectory l . For a simple trajectory with no light bending, r ( ψ ) is solvable 

from basic trigonometry:

 

r ( ψ ) = 

R sin( α )

 

sin( ψ ) 

,

 

(22) 

where α is the angle between n and the initial direction of emission k0, which in 

this case is the same as ψ∞. For light bending, one approximation for the trajectory 

in the Schwarzschild metric is [68]

 

r ( ψ ) = 

[︃ 

r2 

g(1 − cos ψ )2

 

4(1 + cos ψ )2 

+ 

b2

 

sin2 ψ 

]︃1 / 2 

− 

Rs(1 − cos ψ )

 

2(1 + cos ψ ) 

,

 

(23)

 

b = 

R

 

√︁

 

1 − Rs 

/R 

sin α ,

 

(24)

 

1 − cos α = (1 − cos ψ∞)(1 − Rs 

/R ) .

 

(25) 

This formula is fairly accurate as long as R > 2 Rs. Equation (14) is more accurate, 

however solving r ( ψ ) with it is not possible analytically. While not correct math- 

ematically, solving α using the more accurate approximation while using equation 

(23) for the radius might provide somewhat better results. Here, however, I used 

the less accurate approximation for simplicity. 

In the Schwarzschild metric, all points along the light path are on the plane 

defined by k and l . A point along the plane of emission can be expressed in a 

simple form, l 

′ = ( r cos ψ , r sin ψ , 0) . To calculate l in some other coordinate system, 

such as one centered on the hot spot, a transform is needed. This can be done 

using a rotation matrix that turns a point on the plane of emission to the hot spot 

coordinates where the z-axis is aligned with the spot center. The geometry in the 

spot center coordinates is shown in figure 8. The general rotation matrices around 

the three Cartesian axes are

 

rx( X ) = 

⎛ ⎝ 

1 0 0 

0 cos X − sin X 

0 sin X cos X 

⎞ ⎠ ,

 

(26)

 

ry( Y ) = 

⎛ ⎝ 

cos Y 0 sin Y 

0 1 0 

− sin Y 0 cos Y 

⎞ ⎠ ,

 

(27)

 

rz( Z ) = 

⎛ ⎝ 

cos Z − sin Z 0 

sin Z cos Z 0 

0 0 1 

⎞ ⎠ ,

 

(28) 

where X , Y , and Z are the rotation angles along each of the respective axes. The 

normal vector of the plane is m = 

k × n

 

sin ψ∞
. On the plane coordinates, the normal 

vector m′ should be (0, 0, 1), so that z 

′ = 0 along the plane:

 

m = rxryrz 

⎛ ⎝ 

0 

0 

1 

⎞ ⎠ = 

⎛ ⎝ 

sin Y 

− sin X cos Y 

cos X cos Y 

⎞ ⎠ .

 

(29) 
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Figure 8: Geometry of the hot spot and the light trajectory in circular coordinates 

aligned with the spot center. The plane of emission and the trajectory are drawn in 

magenta, and the circular hot spot is orange. 

From this, both Y and X can be found. For the third angle, let’s define the observer 

vector k 

′ in the plane coordinates as (1,0,0):

 

k = rxryrz 

⎛ ⎝ 

1 

0 

0 

⎞ ⎠ = 

⎛ ⎝ 

cos Z cos Y 

cos X sin Z + cos Z sin Y sin X 

sin Z sin X − cos Z sin Y cos X 

⎞ ⎠ ,

 

(30) 

By combining the rotation angles solved from equations (30) and (29), the full 

rotation matrix between the plane and spot coordinates can be written as

 

Rp( Z , Y , X ) = rxryrz 

.

 

(31) 

With this rotation, a point l along the trajectory in the hot spot coordinates as a 

function of ψ is

 

l = Rp( Z , Y , X ) l 

′( ψ ) = Rp( Z , Y , X ) 

⎛ ⎝ 

r ( ψ ) cos ψ 

r ( ψ ) sin ψ 

0 

⎞ ⎠ .

 

(32) 

The correct angles aren’t easy to solve as there are six equations involving trigono- 

metric functions. Y is the easiest to find using mx, and a solution for the two others 

can be found once Y is known:

 

Y = arcsin( mx) , (33) 

X = arccos( 

mz

 

cos Y
) = arctan( 

− my

 

mz 

) , (34) 

Z = arccos( 

kx

 

cos Y
) . (35) 
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It is important to take sign changes into account, as otherwise these solutions will 

not work for every possible m and k . Firstly, after the y-component of the normal 

vector reaches zero, the signs of m and the y-component of l 

′ in equation (32) should 

be flipped, as the direction of the normal vector changes. Secondly, the sign of Z 

should be changed after it reaches zero at kx 

= cos Y . 

With this transform, the components of a point along the path now look like 

A · r ( ψ ) cos ψ + B · r ( ψ ) sin ψ , where A and B are constants coming from the ma- 

trix multiplication in equation (32), which are different for each component. The 

derivatives of each component have the following form:

 

A ( r ̇ ( ψ ) cos ψ − r ( ψ ) sin ψ ) + B ( r ̇ ( ψ ) sin ψ + r ( ψ ) cos ψ ) .

 

(36) 

In order to use ψ∞ 

and φ as the parameters that define the direction of emission, 

another transform is needed. This can be done with a second rotation matrix, one 

that turns a point centered on the emitting point to the magnetic coordinates. This 

matrix is

 

Rm(Φ , Θ) := ry 

· rz 

= 

⎛ ⎝ 

cosΘ cosΦ − cosΘ sinΦ sinΘ 

sinΦ cosΦ 0 

− sinΘ cosΦ sinΘ sinΦ cosΘ 

⎞ ⎠ ,

 

(37) 

where Θ and Φ are the inclination and azimuth angle of the emitting spot from the 

spot center: n = (cosΦ sinΘ , sinΦ sinΘ , cosΘ) . For a circular spot, the paths as 

defined by φ and ψ∞ 

are symmetric around Φ , and therefore only Φ = 0 needs to 

be considered. If only Φ is known, φ can be solved using this rotation, as will be 

discussed later. This rotation can be used to transform vectors k 

∗ and n∗ in the 

emitting spot coordinates to the spot center coordinates. Now, the rotation Rp 

from 

the plane of emission to the spot center coordinates can be calculated using three 

parameters: Θ for the location of the emitting spot, and the two angles defining k 

∗, 

φ and ψ∞. 

For a Cartesian point l along the light path, the inclination in spherical coordi- 

nates can be calculated with the conversion cos θ ≡ lz 

/r . Using equation (32), the 

inclination of l in spot center coordinates can be written a function of ψ :

 

cos θ = Rp31 cos ψ + Rp32 sin ψ , (38) 

:= Az cos ψ + Bz sin ψ , (39)

 

where Rp31 

and Rp32 

are components of Rp 

at the indicated indices. As the radius 

term cancels out, the inclination is independent on the shape of the trajectory itself. 

The maximum inclination for a given trajectory is θmax 

= arccos Az. By reversing 

the equation, the angle ψ as a function of θ is

 

cos ψ = 

Az cos θ ± 

√︁

 

A2
z 

B2
z 

+ B4
z 

− B2
z 

cos2 θ

 

A2
z 

+ B2
z 

.

 

(40) 

For a circular spot, one can use similar equations to solve the sign flip thresholds 

for Z in equation (33). As mentioned earlier, the sign of Z should be flipped when 
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kx 

= cos Y . After some algebra the sign flip threshold becomes

 

kx 

= Rm(0 , Θ) k 

∗ |x 

= cos ψ∞ sinΘ + sin ψ∞ cosΘ cos φ, (41) 

kx 

= cos Y = 

√︁

 

1 − m2
x 

= 

√︂

 

1 − cos2Θsin2 φ, (42) 

⇒ ψ∞ 

> arccos 

± sinΘ cos Y

 

sin2Θ + cos2Θcos2 φ 

, (43)

 

where the minus sign corresponds to cos φ < 0 and the plus sign to cos φ > 0 . 

4.2 Accretion Column and Hot Spot Geometry 

4.2.1 Numerical simulations 

As mentioned earlier, 3D numerical simulations of the accretion flow show that for 

a magnetic pole displacement angle of θ0 

≈ 30◦, the shape of the hot spot is a 

semicircle centered around the magnetic pole. For low displacement angles the hot 

spot becomes a hollow circle, and for very high inclinations this becomes a bar shape. 

For a dipole field, the angle between the center of this spot and the pole is 

θs 

= arcsin 

(︂√︂

 

R

 

rm 

cos θ0 

)︂ 

, where rm 

is the magnetospheric radius. However, the 

interaction with the magnetosphere and the disk cause the dipole to be flattened 

and therefore making this angle smaller. In simulations, the width of this spot is 

about 7◦ − 8◦ and only weakly dependent on other parameters [48]. This geometry 

for the hot spot is not utilized here due to its mathematical complexity, as the 

trajectory can cross through the accretion funnel twice. 

4.2.2 Dipole model 

One simpler model for the accretion flow is a circularly symmetric funnel limited by 

magnetic field lines at the edges. This allows for a parametrization of the optical 

depth independent of Φ which is a major issue with hollow funnels. As with the 

previous geometry the trajectory can have multiple crossings, but they happen at 

higher radii where the density is lower, so they can be neglected. For a perfect 

dipole, the field lines follow r = L sin2 θ , where L is the radius at which the field 

line crosses the equator. Now, the area of the funnel is A = 2 π r2(1 − 

√︁

 

1 − 

r

 

L
) . The 

column has no well defined upper edge, so one needs to be defined. It should be 

smaller than the magnetic radius, which is around a few R for accreting millisecond 

pulsars. For this purpose, I considered an upper edge of rmax 

= 3 R . The point of 

exit for the trajectory is not easily analytically solvable as it is dependent on r ( ψ ) , 

but is not computationally difficult. 

4.2.3 Conical model 

To simplify further, the accretion funnel can be modeled as a circular cone with a 

width of ω . The area of a conical funnel is A = 2 π r2(1 − cos ω ) . In the dipole model 

A ∝ r3, where as here A ∝ r2, which makes this a higher limit for the optical depth 

compared to the dipole model. As the actual field lines are flattened by the disk 
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interaction, the accurate area of the funnel is somewhere between the perfect dipole 

and the cone. 

For the conical model, the end point of the trajectory is easily solvable with 

equation 40 by setting θ = ω . For a straight trajectory, the optical depth integral 

becomes τ ∝ 

∫︁ 

dψ /
√

 

sin ψ , which has a finite limit at infinite distance. It tends 

to converge at around 5 R . Limiting the upper edge to rmax 

= 3 R has a significant 

effect on the maximum optical depth, but it represents the observed disk inner radii 

better. 

4.3 Parameter lookup table of optical depths 

I generated parameter lookup tables for the optical depth using the above equations 

for different hot spot sizes. The accretion rate was fixed at Ṁ = 10− 10 M⊙ 

/ yr , and 

it can be easily changed by scaling the optical depth with a factor of Ṁ 

10 

(accretion 

rate in units of 10− 10 M⊙ 

/ yr ). The mass and radius of the neutron star were set at 

M = 1 . 4 M⊙ 

and R = 12 km . For a spot of radius ω = 10◦, the range of optical 

depths is about 0.1-0.5, with the maximum corresponding to angles at which the 

light exits through the top edge. Plots for the optical depth as a function of α at 

fixed φ at spot radii ω of 30◦, 15◦ , and 10◦ are presented in figure 9. 

Most pulse profile models use small spot sizes of ω ≲ 5◦ as it has only a weak 

effect on the profile, but it strongly effects the optical depth. For small spots, the 

density is dependent on the spot size approximately by ρ ∝ ω 

− 2, which leads to 

significantly larger optical depths despite the shorter travel distances. Significantly 

shorter rmax 

decreases the maximum optical depth, making the distribution over α 

flatter overall. 

To utilize these lookup tables for pulse profiles, the angle φ and Θ need to be 

found for each emitting spot as a function of rotational phase. The angles ψ∞ 

and 

α are often already calculated, but finding the other two angles usually requires 

coordinate transforms. A commonly used coordinate system is one centered on the 

axis of rotation where the observer vector k 

′′ = (sin i, 0 , cos i ) is fixed. Rotating the 

vectors n′′ and k 

′′ by the rotational phase ϕ and the spot colatitude θ0 

using the 

matrix Rm( − ϕ, − θ0) gives them in the spot center coordinates, where Θ and Φ can 

be found. φ can be found by further rotating k to the emitting spot coordinates, 

which can be done with Rm( − Φ , − Θ) . 

4.4 Pulse profiles 

I generated various pulse profiles using the model described in Salmi et al. 2020 [54]. 

The optical depth correction was applied to each of the emitting points separately 

to account for time delays. The profiles were corrected for oblation at a spin rate of 

401 Hz , and the beaming pattern was calculated using a simple Thomson scattering 

plane-parallel model described in Viironen & Poutanen 2004 [69]. The corrected 

profiles are presented in figures 10, 11 and 12 at different accretion rates, spot sizes, 

and spot colatitudes at an energy of 10 keV . As predicted, the absorption caused 

by the accretion funnel does indeed cause a periodic dip in brightness at zero phase. 

The dip remains at the same phase even when the peak is skewed from relativistic 
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Figure 9: Optical depth of a conical accretion funnel as a function of emission angle 

α at a fixed azimuth angle φ and inclination Θ for three different spot sizes at 

Ṁ 

10 

= 1 . The spot angular radii ω in these plots are 30◦ , 15◦ and 10◦ (top, center, 

and bottom plots, respectively). 

effects, causing the dip to appear after the peak. The dip is further away from the 

peak at higher energies. 

When the observer inclination is closer to the spot colatitude, the optical depth 

rises sharply and the dip becomes much more prominent. When | i − θ0 

| < ω some 

of the light exits through the upper boundary, which gives the dip a sharper shape. 

The size of the hot spot affects the depth of the dip, but only weakly changes its 

width. 

The effect of a smaller spot size and a larger accretion rate appear to be quite 
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Ṁ10 = 3

no correction

0.0 0.5 1.0 1.5 2.0
Phase φ/2π

0.8

0.9

1.0

1.1

1.2

1.3

Fl
ux

 F
/〈 F〉

ω= 20 ◦

0.0 0.5 1.0 1.5 2.0
Phase φ/2π

0.8

0.9

1.0

1.1

1.2

Fl
ux

 F
/〈 F〉

ω= 10 ◦

 

Figure 10: Pulse profiles using the optical depth correction model at different accre- 

tion rates and hot spot radii at an energy of 10 keV . Note that the flux is relative, 

the actual corrected profiles have lower flux overall. The observer inclination is 

i = 60◦, and the spot colatitude is θ0 

= 20◦. 

similar, which might cause fit degeneracies for the two parameters. For small θ0, 

the Doppler boosting and aberration warping the pulse profile are weaker, and the 

dip is closer to the flux maximum. A large i angle has a similar effect, but the dip 

tends to be much more shallow. The depth of the dip appears to be the strongest 

when both θ0 

and i are small, in the most extreme case it is even deeper than the 

pulse minimum. 

The optical depth correction has little effect on a secondary antipodal spot, 

because it is significantly further away from the observer than the primary spot 

and therefore the optical depth remains nearly constant. For this reason I did not 

include plots of such here. However, the correction should be applied to both spots 

as the optical depth is still nonzero. 

To test this model, I roughly compared simulated profiles to measured pulse 

profiles of accretion powered millisecond pulsar SAX J1808.4 − 3658. The inclination 

of the neutron star has been previously measured to be roughly around i ∼ 60◦, and 
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Figure 11: Pulse profiles using the optical depth correction model at different accre- 

tion rates and spot colatitudes at an energy of 10 keV . The observer inclination is 

i = 60◦, and the spot radius is ω = 15◦. The accretion rates follow the same colours 

as figure 10. 

the spot colatitude is estimated to be θ0 

∼ 10◦. During the peak of its 2002 outburst, 

the pulse had a very noticeable secondary minimum [66]. For the comparison, I used 

a singular spot with i = 58 . 3◦, θ0 

= 3 . 7◦, ω = 30◦, and Ṁ 

10 

= 3 . 5 at an energy of 

10 keV . While it is not an optimized fit, the shape of the dip is quite similar to 

observations. 

Finding a comparable profile for the slow decay portion of the same burst was 

more challenging. The most similar profile profile I was able to find included an 

antipodal spot and used the parameters i = 58 . 3◦, θ0 

= 6 . 1◦, ω = 15◦, and Ṁ 

10 

= 

2 . 5 , again at an energy of 10 keV . The shape of the pulse is once again quite similar, 

but the dip was much too shallow. Models with an antipodal spot and a higher θ0 

appear to represent this profile better, which might indicate a change in accretion 

geometry. Further study of these profiles is necessary to analyze this further. Both 

of the simulated profiles are presented alongside the observed profiles in figure 13. 
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Figure 12: Pulse profiles using the optical depth correction model at different ac- 

cretion rates and observer inclinations at an energy of 10 keV . The spot colatitude 

is θ0 

= 20◦, and the spot radius is ω = 15◦. The accretion rates follow the same 

colours as figure 10.
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Figure 13: The pulse profile of SAX J1808.4 − 3658 during its outburst peak (left) 

and slow decay phase (right) compared to the simulated pulse profiles with the 

optical depth correction. The grey dashed line represents the uncorrected profile. 
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5 Summary 

The most stringent constraints on the cold dense matter EoS have been achieved 

through measuring the maximum mass and tidal deformability of neutron stars, but 

the number of viable models is still huge. To achieve better accuracy, further mea- 

surements are needed. Probing the EoS through X-ray observations is a challenging 

task due to the many systematic factors involved, but it shows promise. Spectral 

fitting in particular has many issues regarding distance and the emission spectrum. 

The cooling tail method can bypass the problem with distance through measuring 

the Eddington temperature. The method has good potential for accurate M − R 

measurement, but has yet to provide strong mass constraints [60]. There are several 

other possible methods such as QPO modeling, but none of them have been utilized 

in practice yet. 

Besides the cooling tail method, so far the most reliable M − R measurements 

have been achieved with pulse profile modeling. Pulse profile modeling still faces 

challenges in its model parameters that can be difficult to determine and degenerate 

with each other. Phase resolved polarization measurement through instruments 

such as IXPE would aid with resolving the geometric parameters in the future [54]. 

NICER has been shown to be capable of achieving good measurement accuracy with 

rotation powered millisecond pulsars, however the analyses of the currently available 

data are not in consensus about the results [61, 62]. Further study of the emission 

mechanism might be necessary to achieve more reliable constraints [52]. 

The optical depth of the accretion flow in disk accreting neutron stars can cause a 

significant secondary minimum in the pulse profile. The simplified model presented 

here is capable of recreating the effect with realistic parameters. The main model 

parameters are the observer inclination, the spot colatitude, the spot size, and the 

accretion rate. The accretion rate can be estimated with the accretion luminosity, 

which cannot be measured all that accurately due to its dependence on distance. The 

spot size has previously been very difficult to constrain due to its weak effect on the 

pulse profile, but it is a major factor in this model. As the depth and location of the 

dip is sensitive to many model parameters, the correction model might potentially 

assist in measuring them more accurately. More rigorous statistical analysis of the 

optical depth correction would help ascertain its impact. 
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