
Application Security Verification Standard
Compliance Analysis of a Low Code

Development Platform

Master of Science in Technology
Thesis
University of Turku
Department of Computing
Cybersecurity
2022
Sami Spets

Supervisors:
Tapani Joelsson Univ. of Turku
Martti Ala-Rantala Solita Oy
Seppo Virtanen Univ. of Turku

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

Sami Spets: Application Security Verification Standard Compliance Analysis of a
Low Code Development Platform

Master of Science in Technology Thesis, 57 p.
Cybersecurity
December 2022

Low-code development platforms (LCDPs) are software development platforms that
use artificial intelligence to help automate simple and routine tasks and make the
software development process faster. By 2024, 60% of application development ex-
pect to be done using these platforms. Even though these platforms are gaining
popularity, they have not been popular research topics, and their security features
have not been assessed. One way to conduct such an assessment is by using Appli-
cation Security Verification Standard (ASVS).

ASVS is a community-driven security standard for web applications and services.
ASVS is made of three requirement levels, and the security controls become more
strict when moved up. ASVS is designed to give organizations a tool to develop and
maintain more secure applications.

One example of an LCDP is OutSystems, which is said to be “designed for the devel-
opers, by the developers”. OutSystems belongs to the Leader category in the 2021
release of Gartner® Magic QuadrantTM for Enterprise Low-Code Application Plat-
forms. In this thesis, we will conduct a first of its kind compliance analysis between
OutSystems and ASVS levels 1 and 2 to find out if and how compliant OutSystems
is with the standard. This kind of compliance analysis has not been done before.
Based on our analysis, we will do a “lessons learned” and write a guideline on how
to evaluate LCDPs’ security features in the future.

The results themselves show that OutSystems, for the most part, is compliant with
ASVS. The biggest deficiencies in OutSystems are with authentication and input
validation. We show that the deficiencies with authentication are trivial to fix, but
meeting the requirements with the input validation requires some work.

From the assessment, we learned that assessing LCDPs is not completely similar to a
traditional security assessment. We learned that some functionalities are pre-made,
and the developer can not customise them. We found that it is easier to evaluate
first if the platform meets the requirement. If not, then see if the developer can do
something about it.

Keywords: OutSystems, OWASP ASVS, low code, security standard, cyber security

Contents

1 Introduction 1

1.1 Research motivation . 1

1.2 Research questions . 3

1.3 Research method and process . 5

1.3.1 Literature review process . 5

1.3.2 Compliance analysis . 7

1.3.3 Defining an LCDP assessment guideline 8

1.4 Structure of the thesis . 8

2 Background 9

2.1 Cybersecurity standards . 9

2.1.1 ISO/IEC 27000-series . 9

2.1.2 OWASP ASVS . 10

2.2 Low-code development platforms . 12

2.2.1 Microsoft’s Power Platform 13

2.2.2 OutSystems . 14

2.3 Security assessment in general . 17

2.4 Summary . 19

3 Multi-vocal literature review 20

3.1 Academic research . 20

i

3.2 Industrial research . 26

3.3 Conclusion . 27

4 OutSystems compliance with ASVS 30

4.1 Compliance analysis of ASVS Level 1 30

4.2 Compliance analysis of ASVS Level 2 31

4.3 Results . 32

4.3.1 Defining the shared responsibility between OutSystems and

the Developer . 32

4.3.2 Findings . 36

4.3.3 Summary of results . 40

4.4 How to assess an LCDP’s security in the future? 48

5 Conclusion 54

5.1 Limitations . 54

5.2 Future work . 55

5.3 Summary . 56

References 58

ii

List of Figures

1.1 Academic research process. 6

2.1 OutSystems Architecture . 14

2.2 OutSystems Service Studio 11. 15

2.3 Example questions from the NCSC-FI’s security maturity question-

naire. [28] . 18

4.1 Expectations for the shared responsibility between OutSystems and

developer. 35

4.2 Reality for the shared responsibility between OutSystems and developer. 49

iii

List of Tables

3.1 Research papers and their topics. 28

4.1 The possible answers for a requirement, and what the answers mean

for OutSystems and for the IT-user. N/A means Not Applicaple and

DA means Developer Action. 31

4.2 Results for OutSystems’ compliance with ASVS. 33

4.3 Summary of ASVS Level 1 requirements that OutSystems does not fill. 42

4.4 Summary of ASVS Level 1 requirements that OutSystems does not fill. 43

4.8 Summary of ASVS Level 2 requirements that do not concern OutSys-

tems. 45

4.9 Summary of ASVS Level 2 requirements that do not concern OutSys-

tems. 46

4.10 Summary of ASVS Level 2 requirements that do not concern OutSys-

tems. 47

4.11 Summary of ASVS Level 2 requirements that do not concern OutSys-

tems. 48

4.5 Summary of ASVS Level 1 requirements that OutSystems does not fill. 51

4.6 Summary of ASVS Level 1 requirements that OutSystems does not fill. 52

4.7 Summary of ASVS Level 2 requirements that OutSystems does not fill. 53

iv

List of acronyms

AI Artificial Intelligence

ASVS Application Security Verification Standard

LCDP Low-code development platform

LCSD Low-code software development

MFA Multi Factor Authentication.

OTP One Time Password

OWASP Open Web Application Security Project

U2F Universal 2nd Factor

v

1 Introduction

Software development methodologies have existed for over 50 years, beginning with

the Systems Development Life Cycle (SDLC) [1]. It consists of five elements: plan-

ning, analyzing, designing, implementing, and maintaining the system. The elements

themselves have not much changed, but the way they are implemented have.

In the 1990s, Rapid Application Development (RAD) emphasized building pro-

totypes and proofs-of-concept rather than designing or planning. The user could

interact with the prototypes and give feedback, leading to better quality products

and staying within budgets since the focus is on implementation [2]. The process

resembled that of a modern-day Agile methodology. For example, in Scrum, the

development is typically done in two weeks ”sprints”. These sprints consist of choos-

ing a feature to be developed, developing it, and then demonstrating the developed

feature to the customer. These features are given to the customer in small pieces,

and the customer can ask for improvements based on their needs [3]. Emphasis

was on providing working software fast and incrementally enhancing it rather than

delivering software all at once.

1.1 Research motivation

Coming to the 2010s, the rapid software delivery has become a more crucial part

of the software development cycle. One of the biggest bottlenecks in the delivery

process is converting the design with many details to an actual working application.

1.1 RESEARCH MOTIVATION 2

For some time dissolving this bottleneck has had two ways, first is by increasing

the number of skilled software developers working on the software. The problem

with this is that the industry has a severe lack of skilled developers but the need

for software keeps increasing. The second way is to use different types of software

accelerators to try and make the development process faster. Typically these accel-

erators create some general boilerplate code and give some kind of template for the

developer to work with.

Low-code development platforms (LCDPs) approach this bottleneck from a new

perspective. They utilize Artificial Intelligence (AI) and static code analysis based

tools. AI-based tools help the developer by creating boilerplate code based on the

context and handling repetitive tasks. The static code analysis tools are used to

analyze the code, spot bad practices, and warn the developer of potentially harmful

code.

Working with LCDPs requires little to no programming and may utilize a new

class of developers, called citizen developers. These are people who do not have

a background in IT and do not have existing knowledge or skills in software engi-

neering, but are subject matter experts and know the business domain the software

is built for. Their status is somewhat debatable, and LCDPs differ starkly in the

degree to which they support citizen developers. How can someone do even little

programming if they have never before programmed and if they do not understand

the basics of programming? Citizen developers use the same tools, frameworks, and

libraries that require lots of skills from an expert developers. Is there a point in

showing a programming error on the screen if the citizen developer does not know

what that error means? If an LCDP would take all of this into account, would that

limit the capabilities of expert developers who have a background in IT?

With LCDPs, complete systems and applications are created using different ac-

celerators to add functionalities and pre-fabricated components. LCDPs, such as

1.2 RESEARCH QUESTIONS 3

OutSystems, have existed for 20 years, but they have become more popular and

widely used in software development in recent years. Estimates have it that by

2024, over 65 % of all application development uses LCDPs. [4]

Because estimates predict that LCDPs’ popularity will skyrocket, the security

of these platforms is becoming a more relevant topic. New vulnerabilities are found

in different software products constantly. Cybersecurity standards help mitigate

them. One such standard is Open Web Application Security Project’s (OWASP)

Application Security Verification Standard (ASVS). OWASP is a community-driven

non-profit foundation that aims to create more secure software [5]. They have open-

source projects such as a top 10 list of most common vulnerabilities found in web

applications [6], a web application security scanner [7], and a security standard to

develop secure software [8].

1.2 Research questions

In this thesis, we will do a compliance analysis between OutSystems and ASVS and

based on our findings share our thoughts how such analysis could be done in the

future. This research question came as a commission from Solita Oy.1 We did some

initial background investigation to see if there were any studies or frameworks on

how to conduct a security assessment on an LCDP. We found that the research field

was scarce and somewhat scattered on the topic.

To conduct a compliance analysis it is necessary to do an LCDP literature review

from a security point of view. We also decided to look into industrial studies to see

if there were any industry standards or frameworks to help us with our question. In

the end, we came up with the following three research questions (RQs).

1Solita Oy https://www.solita.fi/en/

1.2 RESEARCH QUESTIONS 4

RQ1: WHAT IS THE CURRENT STATE OF THE FIELD OF LCPD?

In our initial background investigation, we did not find many previous research

papers about the topic. From those we did manage to find, we did not find any

comprehensive literature review from an academic or industrial point of view. Thus,

we decided to make two-part multi-vocal literature review.

We will be looking at previous academic studies and categorizing them based on

the research papers’ topic. We will also review if any of the categories present secu-

rity in low-code. Based on these research papers we will also present our thoughts

on LCDPs’ future.

Garousi et al. [9] argued that industrial materials give an insight to the current

state of the topic in literature review. Based on the initial familiarization with the

field, it seems that LCDP research is driven by industry, with companies such as

OutSystems. Thus it is vital to look at industry materials, such as blog posts. Due

to the focus of this thesis, we will be focusing on security-related industry materials.

After we have looked at academic studies and industrial materials, we want to

find a way to assess OutSystems’ compliance with ASVS. We will use the literature

review to look if there are any previous case studies and if there are, how they have

been conducted, to help conduct our assessment.

RQ2: IS OUTSYSTEMS COMPLIANT WITH ASVS?

After defining a way to assess OutSystems’ security, we want to determine how

compliant OutSystems is with ASVS. If the platform is not fully compliant, we

want to identify the missing components required to become fully compliant. ASVS

comprises three levels, and the security requirements become more strict when we

move up the levels. We will be assessing OutSystems compliance with levels 1 and 2,

and it is worth noting that some of the level 2 requirements are related to developer

actions and are not solvable with the platform itself. Level 3 will not be assessed,

1.3 RESEARCH METHOD AND PROCESS 5

because it did not belong to the scope given by Solita.

Since OutSystems provides pre-made logic, which the developers use in the soft-

ware development phase, we need to find out what is on OutSystems’ responsibility

and what is on the developer’s responsibility.

RQ3: HOW TO ASSESS LCDP SECURITY IN FUTURE?

In low-code software development, the LCDPs have pre-made modules and func-

tionalities. Since some LCDPs are proprietary software, developers cannot always

access the source code and cannot assess them as they would with traditional soft-

ware development. Based on the RQ1 and RQ2, we will define a guideline to evaluate

OutSystems’ security features.

1.3 Research method and process

This thesis uses multiple different research methods. Chapter 3 will be done as a

multi-vocal literature review from an academic and industrial point of view. Chapter

4 is a mixture of case studies and expert reviews. To conduct the expert review,

we will use OutSystems’ public information about their platform. We will also use

the help of two senior experts who are OutSystems professionals, one working at

OutSystems and one working at Solita.

1.3.1 Literature review process

With the rise of LCDP, the amount of studies and research on the subject matter

is also rising. Before beginning the literature review, we did some preliminary fa-

miliarization with the field and even though there are some studies on the subject,

there are almost no literature reviews. In our premilinary familiarization we found

one paper from 2020 [10] that had one subchapter about previous studies and con-

1.3 RESEARCH METHOD AND PROCESS 6

cluded that LCDP as a research topic seems to be under-researched, but has gained

some popularity during the last few years. Then we found one full literature review

from the year 2021 [11] which claims to be the first one on the subject. The study

focused on assessing the socio-technical aspect of previous LCDP studies and found

that most of them focused on the technical system.

We wanted to do a literature review on low-code and security. We found that

there is a small number of papers about low-code in general, so we decided to do

a literature review on a larger field-wide topic. We chose the terms ”low-code” and

”low code” as our search engine keywords. Other criteria we had for our searches

were as follows:

- Research paper is in English,

- Only scientific articles,

- The paper is related to low-code development platforms,

- The paper is published between the years 2000 and 2021

For this literature review, we went through five databases between October 4th

and October 14th 2021, and the process is presented in Figure 1.1.

Figure 1.1: Academic research process.

1.3 RESEARCH METHOD AND PROCESS 7

The included databases were ACM Digital Library2, IEEE Xplore3, ScienceDi-

rect4, Springer Link5, and Web of Science6. We found a total of 946 articles that

met the initial criterias. The first phase of the process was going through them and

based on the search results’ title, and abstract deciding whether or not the article

was relevant. Parts of the article were also examined if the title and abstract were

not clear enough. After this phase we were left with total of 31 articles. They were

read in full and based on the full article we decided if they met the inclusion or

exclusion criterias. After these elimination phases, there was a total of 20 papers

left to be evaluated.

In addition to the fact that we went through five different search engines, we also

searched for industrial papers and blog posts from Google and DuckDuckGo between

December 6th and December 7th 2021 with the keywords ”low-code security” and

”low code security”. We thought that using ”low-code” as a keyword would produce

too many search results with general search engines so we wanted to narrow the

focus to industry papers on security. In the end, we found four industrial papers

from a practical point of view that we think will help us predict the direction of

low-code software development.

1.3.2 Compliance analysis

The goal of the compliance analysis is to find out OutSystems’ compliance with

ASVS. We will use OutSystems’ documentation to define the shared responsibility

between OutSystems and the developer. The assessment itself will be done as an

expert review, where we will be also using OutSystems-provided materials and se-

2https://dl.acm.org/
3https://ieeexplore.ieee.org/Xplore/home.jsp
4https://www.sciencedirect.com/
5https://link.springer.com/
6https://www.webofknowledge.com/

1.4 STRUCTURE OF THE THESIS 8

nior experts. These senior experts are OutSystems professionals, who work with

OutSystems.

1.3.3 Defining an LCDP assessment guideline

Based on compliance analysis we identify methods to assess LCDP’s security features

in the future. We will look at findings from the previous studies and the compliance

analysis to help us determine this guideline. It will hopefully help other researchers

and practicioners assess LCDPs’ security features in the future.

1.4 Structure of the thesis

The structure of this thesis is as follows. Chapter 2 explains the background needed

to understand this thesis. We will be opening the topics of cybersecurity standards,

LCDPs, and what kind of cybersecurity assessments there are.

Chapter 3 is a literature review of previous academic studies about low-code. We

will also review industrial materials, such as blog-post, projects, and papers related

to low-code security, and then predict where it is heading. After we have reviewed

the studies and industrial materials, we will be assessing where the field of LCDP is

heading towards.

In Chapter 4 we will look at how we can apply ASVS to OutSystems and what

kind of shared responsibility needs to be defined. We will also present the results of

OutSystems’ compliance with ASVS and interpret the results. Finally, we will take

a closer look at the requirements that did not pass the evaluation. In chapter 5, we

will conclude this thesis by recapping and answering the research questions.

2 Background

The two main components for this thesis are ASVS and OutSystems. We will look

into what a cybersecurity standard is and what types of cybersecurity standards

there are. We will also look at what an LCDP is, and look at two LCDPs, Microsoft

Power Platform and OutSystems. Lastly, we will look at what types of cybersecurity

assessments there are available and how they can be used.

2.1 Cybersecurity standards

A cybersecurity standard is a set of instructions and techniques that helps an or-

ganization or an individual create more secure systems and mitigate cybersecurity

threats. The standards themselves can vary much, some can be specific and only

address application security. Other standards can address information security man-

agement in an organization as a whole. Standards are designed for commercial use,

such as the International Organization for Standardization (ISO)/International Elec-

trotechnical Commission (IEC) 27000 series. However, they can also be community-

created, and free to use, such as the ASVS.

2.1.1 ISO/IEC 27000-series

ISO/IEC 27000-series was created in 2005 by ISO and IEC. It is an internationally

used set of cybersecurity standards designed for information security management.

2.1 CYBERSECURITY STANDARDS 10

The series defines a set of best practices that help organizations improve their infor-

mation security and tell how to implement these best practices to create an overall

information security management system.

The heart of the series is the ISO/IEC 27001 standard, which defines the re-

quirements for an information security management system and how to maintain

and improve it [12]. The system is in charge of protecting the confidentiality, in-

tegrity, and availability of the organization’s information. It also signals that the

organization addresses risks with severity. Even though the ISO/IEC 27001 is the

heart of the series, the better-known standard is the ISO/IEC 27002 which defines a

set of information security controls that the organization can use [13]. The standard

also has variations, such as ISO/IEC 27011, which is an implementation designed

for telecommunication companies, [14] and the ISO/IEC 27017 is designed for cloud

services [15].

Even though ISO develops and maintains the ISO/IEC 27001, they do not grant

any certificates. Instead, external certification bodies conduct audits and award

certificates. The price for a security audit can range from thousands of dollars to

tens of thousands of dollars, depending on factors such as the number of employees

in the audited organization and the amount of time the audit takes [16].

2.1.2 OWASP ASVS

ASVS is a community-driven security standard for web applications and web ser-

vices. It defines the security controls needed when the application or service is

designed, developed, and tested, from both functional and non-functional point-of-

view. The goal of the standard is to give organizations a tool to develop and maintain

more secure applications and allow different security vendors and consumers to have

a meeting point for their offers and requirements. In bids, the procurer can use

ASVS to define the wanted security features for the application.

2.1 CYBERSECURITY STANDARDS 11

Even though ASVS is a standard, there is no actual certification issued to orga-

nizations that meet these standards. It can be used as a playbook for application

security, but to be used correctly, completely open access is needed to resources such

as architects, source code, and test systems. The standard can also be used as a

coding checklist, guide for automated unit and integration tests, or detailed security

architecture guidance. In this thesis, we will use ASVS version 4.0.3.

ASVS has three security levels designed for different systems and applications.

Level 1 is for low assurance applications, level 2 is for today’s average applications,

and level 3 is for applications and systems running critical infrastructure.

The ASVS defines level 1 as the bare minimum security level that every appli-

cation should meet. It covers vulnerabilities in the OWASP Top 10 list and other

vulnerabilities that are as common and easily discoverable. An attacker who is try-

ing to break into this kind of application most likely uses simple techniques that

require little to no effort, such as automated scripts. Application belonging to level

1 does not store or handle any sensitive data. Level 1 applications can be tested

manually or automatically without having access to the documentation or the source

code.

Applications that achieve level 2 can sufficiently defend against most of the

threats and risks that an application might be subjected to today. They han-

dle business-to-business transactions, store or handle sensitive data, or implement

business-critical or sensitive functions. In short, level 2 covers most of today’s ap-

plications. The threats a level 2 application may encounter are target-specific. The

attacker is typically motivated, skilled with tools and techniques and knows how

to discover and exploit weaknesses in the application. To mitigate these threats

and risks, level 2 introduces new controls that should be implemented in processes

and phases of software development. These new controls include security architec-

ture and reviews, unit and integration tests, and require the developers to follow

2.2 LOW-CODE DEVELOPMENT PLATFORMS 12

standards and checklists.

In level 2, some of the requirements become more abstract when compared to

level 1 requirements. For example, level 1 has requirement id V2.8.1, which states

”Verify that time-based OTPs have a defined lifetime before expiring.”. The re-

quirement following that, requirement id V2.8.2 states ”Verify that symmetric keys

used to verify submitted OTPs are highly protected, such as by using a hardware

security module or secure operating system based key storage”. Although it gives

examples of how to highly protect OTP, it also leaves some room for the developer

to determine how to do so.

The highest level an application can achieve in ASVS is level 3. Level 3 ap-

plications require significantly more security verification than level 2 applications.

These applications usually belong to critical infrastructures, such as health care,

banking, or the military. The attackers targetting level 3 applications are usually

highly motivated and skilled, with lots of resources to conduct their attacks. Level 3

applications, for the most part, use the same controls as level 2 applications but are

implemented with more precision and more depth. For example, it is not enough for

a level 3 application to encrypt data, but the application also needs to be sure that

the encryption is signed so the encryption is verifiable. Another example would be

that in level 2 backups need to be taken periodically, in level 3 the backup restoration

also needs to be tested.

2.2 Low-code development platforms

LCDPs are software developing platforms where the development is done with little

coding to no coding. The traditional coding has been replaced with an AI-based tool

that can generate, for example, boilerplate code or otherwise automate trivial tasks.

The developer can drag and drop ready-made modules to build the application.

Users can create whole applications and systems this way, and developing with

2.2 LOW-CODE DEVELOPMENT PLATFORMS 13

LCDPs allows faster delivery times [17]. As we will see in the literature review,

LCDPs have been steadily increasing in popularity. In this chapter, we will look at

two LCDPs, OutSystems and Microsoft’s Power Platform.

2.2.1 Microsoft’s Power Platform

Microsoft’s Power Platform is a cloud-based LCDP. It is a collection of four Microsoft

products, Power Automate, Power Apps, Power BI, and Power Virtual Agents. It

is a data-driven platform, and the heart of the platform is Microsoft Dataverse,

where the data is stored. The data is divided into two categories. Tabular data

resembles traditional data and function-based data can also perform functionalities,

such as sending an email. The data is moved between Dataverse and applications

with Connectors. Triggers and Actions are used to start an event in the application.

Actions are user-initiated, and triggers are automated events. AI Builder is used to

helping build the application [18][19].

Whereas OutSystems is a low-code platform, in the code writing aspect, Power

Platform is a low-code platform in the coding skills aspect. There are over 275

connectors that work with the most common data sources [19]. Citizen developers

can use them to develop in-house applications for organizations, automate busi-

ness processes, and create reports. Expert developers can build their applications

traditionally and use Dataverse as their data storage.

Since Power Platform is a data-driven platform, identity management, and access

control play a big part in its security features. Dataverse uses Azure Active Directory

to authenticate users. A single organization has one Azure Active Directory Tenant,

and that tenant can have multiple environments that run the same application but

have a small difference between them. These differences can be, for example, that

they are regional or that they have different security needs [20]. Power Platform’s

security features also include data loss prevention policies. These policies can be

2.2 LOW-CODE DEVELOPMENT PLATFORMS 14

scoped to a tenant or environment level [21]. The environments themselves are

managed through Power Platform’s Admin Center.

2.2.2 OutSystems

OutSystems is an LCDP whose development started in 2001 and that is said to

have been ”created by developers for developers”. It is used for developing mobile

and desktop web applications. The applications are hosted either through OutSys-

tems’ cloud-hosting service, another public cloud provider, or in some rare instances,

locally. Figure 2.1 shows OutSystem’s architecture [22][23].

Figure 2.1: OutSystems architecture structure [24]. ® 2022 OutSystems

Service Studio and Integration Studio run on a development environment, al-

though they can be connected to test and production environments as well. After

2.2 LOW-CODE DEVELOPMENT PLATFORMS 15

a feature is ready, it is deployed to a testing environment, where it is subjected to

testing and quality assurance is done. After testing and quality assurance, the fea-

ture gets promoted to the production environment, where the end-users use it. Each

environment has a Service Center instance for managing purposes, and there is one

LifeTime instance to manage the infrastructure across all environments. The infras-

tructure has at least three environments, except for the personal environment where

there is only one, and the OS demo environment, where there are two. Typically an

infrastructure has four or five environments.

For the developers, the key components are Integration Studio and Service Stu-

dio. The application development is mostly done in Service Studio but if a developer

wants to write external integration modules with C# or .NET, it can be done with

Integration Studio. Figure 2.2 shows the graphical user interface for OutSystems

Service Studio 11.

Figure 2.2: OutSystems Service Studio 11.

The left panel contains application components that can be dragged to the center

2.2 LOW-CODE DEVELOPMENT PLATFORMS 16

panel. The center panel shows the application you are building. The right panel

displays the structure of the application in one of the four views selected at the top

of the rightmost panel: Process, Interface, Logic, and Data.

OutSystems AI automates repeating and routine tasks, for example, by creating

"pre-fab" screens for manipulating data in a database entity. An AI-based static

code analysis tools issue warnings about security risks and performance problems,

and there are tools for analyzing the code quality, e.g., the amount of technical debt

[22][25].

OutSystems is a proprietary LCDP, and that may raise some security concerns

since the source code is not open-sourced. At the design time, OutSystems uses

static code analysis to warn the developer of possibly vulnerable code, such as SQL

injection threats, and unvalidated redirects. Developers can customize the config-

urations used for security checks, for example, to get notifications of customized

security issues.

OutSystems integrates to third-party identity management services such as These

tools include Active Directory using LDAP, SAML, and OAuth. These integrations

provide good secure identity management solutions, but their downside is that they

cannot be used to identify the developers. They can be only identified using Out-

Systems’ login credentials.

OutSystems is capable of enforcing HTTPS/SSL encryption on all web appli-

cations. All requests from web services to external systems are logged for security

reasons. The system also logs changes made by developers, system administrators,

and application managers for future auditing purposes [26]. In this thesis we will be

assessing applications developed with Service Studio 11.52.

2.3 SECURITY ASSESSMENT IN GENERAL 17

2.3 Security assessment in general

A security assessment is a process where an organization tests its security. A security

assessment can be done by someone from an external organization or by someone

who works for said organization.

An external assessment is usually done when a company wants to be seen as

legitimate by others. Probably the most common reason for an external assessment

is when an organization is trying to get certified for a cybersecurity standard. Being

audited by an external body brings more credibility than self claiming to meet the

standard. The proof of meeting the security standard is the certificate. These

certificates typically need to be re-evaluated within a certain amount of time. For

ISO/IEC 27001, the certification is valid for three years [27], and the company needs

to do maintenance in between the re-evaluation. During a cybersecurity certification

audit, the auditors have a list of predefined requirements that they will compare

against the company.

Externally done security assessments can also occur during a buyout or when two

companies are about to merge. Typically in these cases, the auditors pay special

attention to see if the systems have had a previously unknown security incident. If

one of the companies is very large department, they can sometimes use their internal

cybersecurity experts.

There can be many reasons why a company might want to do an internal security

assessment. The first reason is to get a baseline of their current security. When

a company reaches a certain milestone or becomes big enough, it might want to

start figuring out its security maturity. This security maturity then can be used

to demonstrate to a customer that the organization takes care of their security and

is safe to use. Figure 2.3 shows examples from the security maturity questionnaire

from the Finnish National Cyber Security Center (NCSC-FI).

Whereas the technical security assessment might need external help, the admin-

2.3 SECURITY ASSESSMENT IN GENERAL 18

Figure 2.3: Example questions from the NCSC-FI’s security maturity questionnaire.

[28]

istrative tasks will most likely need to be done internally.

The second reason to use internal security assessment is to improve the existing

security in the company. For example, in an IT product company, the employees

most likely know the company’s products better than an external assessor. Since

they know the product, they could be used to do threat modeling, which then

could be used to make the product more secure. If the company periodically does

security assessments internally, it can also have custom-made technical assessment

tools. These tools can be more effective when assessing internal security than the

off-the-shelf tools that an external tester might use. The company might also do

an internal security assessment because they want to see if the employees follow

the company’s security program. Do the software developers follow the security

guidelines and checklists they have been provided? Do the sales employees inform

2.4 SUMMARY 19

the security department about a suspicious email they have been receiving lately?

The third reason a company might want to do an internal security assessment

is because of a security incident. When a security incident happens, the company

usually goes into an alert mode. If this happened here, where could it happen next?

The last chapter of a typical incident report is ”Lessons learned”. As the name

suggests, this chapter describes what the company has learned from the incident

and what security measures they should place so it will not happen again.

2.4 Summary

We have now opened the topics that are necessary to understand this thesis. Cy-

bersecurity standards come for different purposes. Some standards, such as the

ISO/IEC 27000 series, are designed to show that the organization meets predefined

criteria and qualifies for that standard. The organizations are then given a certificate

to prove that they meet these criteria. Others, such as ASVS are community-driven

and designed for more internal use. It can be used as a security checklist when

developing an application or as a guide for automated unit tests. In biddings, a

procurer can use it to define a set of security features required for the application.

Security standards are closely related to security assessments. When a company

wants a security certificate, they call for an external assessor to conduct the audit.

In internal security audits, the company typically wants to see and test its current

level of security. The results of the internal security audit can be used, for example,

to help evaluate the company’s security maturity index.

LCDPs also come in different shapes and sizes. There are platforms where the

developer does not need to know how to code, like in Microsoft Power Platform.

Then some LCDPs are specifically created for the developers, such as OutSystems.

In both cases, the platforms use AI to speed up the development process. The AI

can create boilerplate code and do routine tasks.

3 Multi-vocal literature review

3.1 Academic research

During the academic research process we began to think how we could categorize

the academic papers to present them once we have found them. In the end, we

identified four categories that hold most of the research papers. These categories

are ”analyzing low-code community discussions”, ”testing in low-code”, ”researching

low-code”, and ”developing new LCDPs”.

We also wanted to see different themes throughout the papares, and on top of

the categorization, we decided to sort them according to their themes. Whereas one

paper would belong to only one category mentioned before, the same paper could

have multiple themes. The themes we identified were ”Platform comparison”, ”Cit-

izen developer”, ”OutSystems”, ”Community”, ”Testing”, ”Security”, and ”Reserach”.

The papers, that did not seem to fit into these categories and themes were put into

a category and theme called ”Mixed”.

ANALYZING LOW-CODE COMMUNITY DISCUSSIONS

Low-code software development is on the rise in developer communities. Alamin

et al. [29] analyzed 3597 questions and 1188 answers from Stack Overflow that

dealt with the nine popular low-code development platforms. They applied a topic

modeling algorithm, Latent Dirichlet Allocation, and identified 13 topics. These

topics got grouped into one of the following categories Customization, Platform

3.1 ACADEMIC RESEARCH 21

Adaption, Database Management, or Third-Party Integration. The customization

category was the most popular, covering five topics and having 39.7% of the ques-

tions categorized into it. Platform Adaption had 21.9% of the questions, Database

Management 21.5%, and Third-Party Integration 16.8%. The topic with the most

questions was ”External Web Request Processing” covering 10.4% of the questions.

The topic with the most unanswered questions was also the most popular, ”Dynamic

Event Handling” in the Customization category had the highest average view count.

They also discovered that from the point of software development life cycle, 85% of

the questions were related to implementation. They also found that testing is seen

as challenging due to the graphical nature of the platforms.

Luo et al. [30] did another study where they analyzed Stack Overflow and

Reddit’s low-code development communities. They extracted 73 posts from Stack

Overflow and 228 from Reddit. Their study focused on the developers’ opinions on

low-code platforms and analyzing the platforms based on their features. They found

that when expert developers talk about low-code they mean you can create software

with significantly small amounts of actually coding and sometimes not needing to

code at all. In total, they identified 21 development platforms that got mentioned

at least ten times, Bubble.io being the most popular with 96 posts mentioning it.

Expert developers prefer open-source platforms, but only seven of the 21 platforms

were open-source. Luo et al. also found that platforms, designed for mobile appli-

cation development, are in the highest demand. This argument gets support from

the fact that the most popular programming language used in these platforms are

Java and JavaScript. React Native, a JavaScript mobile applications framework, is

implemented in many of these platforms. In many posts, the developers feel that

LCDPs are intuitive, easy to use, and newbie-friendly compared to programming

languages. At the same time, they feel that these platforms have a high learning

curve, especially those that provide complex functions. Developers also feel that

3.1 ACADEMIC RESEARCH 22

even though LCDP’s are newbie-friendly, expert developers may find them hard to

use and feel that they are being limited by the environment. This mostly becomes

an issue once the developers begin adding custom code to the platform.

Although Silva et al. [31] did not study developer discussions, they did develop

a tool to analyze developers’ first experience when using LCDP. They observed how

expert programmers and novice programmers handled the same task. The experts

had a software-engineering background, and the novices had backgrounds in social

sciences, economics, and finance. They found that expert programmers are more

explorative in the platform and face unique issues frequently, but these issues are

more interaction-related and appear less often. The novice programmers, on the

other hand, faced recurring issues frequently. These issues seemed to arise from the

lack of programming experience and skills. The novice programmers also took more

time to complete the tasks.

TESTING IN LOW-CODE

Khorram et al. [32] analyzed the testing components of five commercial LCDPs.

They identified the characters of low-code testing and created a feature list based

on those characters. They then used that list to compare the testing components

in current platforms and argue that it can be used as a baseline when creating new

components in the future. Their feature list was used to determine the current state

of the testing components in the selected five LCDPs. Present platforms have good

support for testing, although mainly because of their integrated third-party testing

tools such as SoapUI, Selenium, Jasmine, and others. The tools provide a medium

level of automation and still typically require a technical person to create the tests.

The testing tools work as a good collaboration-tools between the developer and

the tester, and the platforms have test monitoring and reporting features. Based

on these findings, they also discuss the challenges and opportunities for low-code

3.1 ACADEMIC RESEARCH 23

testing. The three main topics they found were citizen developers’ role in testing,

cloud testing, and the need for high-level test automation.

RESEARCHING LCDP

Although LCDPs have become popular recently, few traditional research papers

about the subject exist. Horvath et al. [33] propose their views for the next genera-

tion of low-code platforms, which they call low-code engineering platforms (LCEPs).

They present three research lines in their paper. The first research line is utilizing

multi-tenant architecture, where different teams can work on the same project con-

currently. The second research line they propose is reactive model transformation to

improve scalability. Finally, their last proposed research line is to combine the two

research lines, to create a multi-tenant reactive model transformation benchmark

research line. This research line’s goal should be that future LCDPs can understand

the context and select the most suitable transformation engine.

Jahanbin et al. [34] researched how LCDPs could intelligently partition models

during run-time. With LCDPs becomming more popular, the projects they are

used also become larger. Jahanabin et al. therefore argue that model managements

programs, which perform the validation, transformation, and merging of models

and such, will soon reach their limits. Their approach uses static analysis to create

an plan of execution, called effective metamodel. This effective metamodel tells

the model managements program’s which elements are necessary for executing the

program at compile time. After creating the effective metamodel, only the relevant

parts of it are loaded into the memory to reduce loading times. Likewise, when the

parts are not relevant anymore, they are removed from the memory.

Philippe et al. [35] did a similar study. Their study focused on combining

multiple execution strategies and seeing what kind of impact doing so would have

on the model management. They found that combining these strategies can be used

for performance optimization, but note that it can also affect calculation efficiency.

3.1 ACADEMIC RESEARCH 24

Bexinga et al. [36] developed a new approach to converting designs into web-

application artifacts. This approach takes advantage of transformation and meta-

modeling techniques, and it was implemented into the OutSystems development

process. The preliminary results show that implementing this approach, the con-

version from design into a web component can be made up to 75% more efficiently

and effectively, depending on the project’s complexity.

Since LCDPs use visual programming languages and their users include citizen

developers, their recommendation systems are different from traditional development

platforms. Almonte et al. [37] studied the recommendation systems for LCDPs.

Their study focused on creating a framework that would automate the construction

of recommendation systems. They used three different datasets and found that they

could build a recommendation system that can recommend methods, attributes, and

superclasses for a given class.

Another study about recommendation systems was done by Di Sipio et al. [38]

They used metamodeling and dedicated supporting tools to help developers build

custom their own recommendation systems. Whereas Almonte et al. did research

on LCDPs recommendation systems, Di Sipio et al.’s research covers other software

engineering IDEs as well.

DEVELOPING NEW LCDPs

A theme we came across alot was what could be described as "we created an

LCDP for purpose X". Daniel et al. [39] created the Xatkit framework to make

developing and deploying chatbots and voice bots easier. Arora et al. [40] developed

a platform where developers can generate code for a more general-purpose use such

as data integration. Zolotas et al. [41] on the other hand, created an LCDP in 2018

to help enterprises automate their "webification" of their applications in a secure

way.

3.1 ACADEMIC RESEARCH 25

MIXED

The academic research on LCDP’s is still a bit scattered. The papers presented

in this section are mostly unique. A theme that could have been its subsection, but

we decided not to make one, was papers that somehow focused on the OutSystems

platform. OutSystems seems to be actively developing its platform and publishing

research papers based on the development. Jacinto et al. [42] created test mocks to

enhance OutSystems testing ability. Their preliminary results show that these test

mocks could speed up the software development process. Martins et al. [43] used

OutSystems to develop an application for business automation and innovation.

In 2019 Lourenço and Eugenio [44] published an article about OutSystems TrueC-

hange™ engine and how it manages to handle large models that have over 200 000

individual elements. A year later, Lourenço et al. [45] did a case study about

changing the OutSystems delivery process. In their previous delivery process, they

released a new version once every two years, resulting in the new version not work-

ing with older components. Their current process is continuous delivery, and now

they can implement changes to their platform more rapidly. The customer can also

decide whether or not they want to use those changes.

In 2020 Fernandes et al. [46] studied the effects when OutSystems got imple-

mented in a project-based learning software engineering course. They found that

they could give individual feedback to the students even though there were more

than 200 students enrolled in the course. The students were majoring in different

subjects, such as Informatics Engineering, Design and Multimedia, and Electrical

and Computer Engineering. Even though students were majoring in different sub-

jects, this did not affect their grades. On the contrary, using LCDP seemed to even

the playground drastically.

We also found two papers from 2020, which looked at platform comparisons.

Sanchis et al. [10] study focused on comparing virtual factory open operating system,

3.2 INDUSTRIAL RESEARCH 26

vf-OS, to other LCDPs. The comparison was done with a feature list, they had

created. They found that vf-OS met the most criteria, meeting 15 of the 16 criteria

by default and the last one with configuration. The second best platform met 14

criteria, and the poorest performing platform only met 10 criteria from the 16. Sahay

et al. [47] compared 8 LCDP’s to a list of 35 control features they had made. The

poorest performing LCDP’s score was 21 out of 35 control features, and the highest

score was 30 out of 35.

3.2 Industrial research

Based on chapter 3.1., it appears that the research on LCDPs is industry-driven

by companies such as OutSystems1 and Mendix2. Thus it is also worth looking for

industrial materials, such as industrial papers, projects, and blog posts. Since this

thesis focuses on the security of a LCDP, the industrial research part of the literature

review will focus purely on the security aspect. Narrowing the industrial research

to only cover security will also reduce the amount of results that we will get.

The first industrial paper worth mentioning is 7 Deadly Sins of Low-Code Secu-

rity and How to Avoid Them by Zenity [48]. Zenity is a company that specializes

in low-code/no-code application security3. They list the seven most common risks

and concerns low-code applications might have, and using their expert knowledge,

give their tips on avoiding them. The risks and concerns are not in order, and they

are as follows; Privilege escalation, Data leakage, Insecure authentication, Miscon-

figurations, Dependency injection, Oversharing, and Application impersonation.

A second industrial material, which is still in progress, is OWASP Top 10 Low-

Code/No-Code Security Risks [49]. The project is still in progress, and currently

1https://www.outsystems.com/
2https://www.mendix.com/
3https://www.zenity.io

3.3 CONCLUSION 27

holds the same seven risks that the Zenity’s project has.

We also found some blog posts relating to low-code security and concerns. One

post made 2021 by Bill Doerrfeld [50] points out these concerns. These concerns de-

rive from a conversation that the writer had with the CTO of Veracode4, a company

that specializes in application security. Doerrfeld points out three concerns; API

integrations, the lack of security awareness among citizen developers, and using 3rd-

party libraries with vulnerabilities. Another blog [51] states that developers working

outside of the IT department can be a risk for an application for not following the

companies cybersecurity guidelines.

There is another security concern related to the visibility of the code the plat-

forms provide. Blogs [51][52] point that companies have their guidelines on software

development but cannot verify that these platforms follow these guidelines.

3.3 Conclusion

As our findings in Table 3.1 shows, nine out of the 20 academic papers and two of the

four industry papers got categorized into two or more topics. The table shows that

especially testing and security are not frequently researched topics in the academic

community. It also shows that while platform comparison is a researched topic, it is

usually not combined with other topics. Current platforms provide built-in security

that developers need to rely on but so far no one has compared them or evaluated

them. It also seems tat there are not any previous case studies or frameworks on

how to conduct a security assessment on an LCDP.

4https://www.veracode.com

3.3 CONCLUSION 28

P
la

tf
or

m
co

m
pa

ri
so

n
C

it
iz

en
de

ve
lo

pe
r

O
ut

Sy
st

em
s

C
om

m
un

it
y

T
es

ti
ng

Se
cu

ri
ty

R
es

ea
rc

h
M

ix
ed

A
la

m
in

et
al

.
20

21
x

L
uo

et
al

.
20

21
x

Si
lv

a
et

al
.

20
21

x

K
ho

rr
am

et
al

.
20

20
x

x
x

H
or

va
th

et
al

.
20

20
x

Ja
ha

nb
in

et
al

.
20

20
x

P
hi

lip
pe

et
al

.
20

20
x

B
ex

in
ga

et
al

.
20

20
x

x

A
lm

on
te

et
al

.
20

20
x

x

D
i
Si

pi
o

et
al

.
20

20
x

x

D
an

ie
l
et

al
.

20
20

x

A
ro

ra
et

al
.

20
20

x

Z
ol

ot
as

et
al

.
20

18
x

x

Fe
rn

an
de

s
et

al
.

20
20

x
x

x

Sa
nc

hi
s

et
al

.
20

20
x

Sa
ha

y
et

al
.

20
20

x

Ja
ci

nt
o

et
al

.
20

20
x

x

M
ar

ti
ns

et
al

.
20

20
x

x

L
ou

re
nç

o
an

d
E

ug
en

io
20

19
x

L
ou

re
nç

o
et

al
.

20
20

x
x

Z
en

it
y

20
20

x

O
W

A
SP

T
B

A
x

B
ill

D
oe

rr
fe

ld
20

21
x

x

IT
P

ro
T
od

ay
20

21
x

x

Ta
bl

e
3.

1:
R

es
ea

rc
h

pa
pe

rs
an

d
th

ei
r

to
pi

cs
.

3.3 CONCLUSION 29

OutSystems seems to be an active contributor to the community. Their research

tends to be cross-topic, and they aim to combine their platform with the research.

”Citizen developer” is a somewhat researched topic. Khorram et al. researched

citizen developers and testing and noticed that there is still work to be done before

citizen developers can work more independently. However, there are no papers that

handle citizen developers and security. Citizen developers are said to improve the

developer shortage, but they might impact the overall security. If an LCDP has

built-in security features, but the citizen developer ignores or does not understand

the warnings, what are the features’ purposes?

The industry has noticed this. Two of the four industry papers cover both

topics. The industry papers paint a picture that companies will solve this problem

by putting their citizen developers in more extensive security training. So far, the

Zenity’s or OWASP’s projects have not taken into account citizen developers from

the security point of view.

4 OutSystems compliance with

ASVS

As we saw in chapter 3, there are no previous studies about compliance analysis

between an LCDP and a cybersecurity standard. This further supports our claim

that there is a need for one, especially since citizen developers might have a lower

level knowledge in cybersecurity. They most likely will have a basic understanding in

cybersecurity so they will need to rely on the pre-made functionalities and security

features in LCDPs.

Since OutSystems is proprietary software, and we do not have clear visibilty

inside the pre-made components that we use, the traditional methods of conducting

security assessment do not work. There are also some cases where developers can

write their custom C#/.NET code for special integrations and we need to take these

into account as well. To take all of these special requirements into account, we have

developed an evaluation scheme for the compliance analysis.

4.1 Compliance analysis of ASVS Level 1

For ASVS Level 1 we have divided compliance into four compliance levels (CL). CL

1 requires that the feature is built-in into the OutSystems, and developers can use it

out-of-the-box. CL 2 means the feature is implementable through the OutSystems

Forge as a trusted or OutSystems supported component. In CL 3, the feature is im-

4.2 COMPLIANCE ANALYSIS OF ASVS LEVEL 2 31

plementable with a Forge component, but not a trusted, or OutSystems supported

component. OutSystems Forge is OutSystems’ marketplace where anyone can pub-

lish OutSystems applications and components that serve a wide range of needs. The

components are open source and distributed under the BSD license, ”take it and use

as it is.” The final compliance level, CL 4, can be implemented by programming

the feature. In addition to the compliance levels we will also use Developer Action

(DA), because the requirements themselves are implemented as part of software

production process and cannot be measured with the defined compliance levels.

4.2 Compliance analysis of ASVS Level 2

As mentioned in chapter 2, in ASVS level 2 the requirements become more abstract.

The requirements might need implementation in the organization, which uses Out-

Systems, but might not concern OutSystems. For this reason, this level will look at

compliance in OutSystems and user organization. Each requirement will be assessed

individually for both parties, i.e., ”Does OutSystems support this requirement? If

yes, does the user organization need to implement or enable it or is it enabled by

default?”. The possible outcomes for a requirement are seen in table 4.1.

Possible answers for a requirement OutSystems Developer

OutSystems supports this requirement as a pre-made feature. Yes N/A

OutSystems supports this requirement, developer needs to enable it. Yes DA

OutSystems does not support this requirement, developer needs to impelement it. No DA

This requirement does not concern OutSystems, just the developer. N/A DA

Table 4.1: The possible answers for a requirement, and what the answers mean

for OutSystems and for the IT-user. N/A means Not Applicaple and DA means

Developer Action.

The possible answers for OutSystems are Yes, No and N/A. Yes means that

4.3 RESULTS 32

OutSystems supports the requirement, no means it does not support the require-

ment, and N/A means that the requirement is not applicable. The Possible answers

for the developer are N/A, and Developer Action, DA. In this context, our use of

DA means that to meet the requirement, the developer needs to do something ac-

tively. Either configure OutSystems correctly, create their implementation to meet

the requirement, or create some other routine to meet the requirement.

4.3 Results

In total, the ASVS 4.0.3 has 279 requirements. We will be evaluating OutSystems’

compliance with levels 1 and 2 which have 256 requirements. These requirements

are divided into 14 categories, which are divided into subcategories. In this chapter,

we will present the results by category. The results are combined and shown in

Table 4.2.

4.3.1 Defining the shared responsibility between OutSystems

and the Developer

Evaluating an LCDP-based application is not as trivial as evaluating a traditional

application. In traditional software development, the developer has full control of

the application and can modify it freely. In low-code software development (LCSD),

the developer relies heavily on the built-in functionalities and needs to trust them.

In open-source LCDPs the developer can build trust by reading the source code

but in proprietary software, the source code is not available. In cases like this, the

platform provider needs to somehow compensate for the lost transparency, and in

OutSystems’ case, they provide a security portal [53] where the developer can learn

about OutSystems’ practices. The security portal provides a comprehensive list of

security reports done by third party vendors, so the trust is not blind.

4.3 RESULTS 33

Category ASVS Level 1 ASVS Level 2

CL1 CL2 CL3 CL4 DA NA/DA Yes/DA No/DA Yes/NA

Category 1 - - - - - 15 19 1 3

Category 2 24 - 2 1 - 5 12 5 1

Category 3 10 - - - 2 3 2 1 -

Category 4 5 - 1 - 2 1 - - -

Category 5 10 - - 16 1 - 1 - 2

Category 6 1 - - - - - 8 1 3

Category 7 2 - - - 1 - 7 - 2

Category 8 2 - - - 5 3 3 - 2

Category 9 3 - - - - 2 2 - -

Category 10 2 - - 1 - 2 - - -

Category 11 3 1 - 1 - - 2 - 1

Category 12 8 - 1 - 2 2 1 - 1

Category 13 5 - - - 1 2 5 1 1

Category 14 9 5 - 1 - - 6 - 2

Total 84 6 4 20 15 35 66 9 18

Table 4.2: Results for OutSystems’ compliance with ASVS.

Because the LCSD relies on pre-made components and configurations, there

should be a division on which categories should be on OutSystems responsibility

and which ones are on the developer’s responsibility. To create the division, we need

to look at what OutSystems provides. According to their technical white paper [54],

OutSystems protects against nine out of ten of the 2017 OWASP Top 10 list. The

only vulnerability that they do not cover is insufficient logging which is typically a

developer action case. For mobile devices, OutSystems also provides coverage for

nine out of ten of the 2016 OWASP Top 10 Mobile list.

Based on these factors, we can create a rough draft of the categories that Out-

Systems should support as much as possible. The most critical categories, that

4.3 RESULTS 34

OutSystems should support are session management, authentication, and access

management. In OutSystems’ technical white paper they clearly state that they

provide secure session data, a secure authentication mechanism, and role-based ac-

cess control for developers and end-users.

In the same technical paper [54] they also clearly state that OutSystems escapes

content before it is shown in the user interface, mitigating reflected and stored cross-

site scripting vulnerabilities. OutSystems also warns the developer about potential

injections and provides sanitization functions for the developers to use for HTML,

JavaScript, and SQL. Even though they provide these functions, they do not enforce

their usage. Therefore the validation, sanitization, and encoding category is mostly

the developer’s responsibility. While OutSystems cannot provide full support for

logging, their paper does tell how to implement application logging and proper

error handling. They also have pre-made error handling and for that reason, error

handling and logging should have shared responsibility.

Figure 4.1 shows our thoughts on the shared responsibility between OutSystems

and the developer.

The categories are distributed quite evenly. There also seems to be a trend with

the categories, the ones that are on the right seem to have more level 2 requirements.

The ones on the left seem to have more level 1 requirements. Even though OutSys-

tems does not support logging, it does support error handling quite well, and thus

it is put into the middle. Stored cryptography is also in the middle. We believe that

OutSystems provides a sufficient level of cryptography, but we think that the devel-

oper still has the responsibility to implement them correctly. Data protection could

also be in the middle, but we believe classifying data plays an important role in that

category and for that reason put it more towards the developer’s responsibility. We

also put Business logic, API and web services, and configuration more towards the

developer’s responsibility. The application’s business logic is tricky to place because

4.3 RESULTS 35

it relies both pre-made components that come with the platform and the logic cre-

ated by the developer. However, we feel it relies more on the developer and thus we

placed it more to the right. We also placed API and web services, and configuration

more towards right. OutSystems does not need provide external services and we also

that configurations are application specific and thus more developer’s responsibility.

Figure 4.1: Expectations for the shared responsibility between OutSystems and

developer.

4.3 RESULTS 36

4.3.2 Findings

Our findings are somewhat interesting. Categories 2 (Authentication) and 3 (Session

management), which we defined OutSystems responsibility and thus pre-made into

it, were not fully supported by OutSystems. Category 2 had the most requirements

that did not have built-in support in OutSystems.

Out of all the categories, only three were fully compliant with ASVS levels 1 and

2. These categories were 7, 8, and 9. We will be going through all of the categories

and our findings in them. We have compiled all of the results into Table 4.3 on page

33.

C1 ARCHITECTURE, DESIGN AND THREAT MODELING

The first category deals with the application’s architecture, design, and threat

modeling. This category has 38 requirements, all of which were ASVS level 2 re-

quirements. Most of them are either supported by OutSystems or do not apply

to OutSystems. One example that OutSystems does not natively support, is re-

quirement id V1.6.2. It requires that key vaults or API-based alternatives are used

to protect key material and other secrets. OutSystems does not provide this kind

of service in the standard edition, but they offer a Key Management Service for

enterprises.

C2 AUTHENTICATION

The authentication category had a total of 50 requirements. Of the 50 require-

ments, 27 were level 1 requirements, and 25 were level 2 requirements.

Requirements related to password security, general authenticator security, cre-

dential recovery, look-up secret verifier, and out-of-band verifier sections have overall

good support in OutSystems, mostly requiring the developer to enable them. Cryp-

tographic verifier and credential storage sections are also easily implementable. Some

4.3 RESULTS 37

of their requirements might require the developer to create them or do additional

work to enable them. The additional work isn’t too complex but still requires some

manual work to meet the requirement.

The authenticator lifecycle and one-time verifier are sections that require the

most work to meet the requirements in this category. OutSystems does not provide

MFA natively or have a trusted or OutSystems-supported module downloadable

from the OutSystems Forge to authenticate the developer. Creating a module to

handle it requires significant work. The developer also needs to build a component

so that the end-user has the option to use physical authentication devices, such as

U2F tokens.

C3 SESSION MANAGEMENT

Session management had a total of 18 requirements. Of the 18, 12 were level

1, and six were level 2 requirements. OutSystems supports this category quite well

since session management is a built-in feature in OutSystems. Out of the six sections

in this category, only one has requirements that the developer needs to implement.

The requirements relate to terminating all active sessions for a single user. They

are business logic requirements and thus do not apply to OutSystems.

C4 ACCESS MANAGEMENT

The fourth category is access management. This category has nine requirements,

and all but one are level 1 requirements. As with the previous category, this category

is also quite well supported by OutSystems. The only requirement not supported

by it deals with multi-factor authentication for the admin user, including developers

and testers. OutSystems Forge has a module that the developer can implement, but

it is not trusted, and it is not an OutSystems Supported module.

C5 VALIDATION, SANITIZATION, AND ENCODING

4.3 RESULTS 38

The validation, sanitization, and encoding category had the most failing require-

ments. Of the 30 requirements, 27 were level 1 requirements, and all 16 failing

requirements belonged to that level. Having over half of the requirements fail in one

category might appear bad, but in reality, it is not. Many of these requirements

are business logic types and require the developer to implement them. An exam-

ple of these business logic type requirements is requirement id V5.2.2, ”Verify that

unstructured data is sanitized to enforce safety measures such as allowed characters

and length.”

C6 STORED CRYPTOGRAPHY

Stored cryptography has 13 requirements, of which one is a level 1 requirement

and 12 are level 2 requirements. As with other categories, this category is also quite

well supported by OutSystems. The data classification section does not apply to

OutSystems, since it is a business process. However, OutSystems does provide some

help with that. It provides CryptoAPI, which is useful when encrypting the data.

The only requirement on the developer’s responsibility is implementing a secret

management solution.

C7 ERROR HANDLING AND LOGGING

Category "error handling and logging" has 12 requirements, of which 3 are level

1 requirements and nine are level 2 requirements. OutSystems supports all the re-

quirements as built-in features or helps the developer implement them.

C8 DATA PROTECTION

Data protection is a category where the responsibility between OutSystems and

the developer is more shared. There are 15 requirements, seven of which are level 1

requirements and eight of which are level 2 requirements. Due to the nature of this

4.3 RESULTS 39

category, most of the requirements are the developer’s responsibility. Even though

most of them are the developer’s responsibility, OutSystems still has some features

that support these requirements. One of these features is CryptoAPI which provides

extensive cryptographic tools to protect sensitive data.

C9 COMMUNICATION

The ninth category is communication. This category has seven requirements,

four of which are level 1 requirements and three which are level 2 requirements.

OutSystems either supports all of the requirements, or they do not apply to it.

C10 MALICIOUS CODE

Category 10, malicious code, has a total of 5 requirements. Even though one

answer is compliance level 4, it is not that bad from OutSystems’ point of view.

The requirement relates to protecting DNS names so that subdomain takeovers

cannot occur, and could be seen more like a business process.

C11 BUSINESS LOGIC

Category 11 relates to business logic security. It has a total of eight requirements.

As OutSystems’ technical white paper [54] describes, OutSystems has lots of built-in

features. Because of these features, OutSystems is fully compliant in this category.

C12 FILES AND RESOURCES

Category 12 has a total of 15 requirements. OutSystems is fully compliant with

this category except for one requirement, which requires that files obtained from

untrusted sources are run through an antivirus scanner to prevent uploading and

serving known malicious content.

4.3 RESULTS 40

C13 API AND WEB SERVICES

The second to last category is API and Web Services, which has 13 requirements

The category has one requirement, which requires more business logic, but even it

is implementable with OutSystems. The requirement relates to validating JSON

Schemas.

C14 CONFIGURATION

The final category is Configuration, which has 23 requirements. This category is

also mostly supported by OutSystems. There is one requirement that is compliance

level 4. The requirement requires that subresource integrity is used if application

assets are hosted on some external host, such as Content Delivery Network. Since

OutSystems does not use external hosts, but the developer might use them, this re-

quirement falls to the developer’s responsibility. Some requirements relate to HTTP

headers, which require that the developer downloads the Factory Configuration mod-

ule from OutSystems Forge.

4.3.3 Summary of results

Since OutSystems does not meet all of the requirements, it is worth looking more

closely into the failing requirements to see how it could be improved. The failing

requirements have been collected into two tables.

Requirements V2.1.8, V2.1.12, V4.3.1, and V12.4.2 meet CL 3 and thus appear

easy to fix. They meet the requirement at compliance level 3 and already have an

existing solution in OutSystems Forge. For V2.1.8, there is one popular module [55]

to measure password strength. The same goes with the requirement V2.1.12, dealing

with toggling the password [56]. These modules’ creators are ranked in the top 100

in the OutSystems community, which has more than 430,000 members [57]. They

are also marked as ”MVPs” so it is safe to say that the developers are trustworthy.

4.3 RESULTS 41

OutSystems would only need to review these modules’ source code and make them

trusted modules promoting V2.1.8 and V2.1.12 to CL 2. OutSystems Forge also

has an existing module [58] whose creators include OutSystems’ employees. This

module fulfills the requirement V4.3.1 by itself, and marking the module as Trusted

or OutSystems supported would promote OutSystems to meet the requirement.

OutSystems Forge also has a module [59] that would meet the requirement for

requirement V12.4.2. Requirement V12.4.2 deals with executing files uploaded from

an untrusted source through a virus scanner before the upload. The creator of this

module is ranked #13 in the community rankings and has the ”MVP” title in their

profile.

Requirements that meet Compliance Level 4 are more problematic. Some do

not relate to OutSystems, such as V10.3.3, but some are a bit more tricky such

as V2.8.1. V2.8.1’s description states ”Verify that time-based OTPs have a defined

lifetime before expiring.”. The reason this is a bit more tricky is how you interpret

it. Adding a Multi-Factor Authentication is CL 2, so one might argue that this is

a CL 2, but OutSystems does not help or support defining lifetime for OTPs. We

concluded that this is a false positive CL4, but have decided to keep it as a CL4.

Other CL 4 requirements appear more business logic-related issues, such as re-

quirement V11.1.3, or most of the requirements in category 5. As was mentioned

previously, category 5 had 16 failing requirements. We will make an exception in

this category and not go through all of these requirements, but instead handle them

more generally. These requirements relate to either validating, sanitizing, or encod-

ing user-given data. We see these requirements are more business logic types and

require the developer to implement them. The static code analyzer in OutSystems

does warn the developer of SQL injections, but they are only warnings and not

mitigated. Thus OutSystems fails so many requirements in this category.

Some requirements resemble more business processes and could be seen as false

4.3 RESULTS 42

Requirement ID Requirement Description Compliance Level

V2.1.8 Verify that a password strength meter is provided to help

users set a stronger password.

CL 3

V2.1.12 Verify that the user can choose to either temporarily view

the entire masked password or temporarily view the last

typed character of the password on platforms that do not

have this as built-in functionality.

CL 3

V2.8.1 Verify that time-based OTPs have a defined lifetime before

expiring.

CL 4

V4.3.1 Verify administrative interfaces use appropriate multi-

factor authentication to prevent unauthorized use.

CL 3

Table 4.3: Summary of ASVS Level 1 requirements that OutSystems does not fill.

positives, such as requirement V10.3.3 which deals with subdomain takeovers. Sub-

domain takeovers are not in the scope of OutSystems, and thus the CL4 is not

that severe. Table 4.3, 4.3.3, 4.5, and 4.6 show level 1 failing requirements, their

descriptions as they are in the ASVS and their compliance level.

There were a total of seven level 2 requirements that OutSystems did not support.

Four of the failing requirements relate to category 2, authentication and of the four,

two relate to OTPs. Table 4.7 shows all failing requirements in level 2.

V2.8.2 requires that symmetric keys used with OTPs are highly protected. One

could argue here the same as with requirement V2.8.1, but OutSystems does not

support this requirement. Requirement V2.8.6, which requires that physical OTPs

have to be able to be revoked also gets failed for this reason. Requirement V2.3.2

relates to MFA as well, it requires that the user can use physical authenticators, such

as U2F. Since OutSystems does not support MFA natively, this requirement fails as

well. The final category 2-related requirement is V2.4.3. This requirement states

that if the PBKDF2 algorithm is used, there should be at least 100 000 iterations

used with it. OutSystems provides said algorithm in CryptoAPI, a Trusted module

4.3 RESULTS 43

Requirement ID Requirement Description Compliance Level

V5.1.3 Verify that all input (HTML form fields, REST re-

quests, URL parameters, HTTP headers, cookies, batch

files, RSS feeds, etc) is validated using positive valida-

tion (allow lists). ([C5](https://owasp.org/www-project-

proactive-controls/#div-numbering))

CL 4

V5.1.4 Verify that structured data is strongly typed and vali-

dated against a defined schema including allowed charac-

ters, length and pattern (e.g. credit card numbers, e-mail

addresses, telephone numbers, or validating that two re-

lated fields are reasonable, such as checking that suburb

and zip/postcode match). ([C5](https://owasp.org/www-

project-proactive-controls/#div-numbering))

CL 4

V5.1.5 Verify that URL redirects and forwards only allow desti-

nations which appear on an allow list, or show a warning

when redirecting to potentially untrusted content.

CL 4

V5.2.2 Verify that unstructured data is sanitized to enforce safety

measures such as allowed characters and length.

CL 4

V5.2.3 Verify that the application sanitizes user input before pass-

ing to mail systems to protect against SMTP or IMAP

injection.

CL 4

V5.2.4 Verify that the application avoids the use of eval() or other

dynamic code execution features. Where there is no alter-

native, any user input being included must be sanitized or

sandboxed before being executed.

CL 4

V5.2.5 Verify that the application protects against template in-

jection attacks by ensuring that any user input being in-

cluded is sanitized or sandboxed.

CL 4

V5.2.6 Verify that the application protects against SSRF attacks,

by validating or sanitizing untrusted data or HTTP file

metadata, such as filenames and URL input fields, and

uses allow lists of protocols, domains, paths and ports.

CL 4

Table 4.4: Summary of ASVS Level 1 requirements that OutSystems does not fill.

4.3 RESULTS 44

in OutSystems Forge, but their implementation only uses 37 649 iterations.

The two requirements outside of category 2 are requirements V1.6.2 and V6.4.1.

Both describe the usage of key vaults, V1.6.2 requires that key vaults or other API-

based services are used to protect key materials for cryptographic service users.

V6.4.1 requires that key vaults or other secrets management solution is used to

create, store, destroy, and control access to secrets. OutSystems has nothing on to

meet them and thus these requirements do not pass.

Tables 4.8, 4.9, 4.10, and 4.11 show level 2 requirements that were marked as

N/A / DA.

4.3 RESULTS 45

Requirement ID Requirement Description

V1.1.2 Verify the use of threat modeling for every design change or sprint planning to iden-

tify threats, plan for countermeasures, facilitate appropriate risk responses, and guide

security testing.

V1.1.3 Verify that all user stories and features contain functional security constraints, such as

"As a user, I should be able to view and edit my profile. I should not be able to view

or edit anyone else’s profile"

V1.1.7 Verify availability of a secure coding checklist, security requirements, guideline, or

policy to all developers and testers.

V1.11.2 Verify that all high-value business logic flows, including authentication, session man-

agement and access control, do not share unsynchronized state.

V1.12.2 Verify that user-uploaded files - if required to be displayed or downloaded from the

application - are served by either octet stream downloads, or from an unrelated domain,

such as a cloud file storage bucket. Implement a suitable Content Security Policy (CSP)

to reduce the risk from XSS vectors or other attacks from the uploaded file.

V1.14.2 Verify that binary signatures, trusted connections, and verified endpoints are used to

deploy binaries to remote devices.

V1.2.1 Verify the use of unique or special low-privilege operating system accounts for all

application components, services, and servers. ([C3](https://owasp.org/www-project-

proactive-controls/#div-numbering))

V1.2.3 Verify that the application uses a single vetted authentication mechanism that is known

to be secure, can be extended to include strong authentication, and has sufficient logging

and monitoring to detect account abuse or breaches.

V1.5.1 Verify that input and output requirements clearly define how to handle and process data

based on type, content, and applicable laws, regulations, and other policy compliance.

Table 4.8: Summary of ASVS Level 2 requirements that do not concern OutSystems.

4.3 RESULTS 46

Requirement ID Requirement Description

V1.5.2 Verify that serialization is not used when communicating with untrusted clients. If

this is not possible, ensure that adequate integrity controls (and possibly encryption if

sensitive data is sent) are enforced to prevent deserialization attacks including object

injection.

V1.5.3 Verify that input validation is enforced on a trusted service layer.

([C5](https://owasp.org/www-project-proactive-controls/#div-numbering))

V1.6.4 Verify that the architecture treats client-side secrets–such as symmetric keys, pass-

words, or API tokens–as insecure and never uses them to protect or access sensitive

data.

V1.8.1 Verify that all sensitive data is identified and classified into protection levels.

V1.8.2 Verify that all protection levels have an associated set of protection requirements, such

as encryption requirements, integrity requirements, retention, privacy, and other confi-

dentiality requirements, and that these are applied in the architecture.

V1.14.5 Verify that application deployments adequately sandbox, containerize and/or isolate at

the network level to delay and deter attackers from attacking other applications, espe-

cially when they are performing sensitive or dangerous actions such as deserialization.

([C5](https://owasp.org/www-project-proactive-controls/#div-numbering))

V2.10.2 Verify that if passwords are required for service authentication, the service account

used is not a default credential. (e.g. root/root or admin/admin are default in some

services during installation).

V2.10.4 Verify passwords, integrations with databases and third-party systems, seeds and in-

ternal secrets, and API keys are managed securely and not included in the source code

or stored within source code repositories. Such storage SHOULD resist offline attacks.

The use of a secure software key store (L1), hardware TPM, or an HSM (L3) is recom-

mended for password storage.

V2.4.5 Verify that an additional iteration of a key derivation function is performed, using a

salt value that is secret and known only to the verifier. Generate the salt value using

an approved random bit generator [SP 800-90Ar1] and provide at least the minimum

security strength specified in the latest revision of SP 800-131A. The secret salt value

SHALL be stored separately from the hashed passwords (e.g., in a specialized device

like a hardware security module).

V2.6.2 Verify that lookup secrets have sufficient randomness (112 bits of entropy), or if less

than 112 bits of entropy, salted with a unique and random 32-bit salt and hashed with

an approved one-way hash.

Table 4.9: Summary of ASVS Level 2 requirements that do not concern OutSystems.

4.3 RESULTS 47

Requirement ID Requirement Description

V2.9.1 Verify that cryptographic keys used in verification are stored securely and protected

against disclosure, such as using a Trusted Platform Module (TPM) or Hardware Se-

curity Module (HSM), or an OS service that can use this secure storage.

V3.3.4 Verify that users can view and (having re-entered login credentials) log out of any or

all currently active sessions and devices.

V3.3.3 Verify that the application gives the option to terminate all other active sessions after

a successful password change (including change via password reset/recovery) and that

this is effective across the application, federated login (if present), and any relying

parties.

V3.5.1 Verify the application allows users to revoke OAuth tokens that form trust relationships

with linked applications.

V4.3.3 Verify the application has additional authorization (such as step-up or adaptive au-

thentication) for lower value systems, and/or segregation of duties for high-value ap-

plications to enforce anti-fraud controls as per the risk of application and past fraud.

V8.1.1 Verify the application protects sensitive data from being cached in server components

such as load balancers and application caches.

V8.1.2 Verify that all cached or temporary copies of sensitive data stored on the server are

protected from unauthorized access or purged/invalidated after the authorized user

accesses the sensitive data.

V8.3.5 Verify accessing sensitive data is audited (without logging the sensitive data itself), if

the data is collected under relevant data protection directives or where logging of access

is required.

V9.2.1 Verify that connections to and from the server use trusted TLS certificates. Where

internally generated or self-signed certificates are used, the server must be configured

to only trust specific internal CAs and specific self-signed certificates. All others should

be rejected.

V9.2.3 Verify that all encrypted connections to external systems that involve sensitive infor-

mation or functions are authenticated.

V10.2.1 Verify that the application source code and third-party libraries do not contain unau-

thorized phone home or data collection capabilities. Where such functionality exists,

obtain the user’s permission for it to operate before collecting any data.

V10.2.2 Verify that the application does not ask for unnecessary or excessive permissions to

privacy-related features or sensors, such as contacts, cameras, microphones, or location.

V12.1.2 Verify that the application checks compressed files (e.g. zip, gz, docx, odt) against the

maximum allowed uncompressed size and against a maximum number of files before

uncompressing the file.

Table 4.10: Summary of ASVS Level 2 requirements that do not concern OutSys-

tems.

4.4 HOW TO ASSESS AN LCDP’S SECURITY IN THE FUTURE? 48

Requirement ID Requirement Description

V12.2.1 Verify that files obtained from untrusted sources are validated to be of the expected

type based on the file’s content.

V13.4.1 Verify that a query allows a list or a combination of depth limiting and amount limiting

is used to prevent GraphQL or data layer expression Denial of Service (DoS) as a result

of expensive, nested queries. For more advanced scenarios, query cost analysis should

be used.

V13.4.2 Verify that GraphQL or other data layer authorization logic should be implemented at

the business logic layer instead of the GraphQL layer.

Table 4.11: Summary of ASVS Level 2 requirements that do not concern OutSys-

tems.

These requirements could have been combined with the Yes / BP category, but

we wanted to keep them separated to bring more transparency. Some of the require-

ments could be seen as subjective, someone might say that a requirement is not met

while another might say that it does not apply in the OutSystems case.

As the tables show, there are a total of 36 requirements that do not apply to

OutSystems. These requirements focus heavily on categories 1 and 2. Category 1 is

self-explanatory since it is architecture, design, and threat modeling, but category

2, authentication, is a bit surprising. It is the same category that OutSystems has

the most problems with.

For the rest of the requirements, they seem to be more business logic-related

requirements, such as V3.3.4 or V12.2.1

4.4 How to assess an LCDP’s security in the future?

For the current standards, we can say that they do not work as they are when applied

to LCDPs. Applications developed with them are partly developed by the developer

and by the platform. Current security standards only assess a security feature as

4.4 HOW TO ASSESS AN LCDP’S SECURITY IN THE FUTURE? 49

Yes/No, but when assessing LCDPs you first need to find what security features

are provided with the platform and what require the developer to implement them.

Figure 4.2 shows the responsibility in the case of OutSystems.

Figure 4.2: Reality for the shared responsibility between OutSystems and developer.

We see that in OutSystems’ case, the security is quite well built-in. Six of the

14 categories are classified as OutSystems’ responsibility, and only category 5 leans

towards the developer’s responsibility. If we were to use OutSystems as a baseline

4.4 HOW TO ASSESS AN LCDP’S SECURITY IN THE FUTURE? 50

for a more general assessment, we could say that future assessments should focus

more on the platform’s built-in security features. This kind of assessment is more

effortless in an open-source platform since anyone with the expertise can review the

source code.

The problems arise when the software is proprietary. For example, since OutSys-

tems is proprietary software, we could not review the platform’s source code, and

with the lost transparency, it became a black box for us. Thankfully with the Out-

Systems case, they have solved this obscure. They provide a security portal where

they have collected necessary security reports. Third-party auditors have conducted

these audits. OutSystems have also extensively documented their ways of working

there and, for example, lists the secure coding guides they use when developing

their platform. These documents are important, if a security assessment were to

be conducted in a company using OutSystems, OutSystems would be part of the

development cycle, and their ways of working would also be part of said company’s

ways of working.

OutSystems also has the advantage in their community. We found their commu-

nity to be very helpful when we needed some assistance on how its inner parts work.

The community is mature, so most of the questions we had, were already answered

by an expert and were easy to find.

4.4 HOW TO ASSESS AN LCDP’S SECURITY IN THE FUTURE? 51

Requirement ID Requirement Description Compliance Level

V5.2.7 Verify that the application sanitizes, disables, or sand-

boxes user-supplied Scalable Vector Graphics (SVG)

scriptable content, especially as they relate to XSS result-

ing from inline scripts, and foreignObject.

CL 4

V5.2.8 Verify that the application sanitizes, disables, or sand-

boxes user-supplied scriptable or expression template

language content, such as Markdown, CSS or XSL

stylesheets, BBCode, or similar.

CL 4

V5.3.1 Verify that output encoding is relevant for the inter-

preter and context required. For example, use en-

coders specifically for HTML values, HTML attributes,

JavaScript, URL parameters, HTTP headers, SMTP,

and others as the context requires, especially from un-

trusted inputs (e.g. names with Unicode or apostrophes,

such as O’Hara). ([C4](https://owasp.org/www-project-

proactive-controls/#div-numbering))

CL 4

V5.3.4 Verify that data selection or database queries

(e.g. SQL, HQL, ORM, NoSQL) use parame-

terized queries, ORMs, entity frameworks, or are

otherwise protected from database injection at-

tacks. ([C3](https://owasp.org/www-project-proactive-

controls/#div-numbering))

CL 4

V5.3.5 Verify that where parameterized or safer mechanisms

are not present, context-specific output encoding is

used to protect against injection attacks, such as

the use of SQL escaping to protect against SQL

injection. ([C3, C4](https://owasp.org/www-project-

proactive-controls/#div-numbering))

CL 4

V5.3.7 Verify that the application protects against LDAP in-

jection vulnerabilities, or that specific security con-

trols to prevent LDAP injection have been imple-

mented. ([C4](https://owasp.org/www-project-proactive-

controls/#div-numbering))

CL 4

Table 4.5: Summary of ASVS Level 1 requirements that OutSystems does not fill.

4.4 HOW TO ASSESS AN LCDP’S SECURITY IN THE FUTURE? 52

Requirement ID Requirement Description Compliance Level

V5.3.8 Verify that the application protects against OS command

injection and that operating system calls use parameter-

ized OS queries or use contextual command line output en-

coding. ([C4](https://owasp.org/www-project-proactive-

controls/#div-numbering))

CL 4

V5.3.9 Verify that the application protects against Local File In-

clusion (LFI) or Remote File Inclusion (RFI) attacks.

CL 4

V10.3.3 Verify that the application has protection from subdo-

main takeovers if the application relies upon DNS en-

tries or DNS subdomains, such as expired domain names,

out-of-date DNS pointers or CNAMEs, expired projects

at public source code repos, or transient cloud APIs,

serverless functions, or storage buckets (*autogen-bucket-

id*.cloud.example.com) or similar. Protections can in-

clude ensuring that DNS names used by applications are

regularly checked for expiry or change.

CL 4

V11.1.3 Verify the application has appropriate limits for specific

business actions or transactions which are correctly en-

forced on a per user basis.

CL 4

V12.4.2 Verify that files obtained from untrusted sources are

scanned by antivirus scanners to prevent upload and serv-

ing of known malicious content.

CL 3

V14.2.3 Verify that if application assets, such as JavaScript li-

braries, CSS or web fonts, are hosted externally on a Con-

tent Delivery Network (CDN) or external provider, Sub-

resource Integrity (SRI) is used to validate the integrity of

the asset.

CL 4

Table 4.6: Summary of ASVS Level 1 requirements that OutSystems does not fill.

4.4 HOW TO ASSESS AN LCDP’S SECURITY IN THE FUTURE? 53

Requirement ID Requirement Description Responsibility

V1.6.2 Verify that consumers of cryptographic services protect

key material and other secrets by using key vaults or API-

based alternatives.

No / DA

V2.3.2 Verify that enrollment and use of user-provided authenti-

cation devices are supported, such as U2F or FIDO tokens.

No / DA

V2.3.3 Verify that renewal instructions are sent with sufficient

time to renew time-bound authenticators.

No / DA

V2.4.3 Verify that if PBKDF2 is used, the iteration count

SHOULD be as large as verification server performance

will allow, typically at least 100,000 iterations.

No / DA

V2.8.6 Verify physical single-factor OTP generator can be re-

voked in case of theft or other loss. Ensure that revocation

is immediately effective across logged-in sessions, regard-

less of location.

No / DA

V2.8.2 Verify that symmetric keys used to verify submitted OTPs

are highly protected, such as by using a hardware security

module or secure operating system-based key storage.

No / DA

V6.4.1 Verify that a secrets management solution such as a key

vault is used to securely create, store, control access to

and destroy secrets.

No / DA

Table 4.7: Summary of ASVS Level 2 requirements that OutSystems does not fill.

5 Conclusion

Low-code development platforms are estimated to become mainstream in software

development in the following years. This thesis was a compliance analysis into Out-

Systems’ security features as well as finding out how to conduct a security assessment

with an LCDP. The results from this thesis show that even though OutSystems has

some deficits with ASVS requirements in levels 1 and 2, it is mostly compliant with

it. The methods used in this compliance analysis can be used in the future when

assessing an LCDP’s security features.

Along with the compliance analysis, we did a literature review on the field of low-

code. In our academic literature review, we focused on the whole field of low-code,

and in our industrial review, we focused on the security of low-code. Our results

show that while research on LCDPs is gaining popularity, the industry is leading

the way in researching the topic.

5.1 Limitations

The biggest limiter for this thesis is the theme, looking at the security of low-code

from a single platform’s point of view. Low code and security as a theme does not

have many previous studies, but as a scope, it is big. A dissertation would be more

appropriate for this topic rather than a Master’s thesis. This topic is also limited

in a sense that this is the first study about assessing an LCDP’s security and there

are no existing cybersecurity standards.

5.2 FUTURE WORK 55

The final limitation of this thesis is that we conduct the assessment against ASVS

Levels 1 and 2. Assessing OutSystems’ compliance with ASVS Level 3 requires more

resources than were now available.

5.2 Future work

As mentioned in the previous section low-code and security is an unresearched topic.

Future works could include reviewing multiple LCDP’s security features and compar-

ing them. This kind of research could tell us what security features LCDPs typically

offer. We can use that information to define the shared responsibility between the

platform and the developer. Because LCDPs have not yet seen an explosion in their

popularity this kind of research could be in order. When transitioning to low-code

becomes mainstream many organizations might begin to ask what security features

belong to them, and what features the platform should provide. Having a clear

answer could help the transition and choose the right platform.

Shared responsibility in security is not the only thing that has room for future

work. Our literature review shows that of the eight categories we identified, five had

three or fewer research papers. Not only is there lots of room for future research,

but even our literature review could have been more comprehensive from the start.

A topic that closely relates to low-code is no-code, and we could have used the

keywords ”no-code” and ”no code” to conduct our database searches.

With this thesis, we also saw that the traditional security assessments might not

always work when working with LCDPs. There is not only a need to come up with

shared responsibility but also a need for a security assessment or security standard

designed for LCDPs. This thesis also found the status of citizen developers’ to be

somewhat debatable. LCDPs have varying support for them

In their security portal [53] OutSystems claims to be compliant with HIPAA and

PCI DSS. These are cybersecurity standards for critical infrastructure and would

5.3 SUMMARY 56

suggest that OutSystems might also be compliant against ASVS Level 3. However

since ASVS Level 3 was not in the scope of this thesis, future work should also

include testing OutSystems compliance against that.

5.3 Summary

We answered RQ1 in chapter 3, and in chapter 4 we answered RQ2 and RQ3. Let

us recap the research questions and our findings for them.

RQ1: WHAT IS THE CURRENT STATE OF THE FIELD OF LCDP?

While LCDP as a research field has not been popular topic to research, it has

been gaining some attraction in the resent years. Table 3.1. shows how academic

research is currently divided. We can see that security is the most under-researched

topic and that there is room for multitopic research. We also see that academic

research has previously not studied how to conduct a security assessment on LCDP.

As for the industry. Currently it appears the industry is leading the way for

LCDPs’ security. It seems that rather than an industry, we should be talking about

individuals and individual companies leading the way. Individual companies such

as Zenity might play a big role in the future in defining the LCDPs’ security. They

are already sponsoring the second major industrial material we found, OWASP Top

10 Low-Code/No-Code Security Risks. The industry studies also did not show that

there is a previous case study on how to conduct a security assessment on LCDP.

We truly see that this thesis is a pioneer when it comes to that.

RQ2: IS OUTSYSTEMS COMPLIANT WITH ASVS?

For the most part, OutSystems is compliant with ASVS. Looking at tables 4.6

and 4.7, we see that seven out of the 13 requirements that OutSystems did not fulfill

are related to category 2, authentication. The single biggest issue that OutSystems

has with the ASVS relates to the use of MFA. Nowadays, MFA plays a big part

in application security, and while OutSystems Forge does have modules that would

5.3 SUMMARY 57

make it fulfill these requirements, they are not official modules. OutSystems would

need to also do this with another module for scanning antiviruses. The rest of

the failing requirements would require OutSystems to provide a key vault to store

secrets.

RQ3: HOW TO ASSESS LCDP SECURITY IN FUTURE?

Assessing an LCDP’s security is not easy. Currently, there are no standards that

advise you on how it should be done. We do not have a clear answer on how to

assess an LCDP’s security, but we believe that one crucial element is transparency.

Part of the transparency is lost with the pre-made features, and the LCDPs have to

compensate for that. In OutSystems’ case, we have utilized their security portal to

see the security reports done by 3rd party vendors, and to see their documentation

on their ways of work. We found this to be working quite well.

Another crucial element in assessing an LCDP’s security is to define a clear

separation of responsibility. The responsibility needs to be defined so that the

evaluation can take place. In an ideal case, the platform would have all the security

features pre-made, but as our compliance analysis shows, we are not yet there.

In our compliance analysis, we used this division to see if the platform met the

requirement and if it did not, we looked if the developer could do something to meet

the requirement. This method seemed to work and it was easy to implement.

References

[1] J. S. Geoffrey Elliott, Global business information technology: an integrated

systems approach. Pearson Education, 2004, p. 87.

[2] B. W. Boehm, “A spiral model of software development and enhancement”,

Computer, vol. 21, no. 5, pp. 61–72, 1988.

[3] Atlassian. “Scrum - what is it, how it works, and why it’s awesome”. (2022),

[Online]. Available: https://www.atlassian.com/agile/scrum (visited on

06/05/2022).

[4] P. Vincent, Y. Natis, K. Iijima, J. Wong, S. Ray, A. Jain, and A. Leow, “Gart-

ner magic quadrant for enterprise low-code application platforms”, Gartner

Research, 2019.

[5] OWASP. “OWASP | Open Source Foundation for Application Security”. (2022),

[Online]. Available: https://owasp.org/ (visited on 09/30/2022).

[6] OWASP. “OWASP Top Ten Web Application Security Risks”. (2022), [On-

line]. Available: https://owasp.org/www-project-top-ten/ (visited on

09/30/2022).

[7] OWASP. “OWASP ZAP”. (2022), [Online]. Available: https://www.zaproxy.

org/ (visited on 09/30/2022).

https://www.atlassian.com/agile/scrum
https://owasp.org/
https://owasp.org/www-project-top-ten/
https://www.zaproxy.org/
https://www.zaproxy.org/

REFERENCES 59

[8] OWASP. “OWASP Application Security Verification Standard”. (2022), [On-

line]. Available: https://owasp.org/www-project-application-security-

verification-standard/ (visited on 09/30/2022).

[9] V. Garousi, M. Felderer, and M. V. Mäntylä, “The need for multivocal lit-

erature reviews in software engineering: complementing systematic literature

reviews with grey literature”, in Proceedings of the 20th international confer-

ence on evaluation and assessment in software engineering, Limerick, Ireland,

2016, pp. 1–6.

[10] R. Sanchis, Ó. García-Perales, F. Fraile, and R. Poler, “Low-code as enabler of

digital transformation in manufacturing industry”, Applied Sciences, vol. 10,

no. 1, p. 12, 2020.

[11] N. Prinz, C. Rentrop, and M. Huber, “Low-code development platforms–a

literature review”, Virtual Conference: AMCIS 2021, 2021.

[12] ISO/IEC. “ISO/IEC 27001:2013, Information technology — Security tech-

niques — Information security management systems — Requirements”. (2013),

[Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso-iec:

27001:ed-2:v1:en (visited on 12/07/2021).

[13] ISO/IEC, “ISO/IEC 27002:2013, Information technology — Security tech-

niques — Code of practice for information security controls”, 2013. [Online].

Available: https://www.iso.org/obp/ui/#iso:std:iso-iec:27002:ed-2:

v1:en.

[14] ISO/IEC, “ISO/IEC 27011:2016, Information technology — Security tech-

niques — Code of practice for Information security controls based on ISO/IEC

27002 for telecommunications organizations”, 2021. [Online]. Available: https:

//www.iso.org/obp/ui/#iso:std:iso-iec:27011:ed-2:v1:en.

https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-application-security-verification-standard/
https://www.iso.org/obp/ui/#iso:std:iso-iec:27001:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:27001:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:27002:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:27002:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:27011:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:27011:ed-2:v1:en

REFERENCES 60

[15] ISO/IEC, “ISO/IEC 27017:2015, Information technology — Security tech-

niques — Code of practice for information security controls based on ISO/IEC

27002 for cloud services”, 2021. [Online]. Available: https://www.iso.org/

obp/ui/#iso:std:iso-iec:27017:ed-1:v1:en.

[16] IT Governance USA Inc. “Typical ISO 27001 Certification Costs”. (2021),

[Online]. Available: https://www.itgovernanceusa.com/iso27001%20-

certification-costs (visited on 09/30/2022).

[17] OutSystems, “What is low-code? [2021 update]”, 2021. [Online]. Available:

https://www.outsystems.com/blog/posts/what-is-low-code/.

[18] Microsoft. “What is Microsoft Power Platform?” (2021), [Online]. Available:

https://docs.microsoft.com/en-us/learn/modules/introduction-

power-platform/2-what-is-power-platform (visited on 11/30/2021).

[19] Microsoft. “Data connectors”. (2021), [Online]. Available: https : / / docs .

microsoft.com/en-us/learn/modules/introduction-power-platform/

3-data-connectors (visited on 11/30/2021).

[20] Microsoft. “Security in Microsoft Dataverse”. (2021), [Online]. Available: https:

//docs.microsoft.com/en-us/power-platform/admin/wp-security (vis-

ited on 11/30/2021).

[21] Microsoft. “Data loss prevention policies”. (2021), [Online]. Available: https:

//docs.microsoft.com/en-us/power-platform/admin/wp-data-loss-

prevention (visited on 11/30/2021).

[22] OutSystems, “OutSystems Platform Services”, 2021. [Online]. Available: https:

//www.outsystems.com/evaluation-guide/platform-services/.

[23] OutSystems, “Supported stack configurations”, 2021. [Online]. Available: https:

//www.outsystems.com/evaluation-guide/platform-runtime/#3.

https://www.iso.org/obp/ui/#iso:std:iso-iec:27017:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:27017:ed-1:v1:en
https://www.itgovernanceusa.com/iso27001%20-certification-costs
https://www.itgovernanceusa.com/iso27001%20-certification-costs
https://www.outsystems.com/blog/posts/what-is-low-code/
https://docs.microsoft.com/en-us/learn/modules/introduction-power-platform/2-what-is-power-platform
https://docs.microsoft.com/en-us/learn/modules/introduction-power-platform/2-what-is-power-platform
https://docs.microsoft.com/en-us/learn/modules/introduction-power-platform/3-data-connectors
https://docs.microsoft.com/en-us/learn/modules/introduction-power-platform/3-data-connectors
https://docs.microsoft.com/en-us/learn/modules/introduction-power-platform/3-data-connectors
https://docs.microsoft.com/en-us/power-platform/admin/wp-security
https://docs.microsoft.com/en-us/power-platform/admin/wp-security
https://docs.microsoft.com/en-us/power-platform/admin/wp-data-loss-prevention
https://docs.microsoft.com/en-us/power-platform/admin/wp-data-loss-prevention
https://docs.microsoft.com/en-us/power-platform/admin/wp-data-loss-prevention
https://www.outsystems.com/evaluation-guide/platform-services/
https://www.outsystems.com/evaluation-guide/platform-services/
https://www.outsystems.com/evaluation-guide/platform-runtime/#3
https://www.outsystems.com/evaluation-guide/platform-runtime/#3

REFERENCES 61

[24] OutSystems. “Architecture | OutSystems”. (2021), [Online]. Available: https:

//www.outsystems.com/enterprise-apaas/ (visited on 01/15/2022).

[25] OutSystems. “Does the OutSystems platform use AI and machine learning?”

(2021), [Online]. Available: https://www.outsystems.com/evaluation-

guide/does-OutSystems-platform-use-ai-machine-learning/ (visited

on 12/05/2021).

[26] OutSystems. “OutSystems Security Overview ”. (2021), [Online]. Available:

https://www.outsystems.com/evaluation-guide/OutSystems-security-

overview/ (visited on 01/11/2022).

[27] OutSystems. “ISO 27001 Certification Guide: What You Need to Know”.

(2022), [Online]. Available: https://www.itgovernance.co.uk/iso27001-

certification (visited on 09/30/2022).

[28] “Cybermeter”. (2021), [Online]. Available: https://www.kyberturvallisuus%

20keskus.fi/en/our- services/situation- awareness- and- network-

management/kybermittari-cybermeter (visited on 10/27/2022).

[29] M. A. A. Alamin, S. Malakar, G. Uddin, S. Afroz, T. B. Haider, and A. Iqbal,

“An Empirical Study of Developer Discussions on Low-Code Software Devel-

opment Challenges”, arXiv preprint arXiv:2103.11429, 2021.

[30] Y. Luo, P. Liang, C. Wang, M. Shahin, and J. Zhan, “Characteristics and Chal-

lenges of Low-Code Development: The Practitioners’ Perspective”, in Proceed-

ings of the 15th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM), Bari Italy, 2021, pp. 1–11.

[31] C. Silva, J. Vieira, J. C. Campos, R. Couto, and A. N. Ribeiro, “Development

and validation of a descriptive cognitive model for predicting usability issues

in a low-code development platform”, Human Factors, vol. 63, no. 6, pp. 1012–

1032, 2021.

https://www.outsystems.com/enterprise-apaas/
https://www.outsystems.com/enterprise-apaas/
https://www.outsystems.com/evaluation-guide/does-OutSystems-platform-use-ai-machine-learning/
https://www.outsystems.com/evaluation-guide/does-OutSystems-platform-use-ai-machine-learning/
https://www.outsystems.com/evaluation-guide/OutSystems-security-overview/
https://www.outsystems.com/evaluation-guide/OutSystems-security-overview/
https://www.itgovernance.co.uk/iso27001-certification
https://www.itgovernance.co.uk/iso27001-certification
https://www.kyberturvallisuus%20keskus.fi/en/our-services/situation-awareness-and-network-management/kybermittari-cybermeter
https://www.kyberturvallisuus%20keskus.fi/en/our-services/situation-awareness-and-network-management/kybermittari-cybermeter
https://www.kyberturvallisuus%20keskus.fi/en/our-services/situation-awareness-and-network-management/kybermittari-cybermeter

REFERENCES 62

[32] F. Khorram, J.-M. Mottu, and G. Sunyé, “Challenges & opportunities in low-

code testing”, in Proceedings of the 23rd ACM/IEEE International Conference

on Model Driven Engineering Languages and Systems: Companion Proceed-

ings, Virtual Event Canada, 2020, pp. 1–10.

[33] B. Horváth, Á. Horváth, and M. Wimmer, “Towards the next generation of

reactive model transformations on low-code platforms: three research lines”, in

Proceedings of the 23rd ACM/IEEE International Conference on Model Driven

Engineering Languages and Systems: Companion Proceedings, Virtual Event

Canada, 2020, pp. 1–10.

[34] S. Jahanbin, D. Kolovos, and S. Gerasimou, “Intelligent run-time partitioning

of low-code system models”, in Proceedings of the 23rd ACM/IEEE Inter-

national Conference on Model Driven Engineering Languages and Systems:

Companion Proceedings, Virtual Event Canada, 2020, pp. 1–5.

[35] J. Philippe, H. Coullon, M. Tisi, and G. Sunyé, “Towards transparent com-

bination of model management execution strategies for low-code development

platforms”, in Proceedings of the 23rd ACM/IEEE International Conference on

Model Driven Engineering Languages and Systems: Companion Proceedings,

Virtual Event Canada, 2020, pp. 1–10.

[36] M. Bexiga, S. Garbatov, and J. C. Seco, “Closing the gap between designers

and developers in a low code ecosystem”, in Proceedings of the 23rd ACM/IEEE

International Conference on Model Driven Engineering Languages and Sys-

tems: Companion Proceedings, Virtual Event Canada, 2020, pp. 1–10.

[37] L. Almonte, I. Cantador, E. Guerra, and J. de Lara, “Towards automating the

construction of recommender systems for low-code development platforms”, in

Proceedings of the 23rd ACM/IEEE International Conference on Model Driven

REFERENCES 63

Engineering Languages and Systems: Companion Proceedings, Virtual Event

Canada, 2020, pp. 1–10.

[38] C. Di Sipio, D. Di Ruscio, and P. T. Nguyen, “Democratizing the development

of recommender systems by means of low-code platforms”, in Proceedings of

the 23rd ACM/IEEE International Conference on Model Driven Engineering

Languages and Systems: Companion Proceedings, Virtual Event Canada, 2020,

pp. 1–9.

[39] G. Daniel, J. Cabot, L. Deruelle, and M. Derras, “Xatkit: a multimodal low-

code chatbot development framework”, IEEE Access, vol. 8, pp. 15 332–15 346,

2020.

[40] R. Arora, N. Ghosh, and T. Mondal, “Sagitec Software Studio (S3)-A Low

Code Application Development Platform”, in 2020 International Conference

on Industry 4.0 Technology (I4Tech), IEEE, Pune India, 2020, pp. 13–17.

[41] C. Zolotas, K. C. Chatzidimitriou, and A. L. Symeonidis, “RESTsec: a low-

code platform for generating secure by design enterprise services”, Enterprise

Information Systems, vol. 12, no. 8-9, pp. 1007–1033, 2018.

[42] A. Jacinto, M. Lourenço, and C. Ferreira, “Test mocks for low-code applica-

tions built with OutSystems”, in Proceedings of the 23rd ACM/IEEE Inter-

national Conference on Model Driven Engineering Languages and Systems:

Companion Proceedings, Virtual Event Canada, 2020, pp. 1–5.

[43] R. Martins, F. Caldeira, F. Sá, M. Abbasi, and P. Martins, “An overview

on how to develop a low-code application using OutSystems”, in 2020 In-

ternational Conference on Smart Technologies in Computing, Electrical and

Electronics (ICSTCEE), IEEE, Bengaluru India, 2020, pp. 395–401.

[44] H. Lourenço and R. Eugénio, “TrueChange (TM) Under the Hood: How We

Check the Consistency of Large Models (Almost) Instantly”, in 2019 ACM

REFERENCES 64

IEEE 22nd International Conference on Model Driven Engineering Languages

and Systems Companion (MODELS-C), IEEE, Munich Germany, 2019, pp. 362–

369.

[45] H. Lourenço, J. Tavares, R. Eugénio, M. Lourenço, and T. Simões, “LUV is

not the answer: continuous delivery of a model driven development platform”,

in Proceedings of the 23rd ACM/IEEE International Conference on Model

Driven Engineering Languages and Systems: Companion Proceedings, Virtual

Event Canada, 2020, pp. 1–10.

[46] J. P. Fernandes, R. Araújo, and M. Zenha-Rela, “Achieving Scalability in

Project Based Learning through a Low-Code platform”, in Proceedings of

the 34th Brazilian Symposium on Software Engineering, Natal Brazil, 2020,

pp. 710–719.

[47] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Supporting the

understanding and comparison of low-code development platforms”, in 2020

46th Euromicro Conference on Software Engineering and Advanced Applica-

tions (SEAA), IEEE, Portorož Slovenia, 2020, pp. 171–178.

[48] M. Bargury, “The 7 deadly sins of low-code security and how to avoid them”,

2021. [Online]. Available: https : / / www . zenity . io / blog / low - code -

security-risks-7-sins-and-how-to-overcome-every-single-one/.

[49] OWASP. “OWASP Top 10 Low-Code/No-Code Security Risks”. (2022), [On-

line]. Available: https://owasp.org/www-project-top-10-low-code-no-

code-security-risks/ (visited on 02/05/2022).

[50] B. Doerrfeld. “How to mitigate low-code security risks”. (2021), [Online]. Avail-

able: https : / / devops . com / how - to - mitigate - low - code - security -

risks// (visited on 11/29/2021).

https://www.zenity.io/blog/low-code-security-risks-7-sins-and-how-to-overcome-every-single-one/
https://www.zenity.io/blog/low-code-security-risks-7-sins-and-how-to-overcome-every-single-one/
https://owasp.org/www-project-top-10-low-code-no-code-security-risks/
https://owasp.org/www-project-top-10-low-code-no-code-security-risks/
https://devops.com/how-to-mitigate-low-code-security-risks//
https://devops.com/how-to-mitigate-low-code-security-risks//

REFERENCES 65

[51] IT Pro Today. “App development: Staying secure using low-code platforms”.

(2021), [Online]. Available: https://www.itprotoday.com/application-

security/app-development-staying-secure-using-low-code-platforms

(visited on 12/03/2021).

[52] Appknox. “Top 7 security risks of a low code development for your enter-

prise”. (2021), [Online]. Available: https://www.appknox.com/blog/top-

security-risks-of-low-code-development (visited on 12/03/2021).

[53] OutSystems. “Security Portal”. (2022), [Online]. Available: https://security.

outsystems.com/ (visited on 09/30/2022).

[54] OutSystems. “Application security - Technical white paper”. (2022), (visited

on 01/11/2022).

[55] OutSystems. “OutSystems Forge - Password Strength Meter”. (2022), [Online].

Available: https://www.outsystems.com/forge/component- overview/

1131/password-strength-meter (visited on 05/15/2022).

[56] OutSystems. “OutSystems Forge - Toggle Show Password”. (2022), [Online].

Available: https://www.outsystems.com/forge/component- overview/

2627/toggle-show-password (visited on 05/15/2022).

[57] OutSystems. “About OutSystems”. (2022), [Online]. Available: https://www.

outsystems.com/company/ (visited on 09/30/2022).

[58] OutSystems. “OutSystems Forge - SAML Platform Authentication”. (2022),

[Online]. Available: https : / / www . outsystems . com / forge / component -

overview/4311/saml-platform-authentication (visited on 05/15/2022).

[59] OutSystems. “OutSystems Forge - VirusTotal API”. (2022), [Online]. Avail-

able: https://www.outsystems.com/forge/component-overview/4738/

virustotal-api (visited on 05/15/2022).

https://www.itprotoday.com/application-security/app-development-staying-secure-using-low-code-platforms
https://www.itprotoday.com/application-security/app-development-staying-secure-using-low-code-platforms
https://www.appknox.com/blog/top-security-risks-of-low-code-development
https://www.appknox.com/blog/top-security-risks-of-low-code-development
https://security.outsystems.com/
https://security.outsystems.com/
https://www.outsystems.com/forge/component-overview/1131/password-strength-meter
https://www.outsystems.com/forge/component-overview/1131/password-strength-meter
https://www.outsystems.com/forge/component-overview/2627/toggle-show-password
https://www.outsystems.com/forge/component-overview/2627/toggle-show-password
https://www.outsystems.com/company/
https://www.outsystems.com/company/
https://www.outsystems.com/forge/component-overview/4311/saml-platform-authentication
https://www.outsystems.com/forge/component-overview/4311/saml-platform-authentication
https://www.outsystems.com/forge/component-overview/4738/virustotal-api
https://www.outsystems.com/forge/component-overview/4738/virustotal-api

	Introduction
	Research motivation
	Research questions
	Research method and process
	Literature review process
	Compliance analysis
	Defining an LCDP assessment guideline

	Structure of the thesis

	Background
	Cybersecurity standards
	ISO/IEC 27000-series
	OWASP ASVS

	Low-code development platforms
	Microsoft's Power Platform
	OutSystems

	Security assessment in general
	Summary

	Multi-vocal literature review
	Academic research
	Industrial research
	Conclusion

	OutSystems compliance with ASVS
	Compliance analysis of ASVS Level 1
	Compliance analysis of ASVS Level 2
	Results
	Defining the shared responsibility between OutSystems and the Developer
	Findings
	Summary of results

	How to assess an LCDP's security in the future?

	Conclusion
	Limitations
	Future work
	Summary

	References

