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ABSTRACT

Quantum theory is one of the most important theories in modern physics, yet the
physical principles underlying the theory are anything but clear. Nonclassical fea-
tures, such as entanglement, are often attributed as the key phenomena that make
quantum theory special. However, the difference between classical and quantum sys-
tems can already be detected by observing the behavior of single systems in various
communication setups.

This thesis is based on the original publications I–IV. A key concept throughout
is that of a communication task, by which we mean a description of conditional
probabilities in a prepare-and-measure scenario. These conditional probabilities are
conveniently collected into row-stochastic matrices, which we call communication
matrices.

The concept of a communication task was introduced in Publication II where we
also studied a preorder on the set of communication matrices. We called this preorder
the ultraweak matrix majorization and refined the concept in Publication III. A key
motivation for introducing this preorder was that the set of communication matrices
is closed with respect to the ultraweak matrix majorization. Additionally, ultraweak
matrix majorization can be used to give a physical characterization of which com-
munication tasks are harder to implement than others.

We also studied monotone functions of the ultraweak preorder. By studying the
different monotones it becomes possible to define different notions of dimension for
operational theories. These dimensions each characterize the properties of given op-
erational theories and we are able to capture some key differences between classical
and quantum state spaces.

While the preorder of ultraweak matrix majorization is a major part of this the-
sis, some concrete communication tasks are also studied. One of the main studied
communication tasks is antidistinguishability, which plays an important role in the
study of the foundations of quantum mechanics. We were able to provide a new al-
gebraic condition for an arbitrary set of quantum states to be antidistinguishable in
Publication I. We also apply the theory of ultraweak matrix majorization to antidis-
tinguishability in the third chapter of this thesis, where we show that the set of all
communication matrices is not convex for classical or quantum state spaces in any
dimension.

The other communication tasks studied in this thesis are communication of par-
tial ignorance, studied in Publication II, and partial-ignorance communication tasks
which was the topic of Publication IV. Both of these communication tasks can be
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seen as communication tasks between two parties, where one party is trying to com-
municate which choices the other party should avoid. A key observation for these
tasks is that they lie between distinguishability and antidistinguishability. Some
novel analysis is presented for both of these tasks in the final chapter of this thesis.
The quantum implementation for one of the partial-ignorance communication tasks
can be shown to break the principle of noncontextuality, thus proving that quantum
mechanics holds a contextual advantage in the given task when compared to classical
operational theories.
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TIIVISTELMÄ

Kvanttiteoria on yksi tärkeimmistä modernin fysiikan teorioista. Kuitenkaan fysikaa-
liset periaatteet, joihin kvanttiteoria perustuu, eivät ole tänäpäivänä täysin selvillä.
Ei-klassisia piirteitä, kuten kvanttikietoutumista, pidetään usein ilmiöinä, jotka teke-
vät kvanttiteoriasta erityisen. Ero kvanttisysteemien ja klassisten systeemien välillä
voidaan kuitenkin nähdä jo tarkastelemalla yksittäisten systeemien käyttäytymistä eri-
laisissa kommunikointijärjestelyissä.

Tämä väitöskirja perustuu alkuperäisjulkaisuihin I–IV. Avainkonsepti tässä väi-
töskirjassa on kommunikointitehtävän käsite, jolla tarkoitetaan ehdollisten todennä-
köisyyksien kuvausta preparoi-ja-mittaa järjestelyssä. Nämä ehdolliset todennäköi-
syydet voidaan kätevästi kerätä rivistokastisiin matriiseihin, joita kutsutaan kommu-
nikointimatriiseiksi.

Kommunikointitehtävän käsite esitettiin julkaisussa II, jossa myös tutkin kom-
munikointimatriisien esijärjestystä. Kutsuin tätä esijärjestystä ultraheikoksi matriisi-
majoroinniksi, jota käsitteenä jalostettiin julkaisussa III. Tärkeä motivaatio tämän
esijärjestyksen tutkimiselle on se, että kommunikointimatriisien joukko on suljettu
ultraheikon matriisimajoroinnin suhteen. Tämän lisäksi ultraheikon matriisimajoroin-
nin avulla voidaan fysikaalisesti karakterisoida ne tilanteet, joissa yksi kommunikoin-
titehtävä on toista helpompi toteuttaa.

Tutkimuksen kohteena ovat myös ultraheikon esijärjestyksen monotoniset funk-
tiot. Näitä funktioita tutkimalla on mahdollista esittää erilaisia dimension käsit-
teitä eri operationaalisille teorioille. Kukin näistä dimensioista karakterisoi ope-
rationaalisen teorian ominaisuuksia. Joitakin oleellisia eroja klassisten systeemien
ja kvanttisysteemien välillä pystytäänkin havainnollistamaan näiden dimensioiden
avulla.

Ultraheikon matriisimajoroinnin esijärjestyksen lisäksi tutkin tässä väitöskirjassa
myös konkreettisia kommunikointitehtäviä. Ensimmäinen näistä tehtävistä on antie-
roteltavuus, jolla on tärkeitä sovelluksia kvanttimekaniikan perusteiden tutkimuk-
sessa. Pystyin näyttämään uuden algebrallisen ehdon mielivaltaisen kvanttitilajoukon
antieroteltavuudelle julkaisussa I. Sovelsin myös ultraheikkoa matriisimajorointia
antieroteltavuuteen tämän väitöskirjan kolmannessa kappaleessa, jossa näytin ettei
klassiset- tai kvanttitila-avaruudet ole konvekseja missään dimensiossa.

Muut tässä väitöskirjassa tutkitut kommunikointitehtävät olivat osittaisen tietä-
mättömyyden kommunikointitehtävät, joita oli kahta oleellisesti erilaista tyyppiä.
Ensimmäistä tutkin julkaisussa II, kun taas toinen oli julkaisun IV aiheena. Kum-
matkin näistä kommunikointitehtävistä voidaan nähdä kahden osapuolen kommu-
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nikointitehtävinä, joissa toinen osapuoli pyrkii välittämään toiselle osapuolelle tietoa
siitä, mitä vaihtoehtoja hänen tulisi välttää. Tärkeä havainto on, että nämä kommu-
nikointitehtävät ovat antieroteltavuuden ja eroteltavuuden välissä. Uutta anlyysiä näis-
tä kommunikointitehtävistä esitetään tämän väitöskirjan viimeisessä kappaleessa.
Yhden kommunikointitehtävän kvanttitoteutuksen voidaan nähdä rikkovan ei-konteks-
tuaalisuuden periaatetta. Kvanttimekaanisilla systeemeillä voidaan näin todeta ole-
van kontekstuaalinen etu klassisiin systeemeihin verrattuna kyseisessä kommunikoin-
titehtävässä.
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Introduction

Communication is fundamental to human society, culture and technology. In a sense,
almost anything could be called communication: from the transmission of pressure
waves through air that our brains interpret as letters, words, sentences and their se-
mantics, to electromagnetic signals traveling through vast distances between nodes
of a network called the internet. Any repeatable action whose purpose is the trans-
mission of information from one place to another is essentially communication.

The most basic unit of information is the bit. As an abstract notion, the bit is
something that signifies the manifestation of two possibilities. In information theory
the two possibilities are usually denoted by 0 and 1, that is, the bit can take on the
binary values of zero or one, but never both at the same time. Remarkable inventions
have emerged from the manipulation of bits, the most notable being perhaps the
Turing machine and modern computers. However, these devices follow the laws of
classical information theory, and we are now reaching the point in time where we
do not just understand, but can build machines that fundamentally utilize quantum
resources and phenomena. The promise of quantum technologies is astounding and
possibly disruptive.

Whilst a traditional computer achieves its function by manipulating bits in a reg-
ister, a quantum computer promises superior computational performance by manip-
ulating quantum analogues of the bit, the qubit. A qubit differs from a bit in many
important ways. Whilst a bit can never possess the value of 0 and 1 at the same time,
the qubit is (in)famous for its ability to do exactly that. A qubit can be in a superpo-
sition state, where it has a nonzero probability of being found in the “zero” or “one”
state when measured. How a superposition state should be interpreted is controver-
sial; it depends on the interpretation of quantum mechanics one adopts whether a
superposition state should be thought of as a distinct state that is neither “zero” or
“one”, a state that is a “zero” and a “one” at the same time or some kind of a mix-
ture between the two states. Moreover, a collection of many qubits can behave in
surprising ways. For example, two bits are always just that, two bits. There are four
possibilities for two bits to manifest the values 0 and 1, namely 00, 01, 10 and 11.
Once the fact that a qubit can be in a superposition state is taken into account, the
combined state of two qubits can become intertwined in a way that neither qubit pos-
sesses a definite value while simultaneously the value of both qubits is dependent on
the other. This phenomena is called entanglement.

1
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The theory of entanglement has remained an active subject of research since its
conception. Einstein famously critiqued the phenomena [5] and dismissed the subject
as “spooky action at a distance”. Entanglement was not easy to understand for the
people who were intimately involved in the foundation of the theory itself, and it
certainly is not easy to understand today. Perhaps even now no one truly understands
it in physical terms, though that has not stopped people from trying. What can be
said is that superposition, entanglement and other nonclassical features of quantum
mechanics seem to stem from the differences between the bit and qubit. We should
therefore try to understand that difference as well as possible at the lowest level
possible, the level of single bits and qubits. Communication with these elementary
objects seems like a good place to start.

The most primitive form of communication is the transmission of one bit from a
sender to a receiver. In quantum theory these parties are traditionally called Alice and
Bob, respectively. However, just like language is more than the transmission of single
letters, the transmission of a bit needs to have a purpose, a reason for why it is being
transmitted in the first place. The bit needs a communicational or computational task
that is attempted to be realized. An example of such a task would be, for instance, a
random access code (RAC) [6; 7; 8]. The basic idea of a RAC is that Alice is trying
to encode the contents of a large bit-string into a small message, perhaps just a single
bit. Bob must try to retrieve information about a random portion of the original
bit-string from Alice’s encoded message. Communication tasks like the RAC are
good candidates for studying the differences between the bit and qubit on the most
primitive level.

A fundamental result in quantum information theory states that the qubit can
only transmit a single bit of information [9]. There are infinitely many different pure
states for the qubit but only two pure qubit states can be distinguished with certainty
in a single measurement. The qubit is a two-level system and in this sense it is the
correct analogue for the classical bit. Although the amount of information transmit-
ted by a single bit and qubit is the same, the qubit can outperform the bit in many
communication tasks such as the RAC. In this case the existence of superposition
states is the reason for the qubit’s superior performance. The amount of (retrievable)
information carried by the bit and qubit is the same but the richer state space of the
qubit allows for more sophisticated methods for communication.

Some communication tasks require entanglement as a resource for communica-
tion. It is impossible to encode two bits of information into a single bit. However,
with the help of entanglement, it becomes possible to encode two bits of information
into a single qubit. In this protocol, often called superdense coding [10], Alice and
Bob share an entangled pair of qubits. By applying clever local transformations to
her qubit, Alice can drive the joint state so that upon receiving Alice’s qubit Bob
can decode two bits of information by performing a measurement on both qubits. In
some sense superdense coding is the opposite of quantum teleportation [11] where

2



Introduction

Alice can transmit the state of her qubit to Bob by sending two bits of classical in-
formation.

Entanglement is always a property of a single quantum state. That is, the joint
state of a quantum system is either entangled or it is not. However, there is another
way to look into entanglement as a resource for communication.

Suppose you are in possession of two bits, 𝑎𝑏, but you do not know their values.
You can check the value of either bit 𝑎 or 𝑏 and you can be sure that by checking
the value of one bit the other bit’s value will not be changed in any way. In general,
this is not the case in quantum mechanics. Suppose Alice and Bob share a pair of
qubits. If the joint system of the qubits is in an entangled state and Alice performs
an operation on her qubit, the state of Bob’s qubit might be changed in a process
called steering [12; 13]. In other words there is a context for Bob’s measurement. In
general, contextuality is a principle which states that some things, such as states and
measurements, depend on the context in which they occur. Contextuality is a purely
nonclassical feature like entanglement, that is, the bit is not contextual. However, in
some communication tasks it is possible to prove that a contextual advantage exists
for quantum theory. Unlike entanglement, contextuality is generally speaking not a
property of a single quantum state, but one of a collection of states, measurements
or channels. Therefore, in communication tasks where contextuality is a resource,
it might be possible for qubits to display a contextual advantage in the absence of
entanglement. Sometimes entanglement and contextuality are connected as contex-
tuality can in some situations be seen as a manifestation of strong spatially separated
correlations enabled by entangled states, that is, correlations breaking the principle
of local realism [14]. The failure of local realism is sometimes referred to as nonlo-
cality.

What is usually meant when it is said that contextuality and entanglement are
nonclassical features is that there exists some notion of classicality which is violated
by quantum mechanical systems. In the case of nonlocality the underlying principle
being violated is that spatially separated classical systems should not interact faster
than is allowed by the speed of light, whilst for contextuality it is that the epistemic
states of indistinguishable physical systems should be identical irrespective of the
context in which they occur. The key question is then whether quantum mechanics
admits a hidden variable model that does not violate these principles and would thus
explain quantum mechanical behavior in terms of a classical explanation [14; 15].
It turns out that questions like these are not exclusive to gedankenexperiments, or
thought experiments, but can actually be tested in a controlled environment [16; 17;
18]. Today it is understood that any efforts to explain quantum mechanics through
purely classical models are ultimately futile.

This thesis is organized in the following way. In Chapter 1 a brief introduction
to operational theories and select topics in quantum mechanics are given. The basic
operational setting of quantum theory is explored to the necessary depth required to

3
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understand the original research presented in Publications I – IV. Additionally, the
topics of tomography, entanglement and contextuality are discussed briefly.

Chapter 2 explores the concept of communication matrices introduced in Publi-
cation II. A communication matrix is a convenient way to describe a prepare-and-
measure setting in any operational theory. The conditional outcome probabilities of
a measurement are simply collected into a row-stochastic matrix. A preorder on the
set of communication matrices called ultraweak matrix majorization, introduced in
Publication II and refined in III, is presented in full detail. Monotones that character-
ize the operational hierarchy of communication matrices as given by the preorder of
ultraweak matrix majorization are studied. Moreover, different notions of dimension
are introduced as maximal values of the ultraweak monotones in given operational
theories. We collect these dimensions and compare them at the end of Chapter 2.

The methods developed in the previous chapter are applied to various communi-
cation tasks in Chapter 3. This is a good place to revisit Publication I, which studied
antidistinguishability of pure quantum states. Publication I directly inspired the re-
search for Publication II where communication of partial ignorance was introduced
along with the concept of communication matrices. Communication of partial igno-
rance is a family of communication tasks where the objective of communication is to
avoid certain outcomes. The previously known results on the operational hierarchy
of these tasks is improved slightly with the help of an ultraweak monotone func-
tion. In addition, we analyze the Shannon entropy in the quantum implementations
of these communication tasks. Finally, we present a generalization of communica-
tion of partial ignorance, the partial-ignorance communication tasks, which were the
subject of Publication IV.

4



1 Operational quantum mechanics

The general objective of this thesis is to study different communication tasks and
their properties in the context of quantum theory. However, many of the topics
discussed throughout this thesis will not be specific to quantum theory and can be
applied in a large variety of operational settings. A general description of an opera-
tional setting is called an operational theory. Loosely speaking an operational theory
can be defined as a collection of the following mathematical structures.

Definition 1.1. An operational theory is any set of mathematical structures that de-
scribe the following aspects of a prepare-and-measure setting:

1: a collection of state spaces, each representing a class of physical systems

2: a composition rule that specifies the joint description of physical systems

3: a set of effects that determine the outcome probabilities of measurements for
every state

4: a set of operations that describe transformations of physical systems

These mathematical structures are defined in a very specific way in general prob-
abilistic theories, or GPTs [19], and in quantum mechanics. There is no unique
axiomatic way to derive quantum mechanics, and we will not present an axiomatic
derivation [20; 21] of the theory here. Instead we will give a brief introduction to the
framework of GPTs and highlight the connection to standard Hilbert space quantum
mechanics [22] with examples.

1.1 General probabilistic framework
It is a common scenario in physics, and other sciences, that the outcome of an event
cannot be predicted conclusively from theory. Instead such an event has to be de-
scribed probabilistically, or with statistics. If the event can be reproduced repeatedly
in a controlled environment, data can be gathered about the frequency of different
possible outcomes. Once enough data has been gathered, the conclusion that can
be drawn is that an event is described by a probability distribution over the possible
outcomes.

5
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In an idealized version of a laboratory experiment, it is thought that an exper-
imenter can prepare states of some physical system repeatedly. A device that can
prepare states is called a preparation device. After being prepared, the state of a
physical system goes through some possible transformation or time-evolution be-
fore a measurement is performed on it. A measurement is understood as a device,
the measurement device, that takes a state as an input and outputs a measurement
outcome with some probability that depends on the input state. After repeating the
experiment many times the experimenter can describe how the prepared system be-
haves in the performed measurement. We can see that this setup is closely related to
Definition 1.1.

It is commonly thought that an experimenter can produce mixtures of states by
alternating the device used to prepare them probabilistically. This can happen, for
instance, by sampling a random variable and choosing a preparation device accord-
ing to the obtained value, after which the value of the random variable is forgotten.
If 𝑠1 and 𝑠2 are valid states prepared by some devices, it is then assumed that the
state 𝜆𝑠1 + (1 − 𝜆)𝑠2, 𝜆 ∈ [0, 1] should also describe a valid state. This assump-
tion imposes a convex structure for all states described by an operational theory.
Based on this convex structure, it is conceivable that some states could be prepared
in more than one way. Thus a state is really an equivalence class of preparations;
two preparations are equivalent if they produce the same outcome probabilities for
all measurements. Likewise, an observable is an equivalence class of measurements;
two measurements are equivalent if they predict the same outcome probabilities for
all states.

With the convex structure imposed on states we can now give a definition, or a
requirement, for an abstract space of states, or the state space.

Definition 1.2. A state space 𝒮 is a convex compact subset of a real finite-dimensional
vector space 𝑉 .

The extreme points of a state space 𝒮 are called pure states. All other states are
called mixed states.

Suppose that a state space 𝒮 is 𝑑-dimensional, i.e., that the dimension of the affine
hull dim(aff(𝒮)) equals 𝑑. Then it is possible to embed 𝒮 in a (𝑑 + 1)-dimensional
real vector space 𝑉 in such a way that 𝒮 is a compact base for a closed generating
proper convex cone 𝑉+. A convex cone 𝐶 ⊆ 𝑉 is a subset of a vector space 𝑉 for
which 𝐶+𝐶 ⊆ 𝐶 and 𝑎𝐶 ⊆ 𝐶 for all 𝑎 ∈ R+. A cone is proper if 𝐶∩(−𝐶) = {0},
and generating if span(𝐶) = 𝑉 . A set𝐵 ⊂ 𝐶 is a base for𝐶 if for every 𝑥 ∈ 𝐶∖{0}
there exists a unique 𝑏 ∈ 𝐵 and a number 𝛽 > 0 such that 𝑥 = 𝛽𝑏. A partial order
on 𝑉 is induced by the proper cone 𝑉+: 𝑥 ≥𝑉+

𝑦 if and only if 𝑥− 𝑦 ∈ 𝑉+. Usually
the subscript in ≥𝑉+

is omitted if there is no risk of confusion. With this partial order
we can express the state space 𝒮 as

𝒮 = {𝑥 ∈ 𝑉 |𝑥 ≥ 0, 𝑢(𝑥) = 1} , (1)
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where 𝑢 is a strictly positive functional on 𝑉 . Actually, 𝑢 is a very specific functional,
which we will define properly a bit later.

Example 1.3. In quantum mechanics the states with the least amount of uncertainty,
or the pure states, are given by unit vectors on a complex Hilbert space ℋ. The
linear operator associated with a pure state 𝜙 ∈ ℋ is the one-dimensional projection
|𝜙⟩⟨𝜙|. Bounded linear operators on ℋ are denoted with ℒ(ℋ). As mixtures of states
are also considered states, the state space associated with ℋ is

𝒮(ℋ) = {𝜚 ∈ ℒ𝑠(ℋ) | 𝜚 ≥ 0, tr [𝜚] = 1} ,

where the selfadjoint operators acting on ℋ are denoted with ℒ𝑠(ℋ). The selfadjoint
operators form a real vector space, and the partial order on ℒ𝑠(ℋ) is induced by
the proper cone of positive semidefinite operators on ℋ. The elements of 𝒮(ℋ) are
often called density operators. Throughout this thesis Hilbert spaces are assumed to
be finite-dimensional.

The simplest kind of measurements have binary outcomes, i.e. they answer ‘yes-
no’ questions. These kinds of measurements are described by effects, which are
defined as affine functionals and which assign probabilities to states in measurements
with binary outcomes.

Definition 1.4. Let 𝒮 be a state space. Then the set of effects ℰ(𝒮) consists of all
affine functionals 𝑒 : 𝒮 → [0, 1], i.e., 0 ≤ 𝑒(𝑠) ≤ 1 for all 𝑠 ∈ 𝒮 and

𝑒(𝜆𝑠1 + (1− 𝜆)𝑠2) = 𝜆𝑒(𝑠1) + (1− 𝜆)𝑒(𝑠2) (2)

for all 𝑠1, 𝑠2 ∈ 𝒮 and 𝜆 ∈ [0, 1].

For any 𝑠 ∈ 𝒮 and 𝑒 ∈ ℰ(𝒮) the number 𝑒(𝑠) is interpreted as the probability
of detecting an outcome described by the effect 𝑒 when 𝑠 was prepared. The con-
vex combination preserving property in Equation (2) means that the probability of a
‘yes-no’ event can be constructed by considering the probability of the event in the
individual elements of a mixture. Typically an effect 𝑒 is associated with the ‘yes’
outcome. The probability of the ‘no’ outcome, which is described by the effect 𝑢−𝑒,
is naturally given by 1− 𝑒(𝑠).

Throughout this thesis we assume the no-restriction hypothesis to hold true,
whereby we consider all valid affine functionals to be physical effects [23]. This
allows us to always identify an operational theory by its state space.

Suppose that 𝒮 is a compact base for a closed generating proper convex cone
𝑉+. Consider an element 𝛼𝑠 ∈ 𝑉+, where 𝛼 ∈ [0, 1] and 𝑠 ∈ 𝒮. The number
𝛼 can be interpreted as the probability of successfully preparing 𝑠 in an imperfect
preparation procedure, so that the element 𝛼𝑠 can be taken to be a subnormalized
state. In particular, the probability of detecting an event described by any effect
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when nothing is prepared should be zero, so that 𝑒(0𝑠) = 𝑒(0) = 0 for all 𝑠 ∈ 𝒮.
This allows us to fix an origin in ℰ(𝒮), so that the effects can be considered as linear
functionals, i.e., elements of the dual space 𝑉 * of all linear functionals on 𝑉 . In this
extension the effects can be defined as

ℰ(𝒮) = {𝑒 ∈ 𝑉 * | 𝑜 ≤ 𝑒 ≤ 𝑢} = 𝑉 *
+ ∩ (𝑢− 𝑉 *

+), (3)

where 𝑉 *
+ = {𝑒 ∈ 𝑉 * | 𝑒(𝑥) ≥ 0 ∀𝑥 ∈ 𝑉+} is the dual cone of 𝑉+ and 𝑜, 𝑢 are the

zero and unit effects, respectively, defined as 𝑜(𝑠) = 0 and 𝑢(𝑠) = 1 for all 𝑠 ∈ 𝒮.
An effect is called a pure effect if it is an extreme point of the (convex) set ℰ(𝒮).

However, effects do not have the analogous concept of subnormalization, i.e., a sub-
normalized effect is still an effect. Taking into account that effects can be scaled,
we call an effect 𝑒 indecomposable if 𝑒 = 𝑓 + 𝑔 implies that 𝑓 = 𝛼𝑒 and 𝑔 = 𝛽𝑒

for some weights 𝛼, 𝛽, i.e., the effects 𝑓, 𝑔 are proportional to 𝑒. All effects can be
decomposed into a finite sum of indecomposable effects [24]. The indecomposable
effects, together with the pure effects, form the extreme rays of the dual cone 𝑉 *

+.
An observable in general probabilistic theories is a collection of measurement

outcomes, each of which is associated with a corresponding effect.

Definition 1.5. Let 𝒮 be a state space and ℰ(𝒮) the corresponding set of effects. A
mapping A : 𝑥 ↦→ A𝑥 from a finite outcome set Ω to ℰ(𝒮) is called an observable if

∑︁

𝑥∈Ω
A𝑥(𝑠) = 1 (4)

for all states 𝑠 ∈ 𝒮.

Example 1.6. In quantum mechanics the set of affine mappings from 𝒮(ℋ) to the
interval [0, 1] can be shown [22] to be isomorphic to the set

ℰ(ℋ) = {𝐸 ∈ ℒ𝑠(ℋ) | 0 ≤ 𝐸 ≤ 1} . (5)

That is, an effect 𝑒 ∈ ℰ(𝒮(ℋ)) is mapped to a positive unit-bounded operator by
a mapping defined by the relation 𝑒(𝜚) = tr [𝜚𝐸]. A quantum mechanical observ-
able consisting of a mapping from a set of outcomes to effects is called a positive
operator-valued measure, or a POVM.

Transformations of states are described by linear mappings.

Definition 1.7. Let 𝑆 ⊂ 𝑉+ ⊂ 𝑉 and 𝑆′ ⊂ 𝑉 ′
+ ⊂ 𝑉 ′ be two state spaces. A

mapping 𝒩 : 𝑉 → 𝑉 ′ is an operation (channel) if it is linear, 𝒩 (𝑥) ∈ 𝑉 ′
+ and

𝑢′(𝒩 (𝑥)) ≤ 𝑢(𝑥) (𝑢′(𝒩 (𝑥)) = 𝑢(𝑥)) for all 𝑥 in 𝑉+.

The number 𝑢′(𝒩 (𝑥)) can be interpreted as the probability that the operation de-
scribed by the linear mapping 𝒩 was successful. That is, it is not guaranteed that ev-
ery operation is successful. However, a channel always transforms states into states,

8



Operational quantum mechanics

so the action of a channel is deterministic in this sense. Throughout this thesis it is
assumed that a state is always discarded after a measurement. However, sometimes
it is desired that a notion of a “post-measurement” state exists so that subsequent
measurements and operations can be attempted. In this case the use of instruments is
required [22]. Simply put, an instrument is a mapping from an outcome set to a set
of operations.

Example 1.8. In quantum mechanics the composite states of subsystems 𝐴 and 𝐵
are defined in the tensor product ℋ𝐴 ⊗ℋ𝐵 , where ℋ𝐴 and ℋ𝐵 describe the subsys-
tems 𝐴 and 𝐵, respectively. It is not enough for a quantum mechanical operation to
be positive, i.e., it is not enough that a linear mapping 𝒩 : 𝒯 (ℋ) → 𝒯 (ℋ) is trace
nonincreasing, where 𝒯 (ℋ) denotes the trace class operators on ℋ. For instance, it
may happen that a mapping 𝒩 : 𝒯 (ℋ𝐴) → 𝒯 (ℋ𝐴) maps every state in 𝒮(ℋ𝐴) to
a valid state, but the mapping 𝒩𝐴 ⊗ ℐ𝐵 : 𝒯 (ℋ𝐴 ⊗ ℋ𝐵) → 𝒯 (ℋ𝐴 ⊗ ℋ𝐵), where
ℐ𝐵 is the identity operator on ℋ𝐵 , might not be positive. Therefore for a quantum
mechanical operation it is required that the extension 𝒩𝐴 ⊗ ℐ𝐵 : 𝒯 (ℋ𝐴 ⊗ ℋ𝐵) →
𝒯 (ℋ𝐴 ⊗ℋ𝐵) is positive for all finite-dimensional ℋ𝐵 . This property is called com-
plete positivity.

As a last consideration on GPTs we should discuss how composite systems are
described in them. The mathematical structure of composite systems should be op-
erationally motivated. Based on empirical information on nature, we can limit the
discussion to composite systems that obey the principles of non-signalling and lo-
cal tomography. The non-signalling principle states that composite systems should
not allow faster-than-light communication between distant parties. i.e., the marginal
probability distribution for outcomes on one subsystem should not be affected by
measurements on another subsystem. The principle of local tomography is a bit
more controversial 1. It posits that any joint state can be completely and uniquely
determined by local measurements on individual subsystems. Under these princi-
ples it can be shown [26; 27] that the joint state space 𝒮𝐴𝐵 of subsystems given by
𝑆𝐴 ⊂ 𝑉 𝐴

+ ⊂ 𝑉 𝐴 and 𝑆𝐵 ⊂ 𝑉 𝐵
+ ⊂ 𝑉 𝐵 can be considered as a subset on the tensor

product 𝑉 𝐴 ⊗ 𝑉 𝐵 .
Even though we have now fixed that the joint state space 𝒮𝐴𝐵 should live in the

vector space 𝑉 𝐴 ⊗ 𝑉 𝐵 , it turns out there is more than one way in which the cone of
subnormalized states whose base 𝒮𝐴𝐵 is can be formed, and there does not appear
to exist a strong operational motivation to choose one over another. The first way in
which the composite state space can be formed is with the so-called minimal tensor
product cone

(︀
𝑉 𝐴 ⊗min 𝑉

𝐵
)︀
+

which consists of all positive linear combinations of
products of positive elements.

1This principle is controversial because composite systems can be formed without it [23; 25]. How-
ever, this principle is obeyed by standard quantum mechanics.
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Definition 1.9. Let 𝑆𝐴 ⊂ 𝑉 𝐴
+ ⊂ 𝑉 𝐴 and 𝑆𝐵 ⊂ 𝑉 𝐵

+ ⊂ 𝑉 𝐵 be two state spaces. The
set

𝒮𝐴 ⊗min 𝒮𝐵 =

{︃∑︁

𝑖

𝜆𝑖𝑠
𝐴
𝑖 ⊗ 𝑠𝐵𝑖

⃒⃒
⃒⃒ ∀𝑖 : 𝑠𝐴𝑖 ∈ 𝒮𝐴, 𝑠𝐵𝑖 ∈ 𝒮𝐵, 𝜆𝑖 ≥ 0,

∑︁

𝑖

𝜆𝑖 = 1

}︃

is called the minimal state space (of the composite system consisting of subsystems
𝐴 and 𝐵), and it forms the compact base for the cone

(︀
𝑉 𝐴 ⊗min 𝑉

𝐵
)︀
+

.

The operational motivation behind the minimal state space is that it should be
possible to prepare states independently, i.e., mixtures of product states should be
valid states. However, it would be equally valid to insist states be normalized ele-
ments on product effects. This leads to the maximal tensor product cone, defined as(︀
𝑉 𝐴 ⊗max 𝑉

𝐵
)︀
+
:=
(︀(︀
𝑉 𝐴
)︀* ⊗min

(︀
𝑉 𝐵
)︀*)︀*

+
.

Definition 1.10. Let 𝑆𝐴 ⊂ 𝑉 𝐴
+ ⊂ 𝑉 𝐴 and 𝑆𝐵 ⊂ 𝑉 𝐵

+ ⊂ 𝑉 𝐵 be two state spaces.
The set

𝒮𝐴 ⊗max 𝒮𝐵 =

{︂
𝑠 ∈ 𝑉 𝐴 ⊗ 𝑉 𝐵

⃒⃒
⃒⃒ (𝑢𝐴 ⊗ 𝑢𝐵)(𝑠) = 1, (𝑒𝐴 ⊗ 𝑒𝐵)(𝑠) ≥ 0

∀ 𝑒𝐴 ∈ ℰ(𝒮𝐴), 𝑒𝐵 ∈ ℰ(𝒮𝐵)

}︂

is called the maximal state space (of the composite system consisting of subsystems
𝐴 and 𝐵), and it forms the compact base for the cone

(︀
𝑉 𝐴 ⊗max 𝑉

𝐵
)︀
+

.

Clearly 𝒮𝐴 ⊗min 𝒮𝐵 ⊆ 𝒮𝐴 ⊗max 𝒮𝐵 . It has been shown that the minimal and
maximal state spaces are equivalent only if one of the state spaces is a simplex [28].
Otherwise the proper cone of joint states has to be determined, but generally speaking
any positive proper cone 𝑉 𝐴𝐵

+ ⊂ 𝑉 𝐴⊗𝑉 𝐵 that satisfies
(︀
𝑉 𝐴 ⊗min 𝑉

𝐵
)︀
+
⊆ 𝑉 𝐴𝐵

+ ⊆(︀
𝑉 𝐴 ⊗max 𝑉

𝐵
)︀
+

can be considered to be a valid cone of subnormalized states for
the composite system of 𝐴 and 𝐵.

Example 1.11. In quantum mechanics a selfadjoint operator 𝑊 ∈ ℒ𝑠(ℋ𝐴 ⊗ ℋ𝐵)

is called an entanglement witness if ⟨𝜓 ⊗ 𝜙|𝑊𝜓 ⊗ 𝜙⟩ ≥ 0 for all factorized vec-
tors 𝜓 ⊗ 𝜑 ∈ ℋ𝐴 ⊗ ℋ𝐵 but 𝑊 is not positive [22]. It is then clear that by scal-
ing the operator 𝑊 appropriately so that tr [𝑊 ′] = 1, 𝑊 ′ = 𝑊

tr[𝑊 ] (the trace of
𝑊 is positive), the operator 𝑊 ′ is in fact an element of the maximal state space
𝒮(ℋ𝐴)⊗max 𝒮(ℋ𝐵). Since 𝑊 ′ is not positive it is not an element of 𝒮(ℋ𝐴 ⊗ℋ𝐵)

and therefore 𝒮(ℋ𝐴)⊗min 𝒮(ℋ𝐵) ⊊ 𝒮(ℋ𝐴 ⊗ℋ𝐵) ⊊ 𝒮(ℋ𝐴)⊗max 𝒮(ℋ𝐵) as the
state space 𝒮(ℋ𝐴 ⊗ ℋ𝐵) does nevertheless contain some entangled states and so it
is not equivalent to the minimal tensor product 𝒮(ℋ𝐴)⊗min 𝒮(ℋ𝐵).
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Although most of the results throughout this thesis can be considered without
specifying the underlying theory, there are two classes of theories that are often con-
sidered as examples. Actually these classes also form the only “physical” theories,
and while other theories also exist, all other theories can be thought of as toy the-
ories or backup theories in case some of the postulates of quantum mechanics ever
fail. Let us now define the two classes of physical theories.

Example 1.12 (Operational classical theory). Although there exists various notions
of classicality, a state space is said to be classical if and only if every state has a
unique convex decomposition into pure states. As a compact convex set this means
that a classical state space should be a simplex, as simplices are the only sets that
satisfy this requirement [29]. Some of the first simplices are a point, a line segment
(the bit), a triangle (the trit) and a tetrahedron.

Suppose that a classical state space is 𝑑-dimensional, or a 𝑑 − 1-simplex. We
denote this state space with 𝒮𝑐𝑙

𝑑 . The cone of subnormalized states and the set of
effects are defined as before. Notably the extremal effects are the indecomposable
effects which map different pure states to probability one, together with the zero and
unit effects. Essentially this means that a classical theory only has a single measure-
ment, namely the measurement that distinguishes pure states with certainty. All of
the other measurements in classical theory are post-processings of the distinguishing
measurement. The joint state space of two classical state spaces is defined by the
minimal tensor product. The set of channels in a classical theory can be shown to
coincide with pre- and post-processings of preparations and outcomes [19].

Example 1.13 (Operational quantum theory). Operational quantum theory is defined
by fixing a set of Hilbert spaces {ℋ𝐴,ℋ𝐵, . . .}. Each Hilbert space ℋ𝐴 describes
a class of physical systems whose states are defined in 𝒮(ℋ𝐴). A 𝑑-dimensional
quantum state space is denoted with 𝒬𝑑. A two-dimensional quantum system is
called a qubit, a three-dimensional a qutrit, while a general 𝑑-dimensional quantum
system is called a qudit. Composite systems are described by the tensor product of
Hilbert spaces, i.e., a state of a composite system of 𝐴 and 𝐵 is described by a state
in 𝒮(ℋ𝐴⊗ℋ𝐵). Measurements are described by POVMs and each effect of a POVM
maps quantum states to probabilities via the Born rule. Transformations of physical
systems are described by channels, or completely positive trace preserving maps.

Prepare-and-measure scenarios

In the basic operational setting two parties, Alice and Bob, are trying to establish a
communication channel between them. Suppose Alice possesses a device that can
prepare quantum states with 𝑛 different labels. Then we denote with {𝜚𝑖}𝑛𝑖=1 the set
of states that Alice can prepare. In the case of generic preparations in an arbitrary
operational theory the symbols 𝑠 or 𝑃 are typically used. Communication between
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Alice and Bob consists of Alice transmitting a state of some physical medium to
Bob through a channel. In a typical prepare-and-measure setting the channel can
be thought of as part of the preparation. Throughout this thesis we will implicitly
assume the channel to be the identity channel. Upon receiving the state sent by Alice,
Bob will perform a measurement on the state, after which the state is discarded. In
quantum theory measurements are described by POVMs. A POVM with (discrete)
outcome set {1, 2, . . . , 𝑘} is a collection M = {M(𝑖)}𝑘𝑖=1 of positive effects M(𝑖) ≥ 0

such that
∑︀𝑘

𝑖=1M(𝑖) = 1. The probability of obtaining outcome 𝑖 in a measurement
of M on a state 𝜚 is given by the Born rule:

𝑝(𝑖|𝜚,M) = tr [𝜚M(𝑖)] . (6)

Outcome statistics of several measurements are often collected into a data table,
or a behavior, 𝑝(𝑘|𝜚𝑖,M𝑗) ≡ tr [𝜚𝑖M𝑗(𝑘)]. Behaviors can be defined in any opera-
tional theory. To distinguish a general operational setting from quantum theory we
denote preparations with 𝑃 and measurements with 𝑀 in a general operational the-
ory, while 𝜚 and M are always associated with quantum theory. The measurements
in 𝑝(𝑘|𝑃𝑖,𝑀𝑗) are naturally defined in the same operational theory as the prepara-
tions. Sometimes behaviors are also used to store relative frequencies of different
outcomes in a sequence of measurements. In this case the term data table is often
used to specify that the probabilities are not predicted by theory but are given by an
experiment. The same notation is used for behaviors and data tables but the origin of
probabilities should always be clear from context.

1.2 Distinguishability of states
After Alice and Bob have established a communication channel between them, the
most basic question regarding communication is the following: how many distinct
messages can Alice send to Bob? A definition is in order.

Definition 1.14. A set of preparations {𝑃𝑖}𝑛𝑖=1 is distinguishable if there exists a
measurement 𝑀 such that:

∀𝑖 : 𝑝(𝑖|𝑃𝑖,𝑀) = 1. (7)

In quantum mechanics it is well-known that only orthogonal states can be distin-
guished with certainty in a single measurement.

The number of distinguishable states can be used as the definition for the oper-
ational dimension of the related operational theory. As an example, bits and qubits
have operational dimension 𝑑𝑜𝑝 = 2 while trits and qutrits have 𝑑𝑜𝑝 = 3. In general,
a 𝑑-dimensional quantum system is analogous to a classical unit of information with
base 𝑑, i.e., approximately log2 𝑑 bits of information.
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Figure 1. State space of the qubit, the Bloch sphere. Antipodal points on the Bloch sphere define
pairs of orthogonal states.

The state space of qubits is the Bloch sphere, i.e., a three-dimensional ball with
radius 1, as illustrated in Figure 1. Three real numbers are needed to encode the state
of a qubit. Each point on the surface of the Bloch sphere represents a distinct pure
state, i.e., there is an uncountable number of different pure qubit states. How is it that
in a single measurement of any POVM at most two qubit states can be distinguished
with certainty? There are several possible ways to answer this question.

The first possible answer is that a qubit is a two-level system by definition. The
Hilbert space of a qubit is two-dimensional and therefore there can be at most two
orthogonal pure states. This is admittedly a bit anticlimactic. An alternative answer
comes in the form of a famous theorem by Holevo [9].

Theorem 1.15. Suppose Alice has a random variable 𝑋 with values {1, 2, . . . , 𝑛}
and corresponding probabilities {𝑝1, 𝑝2, . . . , 𝑝𝑛}. Upon obtaining a value 𝑥 ∈ 𝑋

Alice will prepare a quantum state 𝜚𝑥 from the set {𝜚𝑖}𝑛𝑖=𝑖 and send it to Bob. Let M
be any POVM with an outcome set 𝑌 . After Bob has performed a measurement of
M, the accessible information on 𝑋 given an outcome 𝑦 ∈ 𝑌 is bounded from above
by:

𝐼(𝑋 : 𝑌 ) ≤ 𝑆(𝜚)−
∑︁

𝑖

𝑝𝑖𝑆(𝜚𝑖), (8)

where

𝐼(𝑋 : 𝑌 ) =
∑︁

𝑦∈𝑌

∑︁

𝑥∈𝑋
𝑃(𝑋,𝑌 )(𝑥, 𝑦) log

(︂
𝑃(𝑋,𝑌 )(𝑥, 𝑦)

𝑃𝑋(𝑥)𝑃𝑌 (𝑦)

)︂
(9)
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is the mutual information of random variables 𝑋 and 𝑌 , 𝑃 (𝑋,𝑌 ) is the joint prob-
ability mass function of 𝑋 and 𝑌 , 𝑃𝑋 and 𝑃𝑌 are the corresponding marginal
probability mass functions, 𝑆(𝜚) = −tr [𝜚 log 𝜚] is the von Neumann entropy and
𝜚 =

∑︀
𝑖 𝑝𝑖𝜚𝑖.

The choice of base for the logarithm in Equation (9), and for the von Neumann
entropy, defines the unit of information. Throughout this thesis the choice of base 2
is used, which gives the unit of information as bits. Other common choices are the
natural logarithm and base 10, which give the units nats and dits, respectively. The
quantum state of maximum entropy is the maximally mixed state, i.e. 1

𝑑1 for states in
𝒮(ℋ𝑑). For qubits the maximally mixed state has an entropy of one bit. Pure states
have the minimum entropy of zero bits. Therefore the accessible information on any
random variable 𝑋 given an outcome of a qubit measurement is at most one bit.

Holevo’s theorem gives an information-theoretical explanation of why only two
qubit states can be distinguished in a single measurement. A qubit is a quantum
system which can transmit at most one bit of information. If more than two qubit
states could be distinguished, the amount of information they could transmit would
be greater than one bit. In some sense this is surprising as three real numbers are
needed to specify an arbitrary quantum state on the Bloch sphere. Therefore an
arbitrary amount of information can be encoded into a qubit in a superposition state,
but no more than one bit of this information can be retrieved in a single measurement.

1.3 Tomography in quantum mechanics
It is impossible to identify the state of an unknown quantum state in a single mea-
surement without prior knowledge on the preparation procedure [22]. Suppose Bob’s
measurement is described by the POVM M = {|0⟩⟨0|, |1⟩⟨1|} with outcome set
{0, 1}, where {|0⟩, |1⟩} is an orthonormal basis for the Hilbert space ℋ2. If Alice
prepares a superposition state 𝛼|0⟩+𝛽|1⟩, where 𝛼 and 𝛽 are complex numbers with
|𝛼|2 + |𝛽|2 = 1, the probability for Bob to obtain the outcome 0 equals |𝛼|2. In
other words there is an infinite number of states that give a nonzero probability for
outcome 0. Therefore, upon obtaining outcome 0 after performing a measurement
on an unknown state, it is impossible for Bob to conclude anything else except that
the probability of obtaining outcome 0 was not zero.

Suppose Bob receives many copies of a 𝑑-dimensional unknown quantum state
𝜚 and he collects the outcome statistics of a POVM M into a data table 𝑝(𝑘|𝜚,M).
Suppose also that M is minimal and informationally complete so that the effects of
M span ℒ𝑠(ℋ) and M has exactly 𝑑2 elements, i.e., the effects of M form a basis
for ℒ𝑠(ℋ). In this case it is possible to write every selfadjoint operator, including
𝜚, as a linear combination of the effects of M. Let 𝜚 =

∑︀
𝑥 𝑟𝑥M(𝑥) and define

𝒰𝑥𝑦 ≡ tr [M(𝑥)M(𝑦)]. Then the unknown quantum state 𝜚 can be reconstructed
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from the data table 𝑝(𝑘|𝜚,M) with the reconstruction formula:

𝑟𝑦 =
∑︁

𝑥

𝒰−1
𝑦𝑥 𝑝(𝑥|𝜚,M). (10)

The reconstruction formula is a naive approach to quantum tomography. It
is overly optimistic that enough data has been gathered such that the data table
𝑝(𝑘|𝜚,M) is a good representation of the outcome probabilities of M in measure-
ments of 𝜚. Outcome statistics are always based on a finite amount of data in any
real experiment. Suppose Bob has access to 𝑁 copies of 𝜚 and he performs a mea-
surement of M on each one. The best he can do is set 𝑝(𝑘|𝜚,M) = 𝑁𝑘/𝑁 , where 𝑁𝑘

is the frequency of outcome 𝑘 among all 𝑁 measurement runs, as this is the proba-
bility that most likely gives rise to the observed frequencies. This often leads to an
unphysical reconstructed state, i.e. a “state” with small negative eigenvalues, simply
due to the fact that there was not enough data to determine the correct behavior [30].

A better approach to tomography, although still somewhat problematic, is the
maximum likelihood estimate (MLE) [31; 32; 33]. Instead of trying to directly re-
construct an unknown quantum state from a data table, the MLE tries to estimate
which quantum state is the most likely given a sequence of outcomes �⃗�. The condi-
tional probability of observing an outcome sequence �⃗� = 𝑘1, . . . , 𝑘𝑁 given that the
unknown state was 𝜚 is easily calculated:

𝑝(�⃗�|𝜚) =
𝑁∏︁

𝑗=1

𝑝(𝑘𝑗 |𝜚) =
𝑛∏︁

𝑘=1

𝑝(𝑘|𝜚)𝑁𝑘 , (11)

where 𝑝(𝑘|𝜚) = tr [𝜚M(𝑘)] and 𝑁𝑘 is the absolute frequency of outcome 𝑘. The dif-
ferent measurement runs are assumed to be independent so that the order of outcomes
does not matter. The likelihood function which describes the conditional probability
that the unknown state was 𝜚 given that the outcome sequence �⃗� = 𝑘1, . . . , 𝑘𝑁 was
observed is given by

ℓ(𝜚|⃗𝑘) = 1

𝑁
log 𝑝(�⃗�|𝜚) =

𝑛∑︁

𝑘=1

𝑁𝑘

𝑁
log 𝑝(𝑘|𝜚). (12)

By maximizing the likelihood function over 𝒮(ℋ) we obtain the maximum likeli-
hood estimate, or the MLE, of which state was the most probable given an outcome
sequence:

𝜚 = arg max
𝜚∈𝒮(ℋ)

ℓ(𝜚|⃗𝑘). (13)

The MLE has a very compelling and intuitive logic behind it. For that reason it is
one of the more popular estimation methods in statistical inference and by extension
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in quantum tomography. However, the MLE has a significant drawback worth point-
ing out. In many cases the MLE estimates that the most probable quantum state lies
on the boundary of 𝒮(ℋ), i.e., the most probable state has at least one zero eigen-
value. This is hard to justify based on finite statistics as it would imply that some
measurement outcomes would have a zero probability of occurring. A full-rank es-
timate would in most cases be preferable, and some estimates are designed with this
in mind. Examples of such estimates would be, for instance, Bayesian mean esti-
mation [34] and maximum entropy estimation [35]. Moreover, it must be said that
finding the MLE is not a trivial task numerically. The likelihood function might have
many local maxima, and therefore iterative methods are needed to find the global op-
timum. The diluted maximum-likelihood algorithm is an example of a method with
good convergence properties for the MLE [36].

In conclusion, quantum tomography is a process where the goal is to estimate
an unknown quantum state based on finite statistics of a fixed set of measurements.
The reconstruction of the unknown quantum state can be attempted directly from the
observed statistics through the reconstruction formula given by Eq. (10). However,
the direct reconstruction often gives an unphysical result. Often it is best to use
an estimation method to obtain an estimate for the unknown quantum state. The
estimation method should be chosen with specific goals in mind. For instance, if a
full-rank estimate is desired, the MLE cannot be used. However, the MLE remains
a popular choice because of its intuitive logic and the existence of algorithms with
good convergence properties.

So far we have explained some of the most fundamental topics in quantum the-
ory: distinguishability of quantum states, information transmission and quantum to-
mography. In the remaining sections of this chapter we will explore entanglement
and contextuality as examples of nonclassical features of quantum mechanics.

1.4 Entanglement
The state of a composite quantum system 𝜚𝐴𝐵 of two subsystems is represented by
a quantum state in the tensor product space of the individual Hilbert spaces. Such a
state is called separable if and only if the composite quantum state can be written as
a convex sum of product states:

𝜌𝐴|𝐵 =
∑︁

𝑖

𝑝𝑖𝜌
(𝑖)
𝐴 ⊗ 𝜌

(𝑖)
𝐵 , (14)

where 𝑝𝑖’s form a probability distribution, 𝜌(𝑖)𝐴 ’s are density operators on the Hilbert
space of system 𝐴 and 𝜌(𝑖)𝐵 ’s are density operators on the Hilbert space of system 𝐵.
If the state of a composite quantum system is not separable then it is entangled. The
following example shows that entangled states do in fact exist.
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Example 1.16. Let ℋ = ℋ2 ⊗ℋ2 and

𝜙± =
1√
2
(|01⟩ ± |10⟩) , (15)

𝜓± =
1√
2
(|00⟩ ± |11⟩) , (16)

where the vectors {|0⟩, |1⟩} form a basis for ℋ2. The pure states defined by the vec-
tors 𝜙± and 𝜓± are generally referred to as the Bell states, or maximally entangled
states. Suppose that any of the vectors 𝜙± or 𝜓±, for instance 𝜙+, can be written as a
product 𝜙+ = 𝜑⊗𝜉, where 𝜑 = 𝛼0|0⟩+𝛼1|1⟩ and 𝜉 = 𝛽0|0⟩+𝛽1|1⟩. It follows that
𝜙+ = 𝛼0𝛽0|00⟩+𝛼0𝛽1|01⟩+𝛼1𝛽0|10⟩+𝛼1𝛽1|11⟩. This means that the coefficient
of |00⟩ times the coefficient of |11⟩ has to be equal to the coefficient of |01⟩ times the
coefficient of |10⟩ in order for 𝜙+ to be of the product form 𝜑 ⊗ 𝜉, which is a clear
contradiction with Equation (15). Therefore all four Bell states are entangled.

Entanglement is a phenomena that happens when the states of two or more sub-
systems become intertwined in such a way that the entire system cannot be accu-
rately described by the properties of the individual subsystems. Moreover, the state
of a composite system can become entangled in several different ways [37]. Suppose
there exists three distinct systems: 𝐴,𝐵 and𝐶. The combined state is fully separable
if it can be written as

𝜚𝐴|𝐵|𝐶 =
∑︁

𝑖

𝑝𝑖𝜚
(𝑖)
𝐴 ⊗ 𝜚

(𝑖)
𝐵 ⊗ 𝜚

(𝑖)
𝐶 . (17)

If the combined system is not fully separable, there must exist some entanglement
in the system. The simplest form of entanglement is so-called level-I entanglement
that forbids the combined state from being partitioned in a certain way. The possible
bipartitions for a tripartite state are as follows:

𝜚𝐴|𝐵𝐶 =
∑︁

𝑖

𝑝𝑖𝜚
(𝑖)
𝐴 ⊗ 𝜚

(𝑖)
𝐵𝐶 , 𝜚𝐵|𝐴𝐶 =

∑︁

𝑖

𝑝𝑖𝜚
(𝑖)
𝐵 ⊗ 𝜚

(𝑖)
𝐴𝐶 (18)

𝜚𝐶|𝐴𝐵 =
∑︁

𝑖

𝑝𝑖𝜚
(𝑖)
𝐶 ⊗ 𝜚

(𝑖)
𝐴𝐵, 𝜚𝐴𝐵𝐶 =

∑︁

𝑖

𝑝𝑖𝜚
(𝑖)
𝐴𝐵𝐶 . (19)

The state 𝜚𝐴𝐵𝐶 for which no partition is allowed is called genuinely tripartite entan-
gled. States that are not genuinely tripartite entangled can always be divided to some
separable subsystems. Some states can be divided into separable subsystems in more
than one way. For instance, there exists tripartite states that can be divided according
to all bipartitions 𝜚𝐴|𝐵𝐶 , 𝜚𝐵|𝐴𝐶 and 𝜚𝐶|𝐴𝐵 but yet are not fully separable [38]. The
term delocalized entanglement is sometimes used when the state can be partitioned
in more than one way.
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Level-I entanglement gives a clear picture how a composite system can be di-
vided into separable subsystems. However, the state of a quantum system can be en-
tangled in a way that it is not genuinely tripartite entangled and yet the state cannot
be divided into any partitions according to level-I characterization of entanglement.
For instance, the state of a quantum system could be written as a convex sum

𝜚𝐴𝐵𝐶 = 𝑝1𝜚𝐴|𝐵𝐶 + 𝑝2𝜚𝐵|𝐴𝐶 + 𝑝3𝜚𝐶|𝐴𝐵 (20)

where the state is not genuinely tripartite entangled and yet the state cannot be di-
vided into separable subsystems according to a single bipartition. This kind of en-
tanglement is called level-II entanglement.

Detecting entanglement is a difficult task. In fact, no general method to determine
whether a quantum state is entangled has been presented. Moreover, many different
approaches for detecting entanglement exist. We will introduce two methods that are
commonly used.

The first approach is to attempt to find out whether a given quantum state is
entangled based on some entanglement measure [39]. An additional goal is to find
out the state’s entanglement structure, i.e., the partitions according to which the state
is entangled. A crucial observation is that this approach assumes the quantum state
is known. That is, either the question of whether the quantum state is entangled
concerns a purely mathematical quantum state, or the quantum state is known to a
very high degree through tomography. The point that the quantum state has to be
known to a very high degree cannot be stressed enough. The set of separable states
is clearly convex. If the true quantum state lies on the boundary of the convex set of
separable states, a minuscule disturbance in the outcome statistics could be enough
to make the state appear entangled.

Once the quantum state is known, the question of separability can be resolved
by finding a representation for the state as a convex sum of product states. Un-
fortunately, this is a very difficult task and no necessary and sufficient efficiently
checkable criteria to test separability exist. The most common test is to calculate the
so-called partial transpose and check if the partial transpose is positive. This test is
known as the positive partial transpose (PPT) criterion. A negative partial transpose
is a sufficient condition for the state to be entangled [40]. This can be demonstrated
rather straightforwardly. Let us start with the definition of the partial transpose.

Suppose 𝑆 ∈ ℒ(ℋ) is defined in a tensor product space of two individual Hilbert
spaces of finite dimension, ℋ = ℋ𝐴 ⊗ ℋ𝐵 . Then the partial transpose of 𝑆 with
respect to the subsystem 𝐴, denoted 𝑆𝜏𝐴 , is defined by the operator with matrix
elements

⟨𝑖𝐴, 𝑗𝐵|𝑆𝜏𝐴 |𝑘𝐴, 𝑙𝐵⟩ = ⟨𝑘𝐴, 𝑗𝐵|𝑆|𝑖𝐴, 𝑙𝐵⟩. (21)

For a bounded linear operator 𝑆 ∈ ℒ(ℋ) the trace norm is defined as ‖𝑆‖tr =

tr [|𝑆|], where |𝑆| =
√
𝑆*𝑆 is the absolute value of 𝑆. However, for a selfadjoint

18



Operational quantum mechanics

trace class operator the trace norm is equal to the sum of the absolute values of its
eigenvalues. In particular, for a state 𝜚 ∈ 𝒮(ℋ) it holds that tr [𝜚𝜏𝐴 ] = 1, and the
trace norm of 𝜚𝜏𝐴 is equal to

‖𝜚𝜏𝐴‖tr = 1 + 2

⃒⃒
⃒⃒
⃒
∑︁

𝑖

𝜇𝑖

⃒⃒
⃒⃒
⃒ ≡ 1 + 2𝒩 (𝜚), (22)

where 𝜇𝑖’s are the negative eigenvalues of 𝜚𝜏𝐴 and where we have defined the abso-
lute value of the sum of 𝜇𝑖’s to be the negativity 𝒩 (𝜚) of 𝜚.

It is straightforward to verify that the partial transpose of a separable state is
always positive. Namely, if 𝜚 =

∑︀
𝑖 𝑝𝑖𝜚

(𝑖)
𝐴 ⊗ 𝜚

(𝑖)
𝐵 , then 𝜚𝜏𝐴 =

∑︀
𝑖 𝑝𝑖𝜚

(𝑖)𝑇
𝐴 ⊗ 𝜚

(𝑖)
𝐵

which is a convex sum of positive operators. Therefore a negativity greater than zero
is a clear sign that the state is entangled. Unfortunately there exists entangled states
with zero negativity. However, for small Hilbert spaces, C2 ⊗C2 and C2 ⊗C3 to be
exact, the PPT criterion is also sufficient [41; 42].

The PPT criterion is easy to use, but its application is limited because the quan-
tum state has to be known and because entangled states with zero negativity exist.
For unknown quantum states it may be more efficient to measure an observable that
optimally gives you an answer whether the quantum state is entangled or not. Such
observables are known as entanglement witnesses.

Suppose 𝑊 ∈ ℒ𝑠(ℋ𝐴 ⊗ℋ𝐵) is an entanglement witness as defined in Example
1.11. Then 𝑊 is not positive but tr [𝜚𝐴 ⊗ 𝜚𝐵𝑊 ] ≥ 0 for all separable states. For
all states 𝜚 for which tr [𝜚𝑊 ] < 0 it is said that the entangled state 𝜚 is detected by
𝑊 . Using entanglement witnesses has the advantage that it is not necessary to do
full state tomography, as only a single observable has to be measured in the best case
scenario. However, a single entanglement witness cannot detect all entangled states.
Instead in this approach detecting entanglement becomes a question of finding a
suitable entanglement witness and measuring it. It is possible to detect all entangled
states in this way. Figure 2 depicts a schematic diagram for an entanglement witness.

1.5 Contextuality
Noncontextuality is a principle according to which systems that are operationally
indistinguishable should also be ontologically indistinguishable. To be more precise,
with noncontextuality we will refer to the notion of generalized noncontextuality
introduced by Spekkens [43]. This is not the only way noncontextuality is defined
in the literature [44; 45], but Spekkens’ generalized noncontextuality does appear
frequently in the literature, although perhaps the original notion of noncontextuality
introduced by Kochen and Specker [15] is still the most commonly seen notion.

Historically, Kochen–Specker (KS) noncontextuality was the first attempt to for-
malize the idea that there exists a concept of context which is very relevant when
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Figure 2. A depiction of an entanglement witness 𝑊 for which the expectation value tr [𝜚𝑊 ] is
nonnegative for all separable states. The separating hyperplane, as illustrated by the solid line, can
be defined by setting tr [𝜚𝑊 ] = 0.

distinguishing quantum theory from classical physical theories. However, the origi-
nal theorem by Kochen and Specker only applied to quantum theory and projective
measurements. Spekkens’ generalized noncontextuality attempts to extend the con-
cept of contextuality to arbitrary operational theories. It is worth mentioning that the
notion of noncontextuality can also be characterized in the framework of generalized
probabilistic theories [46].

In the framework of Spekkens’ generalized contextuality it is assumed that all
aspects of physical systems can be described by ontological models. That is, it is
assumed that a complete description of reality exists and that this description is at
least partly accessible to experimenters through the details laid down by a specific
ontological model. The primitives of an operational description of such a physi-
cal theory are preparation procedures, transformation procedures2 and measurement
procedures. The ontic state of a physical system is denoted typically with 𝜆, while
the state space of all possible physical configurations of physical systems is denoted
with Λ. An experimenter does not in general have access to 𝜆 upon preparing a
state. Instead an experimenter will describe the physical state of a system after a
preparation procedure 𝑃 probabilistically with a probability distribution 𝜇𝑃 .

In addition to the ontic states of physical systems, an ontological model is ex-
pected to explain the probabilities that arise in measurements. Thus each measure-
ment operator, or effect, should have a corresponding element that is specified by
the ontological model and that explains the probability of each possible outcome
in any given measurement. Thus, in a measurement of 𝑀 with an outcome set
{1, 2, . . . , 𝑛}, the probability of obtaining outcome 𝑖 following a preparation pro-

2We will not deal with transformations separately. Instead we will treat them as part of the prepara-
tion procedures.
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cedure 𝑃 is given by

𝑝(𝑖 |𝑃,𝑀) =

∫︁

Λ
𝜉𝑀 (𝑖 |𝜆)𝜇𝑃 (𝜆)𝑑𝜆,

where 𝜉𝑀 (𝑖 |𝜆) is the response function associated with outcome 𝑖 in a measurement
of𝑀 . These probabilities should always be positive and normalized so that summing
over the outcomes gives a total of one.

Two preparation procedures 𝑃1 and 𝑃2 are operationally equivalent if and only
if 𝑝(𝑖 |𝑃1,𝑀) = 𝑝(𝑖 |𝑃2,𝑀) for all measurement procedures 𝑀 and outcomes 𝑖.
Likewise, two measurement procedures 𝑀1 and 𝑀2 are operationally equivalent if
and only if 𝑝(𝑖 |𝑃,𝑀1) = 𝑝(𝑖 |𝑃,𝑀2) for all preparation procedures 𝑃 and out-
comes 𝑖. Operationally equivalent preparation and measurement procedures are de-
noted with the symbol “≃”, i.e., we write 𝑃1 ≃ 𝑃2 if the preparation procedures are
operationally equivalent.

As stated in the beginning of this section, noncontextuality is understood as
a principle according to which operationally equivalent procedures should be de-
scribed equivalently at the ontological level. For preparation procedures this means
that a noncontextual ontological model will assign the same probability distribution
to operationally equivalent preparation procedures, i.e., 𝜇𝑃1

(𝜆) = 𝜇𝑃2
(𝜆) for all

𝜆 ∈ Λ whenever 𝑃1 ≃ 𝑃2. Likewise, for measurement procedures it is understood
that a noncontextual ontological model will assign the same response functions to
operationally equivalent measurement procedures.

Let us then assume that the outcome statistics for a given number of measurement
procedures have been measured in a laboratory. Alternatively the outcome statistics
could be the predictions of some operational theory, quantum theory for instance.
Once the operational equivalences have been determined from the statistics or from
theory, the question of whether a noncontextual ontological model can be used to
explain the statistics is a problem that turns out to be solvable as a linear program
[47]. That is, having collected experimental data it is a relatively straightforward
task to check if the given data can be explained with a classical model that obeys
the principle of noncontextuality. A violation of the principle of noncontextuality
can be witnessed if it is not possible to construct a noncontextual model for a given
set of experimental data. Analogously to Bell inequalities for entanglement, the
certificate of primal infeasibility for the primal linear program can be understood
as a noncontextuality inequality [47]. Whenever an operational theory is capable of
violating a noncontextuality inequality the conclusion is that the operational theory
in question is contextual. Multiple instances where quantum mechanical systems
violate the principle of noncontextuality, either in theory or experimentally, can be
found in the literature. See e.g. [48; 49] for recent experimental tests. One example
of a theoretical violation is presented in Publication IV.

An ontological model that is not universally noncontextual in Spekkens’ gener-
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alized framework is said to be contextual. However, it turns out an ontological model
can be noncontextual in several different, nonequivalent ways. An ontological model
is measurement noncontextual if the response functions associated with operationally
equivalent measurement procedures are unique. This is taken to hold on the level of
individual outcomes, so that whenever 𝑝(𝑖 |𝑃,𝑀) = 𝑝(𝑖 |𝑃,𝑀 ′) for all 𝑃 , then
𝜉𝑀 (𝑖 |𝜆) = 𝜉𝑀 ′(𝑖 |𝜆) for all 𝜆 ∈ Λ. If an ontological model is KS noncontextual,
then it should be measurement noncontextual and outcome deterministic, i.e., the re-
sponse functions 𝜉𝑀 (𝑖 |𝜆) ∈ {0, 1} for all measurements and outcomes and for all
𝜆 ∈ Λ. An ontological model can also be noncontextual with respect to prepara-
tions, i.e., for a preparation noncontextual model it holds that 𝜇𝑃 (𝜆) = 𝜇𝑃 ′(𝜆) for
all 𝜆 ∈ Λ whenever 𝑃 ≃ 𝑃 ′.

It turns out that preparation noncontextuality is a more general notion than KS
noncontextuality as it has been shown that preparation noncontextuality implies mea-
surement noncontextuality and outcome determinism [50]. A proof of KS theorem
therefore implies that preparations should be contextual in quantum theory. Many
proofs of the KS theorem exist in the literature, see e.g. [51; 52; 53; 54]. Let us
present a simple proof of preparation contextuality from [43] to conclude this Chap-
ter.

Example 1.17. Consider the following set of density operators:

𝜚𝑎 =

[︂
1 0

0 0

]︂
, 𝜚𝐴 =

[︂
0 0

0 1

]︂
, 𝜚𝑏 =

1

4

[︂
1

√
3√

3 3

]︂

𝜚𝐵 =
1

4

[︂
3 −

√
3

−
√
3 1

]︂
, 𝜚𝑐 =

1

4

[︂
1 −

√
3

−
√
3 3

]︂
, 𝜚𝐶 =

1

4

[︂
3

√
3√

3 1

]︂
.

(23)

These are the projections onto the following vectors, respectively:
[︀
1 0

]︀
,
[︀
0 1

]︀
,[︁

1
2

√
3
2

]︁
,
[︁√

3
2 −1

2

]︁
,
[︁
1
2 −

√
3
2

]︁
and

[︁√
3
2

1
2

]︁
. It is straightforward to verify that

𝜚𝑎𝜚𝐴 = 𝜚𝑏𝜚𝐵 = 𝜚𝑐𝜚𝐶 = 0 holds. Moreover, we have to following decompositions
of the maximally mixed state:

1

2
1 =

1

2
(𝜚𝑎 + 𝜚𝐴) =

1

2
(𝜚𝑏 + 𝜚𝐵) =

1

2
(𝜚𝑐 + 𝜚𝐶)

=
1

3
(𝜚𝑎 + 𝜚𝑏 + 𝜚𝑐) =

1

3
(𝜚𝐴 + 𝜚𝐵 + 𝜚𝐶) .

(24)

Any preparation noncontextual ontological model must therefore adhere to the fol-
lowing set of restrictions for all 𝜆 ∈ Λ:

𝜇𝑎(𝜆)𝜇𝐴(𝜆) = 0, (25)

𝜇𝑏(𝜆)𝜇𝐵(𝜆) = 0, (26)

𝜇𝑐(𝜆)𝜇𝐶(𝜆) = 0, (27)
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where the orthogonality of the epistemic states follows from the perfect distinguisha-
bility of orthogonal quantum states. Additionally, denoting the epistemic state asso-
ciated with 1

21 with 𝜈(𝜆):

𝜈(𝜆) =
1

2
(𝜇𝑎(𝜆) + 𝜇𝐴(𝜆)) (28)

=
1

2
(𝜇𝑏(𝜆) + 𝜇𝐵(𝜆)) (29)

=
1

2
(𝜇𝑐(𝜆) + 𝜇𝐶(𝜆)) (30)

=
1

3
(𝜇𝑎(𝜆) + 𝜇𝑏(𝜆) + 𝜇𝑐(𝜆)) (31)

=
1

3
(𝜇𝐴(𝜆) + 𝜇𝐵(𝜆) + 𝜇𝐶(𝜆)) . (32)

These equalities follow from the fact that the corresponding mixtures of states are
all equal to the maximally mixed state, and thus indistinguishable. Therefore they
should be represented identically on the ontological level. It is now a relatively
straightforward task to derive a contradiction. Namely, consider the Equations (25)-
(27) for a fixed 𝜆 ∈ Λ. Clearly one of 𝜇𝑎 and 𝜇𝐴 must equal zero, one of 𝜇𝑏 and 𝜇𝐵
must equal zero and finally one of 𝜇𝑐 and 𝜇𝐶 must equal zero. There are 8 possible
ways to realize these restrictions, and they should be considered one by one. Assume
first that 𝜇𝑎 = 𝜇𝑏 = 𝜇𝑐 = 0. Then by Equation (31) we have that 𝜈(𝜆) = 0 for all
𝜆 ∈ Λ which is a contradiction as 𝜈(𝜆) should be a probability distribution over 𝜆.
Consider then that 𝜇𝑎 = 𝜇𝑏 = 𝜇𝐶 = 0. From Equations (30) and (31) we get that
1
2𝜇𝑐 =

1
3𝜇𝑐 for which the only solution is 𝜇𝑐 = 0 which implies again that 𝜈(𝜆) = 0

for all 𝜆.
The remaining six cases can be considered individually, but they also follow from

the symmetric layout of the states on the Bloch sphere, as illustrated in Fig 3. The
conclusion is that the maximally mixed state is unavoidably contextual in quantum
theory.
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Figure 3. Three pairs of orthogonal pure qubit states that can be used to prove preparation
contextuality for quantum theory. The maximally mixed state lies at the center.
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2 Operational hierarchy of
communication tasks

Communication is usually understood as the preparation and measurement of some
physical system. The most general way to describe communication is through black
boxes. The sender, typically Alice, has in her possession a device that can prepare
distinct states of some physical medium. The receiver, usually Bob, has a device that
produces measurement outcomes based on the input state given into the device. This
kind of setup is called a prepare-and-measure scenario.

The simplest kind of a prepare-and-measure scenario is one where Bob does not
receive any additional input besides the state sent by Alice, i.e., Bob is using a single
measurement device. This leads to the concept of communication matrices, while
the case where Bob is free to choose his measurement based on some additional
input is described with behaviors. A behavior is obviously the more general of the
two cases, but in order to analyze behaviors with the best possible detail knowledge
about communication matrices is of great importance. Thus this Chapter is dedicated
to the study of communication matrices in a theory-independent setting.

Figure 4. Basic prepare-and-measure setting. Alice prepares a state corresponding to label 𝑎,
while Bob observes outcome 𝑏 in his measurement with probability 𝑀𝑏(𝑠𝑎).
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2.1 Communication tasks
A preparation device is understood as a device that can prepare states from a state
space 𝒮. The only requirements for the abstract state space are compactness1 and
convexity – a probabilistic mixture of two or more states should always be a valid
state. Thus we always assume 𝒮 to be a convex set. The user of the preparation de-
vice, Alice, can prepare any state from the device and send it to Bob at will. Alice’s
state ensemble2 thus consists of the states the preparation device can prepare. Math-
ematically this is described as a map 𝑠 : 𝑎 ↦→ 𝑠𝑎 from a finite set of labels {1, . . . , 𝑛}
into 𝒮.

A measurement device is a device that outputs an outcome from a finite outcome
set {1, . . . ,𝑚} upon receiving an input state. We take the outcome set to be finite in
order to avoid any possible complications arising from infinite dimensional matrices
and other technicalities. Descriptions of individual outcomes, also called effects, are
given by affine functionals 𝑒 : 𝒮 → [0, 1] that map states of 𝒮 to probabilities. A
measurement is always normalized over the outcome set, i.e.,

𝑚∑︁

𝑏=1

𝑀𝑏(𝑠) = 1 (33)

for all states 𝑠 ∈ 𝒮 where 𝑀𝑏 is the effect corresponding to outcome 𝑏. This setup is
illustrated in Figure 4.

All conditional probabilities for a fixed preparation and measurement device can
be collected into an 𝑛×𝑚 communication matrix

𝐶𝑎𝑏 =𝑀𝑏(𝑠𝑎). (34)

We then say that the communication matrix 𝐶 is implemented with the pair 𝑠,𝑀 .
The matrix 𝐶 is row-stochastic because of the normalization of effects. In fact, in a
theory-independent setting we take all row-stochastic matrices to be valid communi-
cation matrices.

The difference between a communication task and a communication matrix is
largely negligible, although generally speaking the terms mean very different things.
By communication task we mean a communication setting where Alice and Bob are
trying to implement a specific prepare-and-measure scenario between them accord-
ing to some predefined criteria. A communication matrix, on the other hand, always
describes the outcome probabilities of a specific communication task. Thus we can

1Compactness means that the set should be closed and bounded.
2Typically a state ensemble also includes the prior probabilities according to which the states are

prepared. In the framework of communication tasks we choose to exclude these probabilities, and hence
the state ensemble would perhaps be more appropriately described just as an ordered set of states.
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use the two terms interchangeably in practice. The question of whether Alice and
Bob can implement a specific communication task becomes a question of whether
the corresponding communication matrix can be implemented with given resources.

One of the most important questions related to communication tasks is the fol-
lowing: if we fix the state space 𝒮, what is the set of all communication matrices
that can be implemented with states and measurements coming from the theory de-
termined by 𝒮? An additional relevant question is whether we can compare different
communication tasks in the following sense: are some communication tasks easier
to implement than others?

Let us make concrete the sets we are studying. We shall denote with 𝒞𝑛,𝑚(𝒮) the
set of all 𝑛 × 𝑚 communication matrices that have an implementation of the form
given by Eq. (34) for some pairs 𝑠,𝑀 determined by the theory 𝒮. Additionally
we take 𝒞(𝒮) to be the union of all finite-sized 𝒮-implementable communication
matrices, i.e., 𝒞(𝒮) = ∪𝑛,𝑚𝒞𝑛,𝑚(𝒮). Likewise we denote with ℳrow

𝑎,𝑏 the set of 𝑎× 𝑏
row-stochastic matrices and with ℳrow the set of all row-stochastic matrices of finite
size. General real-valued matrices of size 𝑎× 𝑏 we denote with ℳ𝑎,𝑏.

Throughout this Chapter we will at times fix the state space 𝒮 to be of a specific
type. The usual examples are 𝑑-dimensional quantum theory (𝒬𝑑) and 𝑑-dimensional
classical theory (𝒮𝑐𝑙

𝑑 ). Notably 𝒮𝑐𝑙
𝑑 is characterized by the property that every pure

state is distinguishable and every mixed state has a unique convex decomposition into
pure states. Geometrically it means that a classical state space 𝒮𝑐𝑙

𝑑 is equivalent to a
𝑑−1-simplex [28]. The operational dimension 𝑑𝑜𝑝 of a state space 𝒮 is always equal
to the maximal number of distinguishable states in the given state space. Sometimes
we simply state that a state space 𝒮 is 𝑑-dimensional, by which we mean that the
affine hull of 𝒮 is 𝑑-dimensional.

2.2 Ultraweak matrix majorization
Suppose a communication matrix𝐶 has an implementation of the form (34) for some
set of physical states and measurements given by 𝑠,𝑀 . If Alice and Bob have access
to the devices that implement 𝐶, then there is a natural way to describe all other
communication tasks that Alice and Bob can implement with the same devices.

Definition 2.1. Let 𝐶 ∈ ℳ𝑎,𝑏 and 𝐷 ∈ ℳ𝑐,𝑑. We say that 𝐶 is ultraweakly ma-
jorized by 𝐷 if there exists row-stochastic matrices 𝐿 ∈ ℳrow

𝑎,𝑐 and 𝑅 ∈ ℳrow
𝑑,𝑏 such

that 𝐶 = 𝐿𝐷𝑅. In this case we denote the relation between 𝐶 and 𝐷 with 𝐶 ⪯ 𝐷.
Whenever 𝐶 ⪯ 𝐷 ⪯ 𝐶 we say that the matrices 𝐶 and 𝐷 are ultraweakly equivalent
and denote them with 𝐶 ≃ 𝐷. However, if 𝐶 ⪯̸ 𝐷 and 𝐷 ⪯̸ 𝐶 we say that 𝐶 and 𝐷
are ultraweakly incomparable.

Ultraweak matrix majorization was first introduced in the current context in Pub-
lication II and later refined in Publication III, although as a mathematical concept it
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was known previously as I/O-degradation [55]. The concepts of matrix majorization
[56] and weak matrix majorization [57] are closely related to the ultraweak matrix
majorization. Matrix majorization corresponds to setting 𝐿 = 1 in Def. 2.1 while
weak matrix majorization corresponds to setting 𝑅 = 1 in Def. 2.1. Clearly ul-
traweak matrix majorization is a weaker concept than either matrix majorization or
weak matrix majorization.

Mathematically ultraweak matrix majorization defines a preorder on the set of
communication matrices as clearly it is both reflexive and transitive. However, not
all communication matrices are comparable in the ultraweak preorder and, moreover,
the ultraweak preorder is not antisymmetric as 𝐶 ≃ 𝐷 does not imply 𝐶 = 𝐷.

The preorder of ultraweak majorization makes precise the sense in which some
communication tasks are easier to implement than others. The following example
illustrates this concept, which is depicted in Figure 5.

Example 2.2. Suppose Alice has a device that can prepare states {𝑠1, 𝑠2, . . . , 𝑠𝑛}
and Bob has a measurement device implementing a measurement 𝑀 with the out-
come set {1, 2, . . . ,𝑚}. With the given devices Alice and Bob can implement the
communication matrix 𝐷𝑖𝑗 = 𝑀𝑗(𝑠𝑖). Suppose now that there is another communi-
cation matrix 𝐶 that is ultraweakly majorized by 𝐷, or 𝐶 ⪯ 𝐷, so that there exists
row-stochastic matrices 𝐿 and 𝑅 such that 𝐶 = 𝐿𝐷𝑅. Alice can now define new
states through the following preprocessing on the states:

𝑠′𝑖 =

𝑛∑︁

𝑘=1

𝐿𝑖𝑘𝑠𝑘. (35)

Likewise, Bob can construct a new measurement𝑀 ′ as the following post-processing
of the existing measurement 𝑀 :

𝑀 ′
𝑗(𝑠) =

𝑚∑︁

𝑘=1

𝑅𝑘𝑗𝑀𝑘(𝑠). (36)

Clearly now the pair 𝑠′,𝑀 ′ implements the communication matrix 𝐶 = 𝐿𝐷𝑅.

Example 2.2 has an important consequence, namely that the set of communica-
tion matrices is closed with respect to ultraweak matrix majorization. Additionally,
Example 2.2 gives a clear physical interpretation for ultraweak majorization. If Al-
ice and Bob can implement the communication matrix 𝐷, then the set of all other
communication matrices that they can implement with the same devices is those
communication matrices that are ultraweakly majorized by 𝐷. We can now compare
different communication tasks in a completely theory-independent way – a commu-
nication task𝐶 is easier to implement than communication task𝐷 whenever𝐶 ⪯ 𝐷.
If 𝐶 and 𝐷 are ultraweakly incomparable we cannot say which one of them is more
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Figure 5. The physical interpretation of ultraweak matrix majorization for communication tasks.
The communication task 𝐶, implemented by the blue devices, is easier to implement than
communication task 𝐷.

difficult to implement as their implementation requires a different set of physical
devices.

Our goal for the remainder of this Chapter is to characterize ultraweak matrix
majorization to the best of our abilities. The following proposition lists some simple
conditions for two matrices to be ultraweakly equivalent.

Proposition 2.3. Two matrices 𝐶 and 𝐷 are ultraweakly equivalent in the following
cases.

1. 𝐶 is obtained from 𝐷 as a permutation of the rows and columns of 𝐷.

2. 𝐶 is obtained from 𝐷 by duplicating some of the rows of 𝐷.

3. 𝐶 is obtained from 𝐷 by adding a zero column to 𝐷.

4. 𝐶 is obtained from 𝐷 by adding a row that is a convex mixture of the existing
rows of 𝐷.

5. 𝐶 is obtained from 𝐷 by splitting a column into two or more columns accord-
ing to some convex weights.

The proof for Prop. 2.3 is very straightforward and is therefore omitted. We can
give the following physical interpretations to conditions 1. − 5. Notably conditions
4. and 5. are generalizations of conditions 2. and 3., respectively. However, we list
them explicitly because the physical interpretations are slightly different.

1. A bijective relabeling of the states and outcomes.

2. Mapping a new preparation label into an existing preparation in the preparation
device.
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3. Adding a new outcome that never occurs into the measurement device.

4. Adding a new preparation that is a mixture of existing preparations into the
preparation device.

5. Splitting an existing outcome into several new outcomes according to some
convex weights.

As ultraweak equivalence is a symmetric condition, all of the conditions 1. − 5. are
reversible, e.g. zero columns can be added but they can also be removed.

Clearly each communication matrix defines an equivalence class in the ultra-
weak preorder, namely the equivalence class of 𝐶 ∈ ℳrow is {𝐴 ∈ ℳrow |𝐴 ≃ 𝐶}.
The ultraweak preorder can be extended to a partial order between such equivalence
classes. A natural question of maximal and minimal elements in the partial order
then arises. In Publication II it was shown that communication matrices with all el-
ements equal form a unique minimal equivalence class. Completely characterizing a
set 𝒞(𝒮) amounts to finding all of the ultraweakly maximal equivalence classes.

2.3 Ultraweak monotone functions
To prove that 𝐶 ⪯ 𝐷, it obviously suffices to find row-stochastic matrices 𝐿 and
𝑅 such that 𝐶 = 𝐿𝐷𝑅. However, the task of finding suitable matrices 𝐿 and 𝑅
might prove to be a difficult task. In the case where 𝐶 ⪯̸ 𝐷 all efforts to find such
matrices are in vain. In order to avoid unnecessary work it would be desirable to have
mathematical conditions that detect whenever 𝐶 ⪯̸ 𝐷. This motivates the following
definition.

Definition 2.4. A function 𝑓 : ℳrow → R is an ultraweak monotone if 𝐶 ⪯ 𝐷

implies 𝑓(𝐶) ≤ 𝑓(𝐷) for all matrices 𝐶,𝐷 ∈ ℳrow.

It is noteworthy that the matrices 𝐶 and 𝐷 can be of any finite size. Therefore
any ultraweak monotone function 𝑓 can potentially be used to compare any pair of
communication matrices3. Indeed, whenever 𝑓(𝐶) > 𝑓(𝐷) for some 𝐶,𝐷 ∈ ℳrow

we can conclude that 𝐶 ⪯̸ 𝐷. Most importantly, whenever 𝑓(𝐶) ̸= 𝑓(𝐷) it follows
that𝐶 ̸≃ 𝐷 and we say that the ultraweak monotone 𝑓 detects the inequivalence of𝐶
and 𝐷. A single monotone will not detect all inequivalent communication matrices,
though. Ultimately the goal would be to have a complete set of monotones so that
we would always know if two communication matrices are ultraweakly equivalent,
incomparable or if one majorizes the other. It is not known currently if the set of
complete monotones is finite.

3It would be justified to call these functions functionals, as there is a function for each finite matrix
size, or equivalently the ultraweak monotone functions cold be thought of as functions from matrix
sizes to functions.
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The set of ultraweak monotone functions potentially has some inner structure in
the following way.

Definition 2.5. Let 𝑓 and 𝑔 be ultraweak monotones and 𝐶,𝐷 ∈ ℳrow. If 𝑓(𝐶) =
𝑓(𝐷) implies 𝑔(𝐶) = 𝑔(𝐷) we say that 𝑓 is finer than 𝑔.

The relation of Definition 2.5 defines a preorder in the set of ultraweak mono-
tones. Supposing that one monotone is finer than another, it would be tempting to
say that we should always use the finer one and ignore the other. While generally
speaking this is true, in practice the value of a monotone might be very difficult to
calculate. In any case, it was shown in Publication III that none of the currently
known monotones are finer than any other.

On a final note, before moving on to give actual examples, of special interest is
the maximal value of a given ultraweak monotone within a given theory. Later we
will see how each known monotone defines a notion of dimension or property that
is a characterizing feature of the given theory. This will give us the necessary tools
to actually compare different operational theories as well as some intuition on the
physical features of each theory.

Rank monotones

The first example of an ultraweak monotone is the rank of a matrix as the rank cannot
increase in matrix multiplication. Although rank is perhaps the simplest monotone, it
is very useful nonetheless in detecting the “obvious” cases where two communication
matrices are inequivalent.

Proposition 2.6. If 𝒮 is a 𝑑-dimensional state space the maximal rank of 𝐶 ∈ 𝒞(𝒮)
equals 𝑑+ 1.

The proof for Proposition 2.6 can be found in Publication III. The proof relies in
finding 𝑑 + 1 affinely independent states and 𝑑 + 1 linearly independent effects and
showing that the communication matrix constructed this way has maximal rank and
that no other communication matrix has a higher rank. The dimension of the

The linear dimension of a theory can now be defined with the rank monotone:

𝑑𝑙𝑖𝑛 := sup {rank(𝐶) |𝐶 ∈ 𝒞(𝒮)} . (37)

As Proposition 2.6 shows, the supremum is always attained so that if 𝒮 is 𝑑-
dimensional then 𝑑𝑙𝑖𝑛(𝒮) = 𝑑+ 1.

The identity matrix 1𝑘 is a particularly important communication matrix. The
largest identity matrix implementable within a given theory is an extremal element
of ultraweak matrix majorization and, in fact, it is the only extremal element for
classical theories. Let 𝐶 ∈ ℳ𝑛,𝑚 be a nonnegative matrix so that 𝐶𝑖𝑗 ≥ 0 for all
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𝑖, 𝑗. The nonnegative rank, denoted rank+, of 𝐶 is defined as the smallest integer
𝑘 such that there exists nonnegative matrices 𝐿 ∈ ℳ𝑛,𝑘 and 𝑅 ∈ ℳ𝑘,𝑚 so that
𝐶 = 𝐿𝑅. Importantly, for row-stochastic matrices 𝐶 ∈ ℳrow

𝑛,𝑚 the matrices 𝐿 and 𝑅
can be chosen to be stochastic as well [58]:

rank+(𝐶) := min
{︀
𝑘 ∈ N | ∃𝐿 ∈ ℳrow

𝑛,𝑘 , 𝑅 ∈ ℳrow
𝑘,𝑚 : 𝐶 = 𝐿𝑅

}︀
. (38)

Alternatively, we can define the nonnegative rank of a row-stochastic matrix with
respect to the ultraweak matrix majorization:

rank+(𝐶) := min {𝑘 ∈ N |𝐶 ⪯ 1𝑘} . (39)

From (39) it is apparent that the nonnegative rank is an ultraweak monotone. We
also get the following inequalities from (38):

rank(𝐶) ≤ rank+(𝐶) ≤ min(𝑛,𝑚). (40)

The nonnegative rank allows us to search for the smallest classical system that
can be used to implement a given communication matrix.

Proposition 2.7. The following are equivalent for all 𝐶 ∈ ℳrow:

(i) rank+(𝐶) ≤ 𝑛

(ii) 𝐶 ⪯ 1𝑛

(iii) 𝐶 ∈ 𝒞(𝒮𝑐𝑙
𝑛 )

The implication (𝑖𝑖) ⇒ (𝑖𝑖𝑖) follows from the fact that 1𝑛 ∈ 𝒞(𝒮𝑐𝑙
𝑛 ). In the

other direction (𝑖𝑖𝑖) ⇒ (𝑖𝑖) it should be noted that an 𝑛-dimensional classical theory
has 𝑛 distinguishable (pure) states 𝑠1, . . . 𝑠𝑛 and all other states have unique convex
decompositions into these states. Additionally an 𝑛-dimensional classical theory
has a unique measurement 𝑀𝑏(𝑠𝑎) = 𝛿𝑎𝑏 which all other measurements are post-
processing of.

If 𝐶 ∈ ℳrow
𝑛,𝑚, then obviously 𝐶 ⪯ 1𝑛 and 𝐶 ⪯ 1𝑚. However, the actual

nonnegative rank of a matrix is highly nontrivial to calculate. Determining whether
rank+(𝐶) = rank(𝐶) for a general nonnegative matrix 𝐶 has been proven to be
NP-hard [59]. The following simple conditions hold for small matrices [58]. If
𝐴 ∈ ℳ𝑛,𝑚 is nonnegative, then rank(𝐴) = rank+(𝐴) if:

(i) rank(𝐴) ≤ 2
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(ii) 𝑛 ∈ {1, 2, 3} or 𝑚 ∈ {1, 2, 3}.

Even if the nonnegative rank is difficult to calculate, the corresponding ultraweak
dimension is of crucial importance as the classical dimension of an operational theory
can be defined with it:

𝑑𝑐𝑙 := inf
{︁
𝑘 ∈ N | 𝒞(𝒮) ⊆ 𝒞(𝒮𝑐𝑙

𝑘 )
}︁
. (41)

Alternatively, as a consequence of Proposition 2.7, the classical dimension can
be defined as:

𝑑𝑐𝑙 = inf {𝑘 ∈ N | ∀𝐶 ∈ 𝒞(𝒮) : 𝐶 ⪯ 1𝑘}
= inf {𝑘 ∈ N | ∀𝐶 ∈ 𝒞(𝒮) : rank+(𝐶) ≤ 𝑘}
= sup {rank+(𝐶) |𝐶 ∈ 𝒞(𝒮)} .

Whenever the classical dimension of a theory is finite, the supremum in the last
expression is attained.

Analogously to the nonnegative rank, we can define the positive semidefinite
(PSD) rank, denoted rank𝑝𝑠𝑑, of a nonnegative matrix 𝐶 ∈ ℳ𝑛,𝑚 to be the smallest
integer 𝑘 such that there exists positive semidefinite 𝑘 × 𝑘 matrices 𝐴1, . . . 𝐴𝑛 and
𝐵1, . . . 𝐵𝑚 such that 𝐶𝑖𝑗 = tr [𝐴𝑖𝐵𝑗 ]. The factorization 𝐶𝑖𝑗 = tr [𝐴𝑖𝐵𝑗 ] is called a
positive semidefinite decomposition of 𝐶. For quantum implementations this already
looks promising and, in fact, in [60] it was proved that the PSD rank of a commu-
nication matrix equals the minimal quantum dimension required to implement the
given communication matrix.

Proposition 2.8. [60, Lemma 5] Let 𝐶 ∈ ℳrow. Then 𝐶 ∈ 𝒞(𝒬𝑑) if and only if
rank𝑝𝑠𝑑(𝐶) ≤ 𝑑.

Intuitively it is clear that the PSD rank is an ultraweak monotone. The following
proposition proves this for the sake of completeness.

Proposition 2.9. The positive semidefinite rank is an ultraweak monotone.

Proof. Let 𝐶 ∈ ℳrow
𝑎,𝑏 , 𝐷 ∈ ℳrow

𝑛,𝑚 and 𝐶 ⪯ 𝐷 so that there exists row-stochastic
matrices 𝐿 ∈ ℳrow

𝑎,𝑛 , 𝑅 ∈ ℳrow
𝑚,𝑏 such that 𝐶 = 𝐿𝐷𝑅. Suppose that rank𝑝𝑠𝑑(𝐷) =

𝑑. If 𝐷𝑖𝑗 = tr [𝐴𝑖𝐵𝑗 ] where {𝐴𝑖}, {𝐵𝑗} are 𝑑 × 𝑑 positive semidefinite matrices,
then

𝐶𝑘𝑙 =

𝑛∑︁

𝑖=1

𝑚∑︁

𝑗=1

𝐿𝑘𝑖𝐷𝑖𝑗𝑅𝑗𝑙 =

𝑛∑︁

𝑖=1

𝑚∑︁

𝑗=1

𝐿𝑘𝑖tr [𝐴𝑖𝐵𝑗 ]𝑅𝑗𝑙

= tr

⎡
⎣
(︃

𝑛∑︁

𝑖=1

𝐿𝑘𝑖𝐴𝑖

)︃⎛
⎝

𝑚∑︁

𝑗=1

𝑅𝑗𝑙𝐵𝑗

⎞
⎠
⎤
⎦ = tr

[︀
𝐴′

𝑖𝐵
′
𝑗

]︀
.
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The PSD decomposition for 𝐶 with 𝐴′
𝑖 =

∑︀𝑛
𝑖=1 𝐿𝑘𝑖𝐴𝑖 and 𝐵′

𝑗 =
∑︀𝑚

𝑗=1𝑅𝑗𝑙𝐵𝑗

proves that rank𝑝𝑠𝑑(𝐶) ≤ 𝑑.

In general it is known that
√︀

rank(𝐶) ≤ rank𝑝𝑠𝑑(𝐶) ≤ rank+(𝐶) (42)

for all nonnegative matrices [61]. The second inequality follows from the extra re-
quirement that the PSD factorization be diagonal, while the first inequality is easy to
confirm for communication matrices with the help of Proposition 2.6.

Just like the nonnegative rank, the PSD rank is very hard to compute, NP-hard in
fact [62]. As an ultraweak monotone the maximal PSD rank within a theory defines
the quantum dimension of that theory, i.e.,

𝑑𝑞 = inf {𝑑 ∈ N | ∀𝐶 ∈ 𝒞(𝒮) : rank𝑝𝑠𝑑(𝐶) ≤ 𝑑} . (43)

Alternatively, 𝑑𝑞 = sup {rank𝑝𝑠𝑑(𝐶) |𝐶 ∈ 𝒞(𝒮)}, where the supremum is attained
for some 𝐶 if the quantum dimension is finite.

Discrimination monotones

The remaining examples of ultraweak monotones are all related to some form of
discrimination tasks.

The maximal number of distinguishable states is a fundamental property of all
state spaces. It tells directly how many distinguishable messages can be sent. If
a state from a set of 𝑑 distinguishable states is sent, then (at most) log2 𝑑 bits of
information can be retrieved by measuring that state. Recall that the Basic Decoding
Theorem [63] states that whenever there are more messages than distinguishable
states, the error in this kind of communication is at least 1 − 𝑑

𝑛 , where 𝑛 is the
number of messages and 𝑑 the operational dimension of the state space. Motivated
by these facts we define the following function for 𝐶 ∈ ℳrow:

𝜄(𝐶) := max {𝑛 ∈ N |1𝑛 ⪯ 𝐶} . (44)

It is clear that 𝜄 is an ultraweak monotone, as it equals the size of the largest iden-
tity matrix that is ultraweakly majorized by𝐶. We simply call it the distinguishability
monotone.

Proposition 2.10. Let 𝐶 ∈ ℳrow. Then 𝜄(𝐶) = 𝑘 if and only if the maximal number
of orthogonal rows of 𝐶 equals 𝑘.

The proof of the previous Proposition was presented in Publication III. Clearly
the minimum value of 𝜄 within any 𝒞(𝒮) is 1 and the maximum value is 𝑑𝑜𝑝(𝒮).
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The distinguishability monotone is related to entropy in the following way. Sup-
pose Alice and Bob have devices that implement 𝐶 ∈ ℳrow and 𝜄(𝐶) = 𝑘. Then
Alice and Bob can actually physically implement the communication matrix 1𝑘, i.e.,
Alice can send 𝑘 distinct messages to Bob. If Alice prepares the 𝑘 distinguishable
states with equal relative frequencies, then the amount of information that Alice can
transmit to Bob in a single run of the devices is at least log2 𝑘 bits.

The last two monotones are very similar to each other. They are introduced in
the following Proposition.

Proposition 2.11. Let

𝜆𝑚𝑎𝑥 (𝐶) :=
∑︁

𝑗

max
𝑖
𝐶𝑖𝑗 , 𝜆𝑚𝑖𝑛 (𝐶) := −

∑︁

𝑗

min
𝑖
𝐶𝑖𝑗 . (45)

The functions 𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛 are ultraweak monotones.

The proof for Proposition 2.11 is straightforward. We call these monotones sim-
ply the min and max monotones. The function 𝜆𝑚𝑎𝑥 is related to minimum error
discrimination tasks in the following way. First of all, let us set

𝜆𝑚𝑎𝑥 (𝒮) := sup {𝜆𝑚𝑎𝑥 (𝐶) |𝐶 ∈ 𝒞(𝒮)} . (46)

Alternatively, if we denote by 𝒪(𝒮) the set of all measurements in 𝒮 and with
Ω𝑀 ⊂ N the finite outcome set of 𝑀 ∈ 𝒪(𝒮), we can define 𝜆𝑚𝑎𝑥 (𝑀) :=∑︀

𝑗∈Ω𝑀
max𝑠∈𝒮 𝑀𝑗(𝑠) and 𝜆𝑚𝑎𝑥 (𝒮) = sup𝑀∈𝒪(𝒮) 𝜆𝑚𝑎𝑥 (𝑀). The maximal value

of 𝜆𝑚𝑎𝑥 for a theory determined by 𝒮 is sometimes called the information storability
of the state space 𝒮 [64; 65]. Additionally, let 𝜆𝑚𝑎𝑥,𝑛(𝒮) denote the supremum of
𝜆𝑚𝑎𝑥 over measurements with the number of outcomes fixed as #Ω𝑀 ≤ 𝑛. Then
the error probability in a minimum error discrimination task between Alice and Bob,
assuming equal a priori probabilities for 𝑛 preparations, is bounded by

𝑃𝑛
𝑒𝑟𝑟𝑜𝑟 ≥ 1− 𝜆𝑚𝑎𝑥,𝑛(𝒮)

𝑛
.

The term 𝜆𝑚𝑎𝑥(𝒮)
𝑛 can be interpreted as the maximal decoding power of all mea-

surements in 𝒮, as clearly 𝜆𝑚𝑎𝑥 (𝒮) = sup𝑛∈N 𝜆𝑚𝑎𝑥,𝑛(𝒮). The decoding power
of a measurement is typically associated with noise robustness, i.e., the maximal
amount of noise the measurement tolerates while not becoming a trivial observable
[66; 67; 68].

For 𝐶 ∈ 𝒞(𝒬𝑑) we have a specific form for the max monotone:

𝜆𝑚𝑎𝑥 (𝐶) =
∑︁

𝑗

max
𝑖

tr [𝜚𝑖M(𝑗)] ≤
∑︁

𝑗

tr [M(𝑗)] = 𝑑,
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where 𝑑 is the operational dimension 𝒬𝑑. Hence we obtain the Basic Decoding
Theorem from the maximal value of 𝜆𝑚𝑎𝑥 within 𝒬𝑑: 𝜆𝑚𝑎𝑥 (𝒬𝑑) ≤ 𝑑 = 𝑑𝑜𝑝(𝒬𝑑)

and 𝑃𝑛
𝑒𝑟𝑟𝑜𝑟 ≥ 1− 𝑑

𝑛 .

Remark 2.12. In quantum theory the information storability of the state space is
the same as the operational dimension. However, in general this is not true. In
[64] it was shown that the information storability of a state space is related to the
point-symmetry of 𝒮. More specifically, the information storability of 𝒮 can exceed
the operational dimension if the state space is point-asymmetric, such as in some
polygon state spaces [69]. Furthermore, it was shown in [64] that the information
storability of a state space gives an upper bound on the classical channel capacity.
Thus a generalized version of the Holevo bound is required in general probabilistic
theories [70; 71].

The min monotone is just as easy to compute as the max monotone. However,
calculating the minimal and maximal values of 𝜆𝑚𝑖𝑛 within a theory is not very use-
ful. Clearly 𝜆𝑚𝑖𝑛 (𝐶) ∈ [−1, 0] for all 𝐶 ∈ ℳrow. The minimum value −1 is
obtained by any 𝐶 with all entries equal, while the maximum value of 0 is obtained
by any identity matrix, for instance. The physical interpretation for the min mono-
tone is the following: the probability of observing the least probable measurement
events cannot decrease in ultraweak majorization. This is somehow contrary to the
max monotone, whose physical interpretation is that the decoding power of measure-
ments cannot increase in ultraweak majorization, i.e., the probability of observing the
most probable measurement events cannot increase.

2.4 Dimensions induced by the monotones
To conclude this Chapter we will collect all of the dimensions induced by the ultra-
weak monotones and compare them. Let us first recall all of the relations between
the different monotones.

Proposition 2.13. The following holds for all 𝐶 ∈ ℳrow:

√︀
rank(𝐶) ≤ rank𝑝𝑠𝑑(𝐶), rank(𝐶) ≤ rank+(𝐶). (47)

Further,

𝜄(𝐶) ≤ 𝜆𝑚𝑎𝑥 (𝐶) ≤ rank𝑝𝑠𝑑(𝐶) ≤ rank+(𝐶). (48)

The inequality 𝜄(𝐶) ≤ 𝜆𝑚𝑎𝑥 (𝐶) follows from the fact that 1𝜄(𝐶) ⪯ 𝐶 and
𝜆𝑚𝑎𝑥

(︀
1𝜄(𝐶)

)︀
= 𝜄(𝐶).

Taking the supremum within 𝒞(𝒮) we find that, in general,
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𝑑𝑜𝑝(𝒮) ≤ 𝜆𝑚𝑎𝑥 (𝒮) ≤ 𝑑𝑞(𝒮) ≤ 𝑑𝑐𝑙(𝒮). (49)

Additionally,

𝑑𝑙𝑖𝑛(𝒮) ≤ 𝑑𝑞(𝒮)2, 𝑑𝑙𝑖𝑛(𝒮) ≤ 𝑑𝑐𝑙(𝒮) (50)

An important remark is that, for 𝒮𝑐𝑙
𝑑 , all of these values coincide. Whether these

coinciding values are enough to uniquely fix the classical theory remains an open
question, one which we could present as a conjecture here. However, it can be con-
firmed that it is a necessary condition for all of these dimension to be equal for a state
space to be classical.

In contrast to classical theory, for 𝑑-dimensional quantum theory 𝒬𝑑 we have that
𝑑𝑙𝑖𝑛(𝒬𝑑) = 𝑑2 ≤ 𝑑𝑐𝑙(𝒬𝑑) while 𝑑𝑜𝑝(𝒬𝑑) = 𝑑𝑞(𝒬𝑑) = 𝜆𝑚𝑎𝑥 (𝒬𝑑) = 𝑑. It follows
that 𝒞(𝒬𝑑) must have other ultraweakly maximal elements than 1𝑑. In Publication
III it was conjectured that 𝑑𝑐𝑙(𝒬𝑑) = 𝑑2. However, to the best of our knowledge,
this conjecture remains open.

In conclusion, the dimensions induced by the different ultraweak monotones of-
fer a convenient way to compare different operational theories. The ultraweak mono-
tones themselves can be used to check whether two communication matrices are ul-
traweakly inequivalent. Moreover, the monotones can be used to check whether a
communication matrix can be implemented in a given theory. It is not know whether
a complete set of monotones has finite cardinality.
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3 Communication tasks in quantum
theory

The original Publications I, II and IV all considered very specific communication
tasks, namely antidistinguishability, communication of partial ignorance and partial-
ignorance communication tasks, respectively. All of these communication tasks can
be classified as some kind of “exclusion” tasks. Notably antidistinguishability and
communication of partial ignorance are communication tasks with a single measure-
ment device so the entirety of Chapter 2 applies. On the other hand, in partial-
ignorance communication tasks, the major discrepancy to the other two tasks is that
the measurement device is not fixed but can be changed according to some additional
input, so the use of behaviors is required. As such the partial-ignorance communica-
tion tasks cannot be completely analyzed by simply looking at individual communi-
cation matrices.

In this Chapter a general introduction to the previously mentioned three types
of communication tasks is given. Previously known and some new results from the
literature are highlighted where applicable. Specifically the section dealing with
antidistinguishability attempts to provide an up-to-date overview on the topic as an-
tidistinguishability has attracted some attention in the research community in recent
years.

3.1 Antidistinguishability
Antidistinguishability, also known as conclusive exclusion [72] and post-Peierls in-
compatibility [73] in the literature, is simply a property of a set of states.

Definition 3.1. A set {𝜚𝑖}𝑛𝑖=1 of 𝑛 quantum states is called antidistinguishable if
there exists an 𝑛-outcome POVM M such that

tr [𝜚𝑖M(𝑖)] = 0 (51)

for all 𝑖 ∈ {1, 2, . . . , 𝑛}. Additionally it is required that
∑︀

𝑖 tr [𝜚𝑖M(𝑗)] ̸= 0 for all
𝑗 ∈ {1, 2, . . . , 𝑛} so that there does not exist outcomes that never occur.

The additional requirement that none of the outcomes occur with zero probability
is a necessary addition. Otherwise some of the states could be “antidistinguished”
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by the zero effect while the entire set of states might not be antidistinguishable as
defined in the previous definition.

While Definition 3.1 may look conspicuously simple, there is an intriguing rea-
son to study antidistinguishability in foundations of quantum mechanics. Supposing
that there exists a complete description of nature in the form of an ontological model
(see e.g. [43; 74; 75; 76; 77; 78]), whenever a set of quantum states is antidistinguish-
able the underlying epistemic states are known to have the property that the union
of their supports has measure zero [50]. Applied to the case where two identical
preparation devices operate independently, this result yields the (in)famous Pusey–
Barrett–Rudolph theorem [79]. Additionally, antidistinguishability can be used to
restrict the amount of pair-wise overlap epistemic states can display [80; 81; 82; 83].
Thus the study of antidistinguishability is well motivated within foundations of quan-
tum mechanics.

The main goal of Publication I was to find algebraic conditions for a set of (pure)
quantum states to be antidistinguishable according to Definition 3.1. Before present-
ing any such conditions, it must be noted that the problem of finding an antidistin-
guishing POVM for a set of quantum states is actually a semidefinite program (SDP)
(see e.g. [84; 85; 86; 87] for usage of SDPs in a quantum mechanical setting). SDPs
are a class of optimization problems which can be solved almost as efficiently as lin-
ear programs [88; 89]. The SDP for deciding whether a set of quantum states {𝜚𝑖}𝑛𝑖=1

is antidistinguishable is presented below.

min

𝑛∑︁

𝑖=1

tr [𝜚𝑖M(𝑖)]

s.t. M(𝑗) ≥ 0 ∀𝑗 ∈ {1, 2, . . . , 𝑛}
𝑛∑︁

𝑖=1

M(𝑖) = 1

(52)

Whenever a numerical solver finds the minimum for the objective function of Equa-
tion (52) to be 0, the corresponding set of quantum states is surely antidistinguish-
able, at least within numerical accuracy. However, it should be checked that the
solution does not contain any outcomes that never occur. This could also be taken to
be a part of the problem definition, e.g. by requiring that

∑︀𝑛
𝑖=1 tr [𝜚𝑖M(𝑗)] ≥ 𝜖 for

all 𝑗 and for some suitably chosen 𝜖 > 0.
While numerically solving a problem of form (52) can be considered easy, at

least when the cardinality of the set of states is small and the corresponding Hilbert
space has low dimension, there are a few shortcomings with this methodology. First
of all, most numerical methods rarely give exact results, i.e., the results are prone to
small numerical imperfections. The degree to which this is a problem depends on
the situation. Secondly, a mere numerical solution to a problem scarcely gives any
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intuition on the physical phenomena behind the problem. While it may be possible
to gain some intuition by formulating the dual problem of the SDP and considering
weak and strong forms of duality, an analytic solution is often more descriptive of
the original problem.

Conditions for antidistinguishability

To the best of our knowledge, there currently only exists one necessary and suffi-
cient formulation for an arbitrary set of pure quantum states to be antidistinguishable
(in addition to the numerical formulation as an SDP). This general criterion was
presented in Publication I. While the general condition is indeed necessary and suf-
ficient, unfortunately it is not explicit in the sense that in most cases it is not possible
to construct the antidistinguishing POVM with the help of the criterion. Therefore a
complete solution for a set of quantum states to be antidistinguishable is only known
for qubits. In the following proposition post-Peierls incompatibility is used as a syn-
onym for antidistinguishability.

Proposition 3.2. A set of 𝑛 pure qubit states {𝜚𝑖}𝑛𝑖=1 is post-Peierls incompatible if
and only if the maximally mixed state 1

21 belongs to the convex hull of {𝜚𝑖}𝑛𝑖=1.

Proposition 3.2 was first presented in [73]. However, the previous proposition
has a major flaw. Namely, it allows for some of the effects in the antidistinguishing
POVM to be zero effects. It is unclear whether the authors intended to allow for
this. In their writing they specify the effects should be rank-1. Nonetheless they
explicitly allow for the weights of some effects to equal zero, which would contradict
our definition for antidistinguishability. This can be rectified by requiring that the
maximally mixed state be an interior point of the convex set generated by the pure
states. Thus we arrive at an alternative characterization of antidistinguishability for
qubits, which was presented in Publication I.

Proposition 3.3. A set of 𝑛 pure qubit states {𝜚𝑖}𝑛𝑖=1 is antidistinguishable if and
only if there exist positive real numbers 𝑡𝑖 > 0 such that

𝑛∑︁

𝑖=1

𝑡𝑖𝜚𝑖 = 1. (53)

The proof for Proposition 3.3 essentially relies on the fact that a pure qubit state
has a unique pure state that is orthogonal to it. This is also the reason the proof
method only works for qubits – when 𝑑 ≥ 3 there no longer is an unique antipodal
state, but rather an orthogonal subspace of the state space. It is unclear if it is possible
to always choose one state from this subspace such that the original proof method
works. However, Proposition 3.3 has the following generalization.
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Proposition 3.4. A set of 𝑛 pure quantum states {𝜚𝑖}𝑛𝑖=1 is antidistinguishable if
there exist positive real numbers 𝑡𝑖 > 0 such that

𝑛∑︁

𝑖=1

𝑡𝑖𝜚𝑖 = 𝑅, (54)

where 𝑅 is a projection.

While Proposition 3.4 is fully general in that it applies in all dimensions and to
any number of states, unfortunately it is no longer a necessary condition.

As a last consideration on algebraic conditions for antidistinguishability in Pub-
lication I we discussed a fully general criterion that is also sufficient and necessary.
The general criterion can be outlined as follows. Suppose a set of 𝑛 pure quantum
states {𝜚𝑖}𝑛𝑖=1 is antidistinguishable. Then there exists an antidistinguishing POVM
M such that

∑︀𝑛
𝑖=1 tr [𝜚𝑖M(𝑗)] > 0 for all 𝑗 and tr [𝜚𝑖M(𝑖)] = 0. As tr [𝜚𝑖M(𝑖)] = 0

is equivalent with 𝜚𝑖M(𝑖) = 0 and 𝜚 is a pure state, it follows that the spectral de-
composition for M(𝑖) must not contain a projection that is equal to 𝜚𝑖. Therefore we
must be able to write M(𝑖) as

M(𝑖) =

𝑑∑︁

𝑘=2

𝛼𝑘
𝑖 𝑃

𝑘
𝑖 ,

where 𝑃 𝑘
𝑖 are pair-wise orthogonal one-dimensional projections, each of which are

orthogonal to 𝜚𝑖, and 𝑑 equals the dimension of the Hilbert space in which the states
are defined. Additionally, it is required that none of the outcomes occur with proba-
bility zero, so that

𝑛∑︁

𝑖=1

𝑑∑︁

𝑘=2

𝛼𝑘
𝑗 tr
[︁
𝜚𝑖𝑃

𝑘
𝑗

]︁
̸= 0,

as
∑︀𝑛

𝑖=1 tr [𝜚𝑖M(𝑗)] must not equal zero.
While it is clear that the method outlined above must always work whenever a set

of pure states is antidistinguishable, unfortunately the method does not offer any way
to reliably construct the antidistinguishing POVM. It is only guaranteed that such a
POVM is possible to construct in this way.

Apart from previously known results of [73], which contained the original qubit
results and some results regarding sets of three or less quantum states, and those of
[72] which presented a result based on pair-wise fidelities of quantum states, there
was another recent paper that contained an interesting conjecture [90].

Conjecture 3.5. Let {|𝜙𝑖⟩}𝑑𝑖=1 be the vectors of 𝑑 pure quantum states. If

|⟨𝜙𝑖|𝜙𝑗⟩| ≤
𝑑− 2

𝑑− 1
(55)

for all 𝑖 ̸= 𝑗, then the set {|𝜙𝑖⟩}𝑑𝑖=1 is antidistinguishable.
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While [90] presented convincing arguments in addition to numerical evidence
for Conjecture 3.5, what makes the conjecture truly intriguing is that very recently
a counterexample was provided as a preprint on arXiv [91]. Let us analyze this
counterexample.

First let us define the dual problem to the SDP defined in Equation (52) as:

max tr [𝑌 ]

s.t. 𝑌 ≤ 𝜚𝑖 ∀𝑖 ∈ {1, 2, . . . , 𝑛} ,
(56)

where the variable 𝑌 is understood to be Hermitian. In [72] it was proved that there
is a strong duality between the dual and primal problems defined in Equations (52)
and (56). That is, the value that is obtained for both of those problems should al-
ways coincide. Therefore we can present the following numerical characterization
for antidistinguishability (adapted from [72] and [91]).

Lemma 3.6. Let {𝜚𝑖}𝑛𝑖=1 be a set of quantum states (not necessarily pure). Then
{𝜚𝑖}𝑛𝑖=1 is not antidistinguishable if and only if there exists a Hermitian matrix 𝑌
such that tr [𝑌 ] > 0 and 𝜚𝑖 − 𝑌 ≥ 0 for all 𝑖 ∈ {1, 2, . . . , 𝑛}.

Example 3.7 (Counterexample from [91]). Let us define four states in C4:

𝜙1 =

⎡
⎢⎢⎣

0.50127198− 0.037607𝑖

−0.00698152− 0.590973𝑖

0.08186514− 0.4497548𝑖

−0.01299883 + 0.43458491𝑖

⎤
⎥⎥⎦ , 𝜙2 =

⎡
⎢⎢⎣

−0.07115345− 0.27080326𝑖

0.82047712 + 0.26320823𝑖

0.22105089− 0.2091996𝑖

−0.23575591− 0.1758769𝑖

⎤
⎥⎥⎦

𝜙3 =

⎡
⎢⎢⎣

0.31360906 + 0.46339313𝑖

−0.0465825− 0.47825017𝑖

−0.10470394− 0.11776404𝑖

0.60231515 + 0.26154959𝑖

⎤
⎥⎥⎦ , 𝜙4 =

⎡
⎢⎢⎣

−0.53532122− 0.03654632𝑖

0.40955941− 0.15150576𝑖

−0.05741386 + 0.23873985𝑖

−0.4737113− 0.48652564𝑖

⎤
⎥⎥⎦

Then we indeed find that max𝑖 ̸=𝑗 |⟨𝜙𝑖|𝜙𝑗⟩| ≈ 0.64514235 < 4−2
4−1 = 2

3 . However,
solving the dual SDP of (56) we find that max𝑌 ∈Herm. tr [𝑌 ] ≈ 0.00039382 so the
four pure states are not antidistinguishable1.

It is stated in [91] that the counterexample was found after generating a consid-
erable amount of random quantum states. The power of numerical methods here is
that they were able to prove that Conjecture 3.5 does not hold. The counterexam-
ple found in this way, however, does not seem to give us much insight on why the
conjecture fails.

1The value presented here was obtained using the same libraries as in [91], namely cvxopt, picos
and numpy in Python. However, we were using slightly newer versions of the libraries. The result
we got matches the one in [91] with 7 decimals, so the results are in good agreement in any regard.
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The main result of [90] was to show that there exists a communication complexity
separation between classical and quantum communication that is based on antidis-
tinguishability. Their result is somewhat weakened by the failure of their conjecture.
Nonetheless their main result still applies. The literature contains other examples
of applications for antidistinguishability as well. Namely, antidistinguishability can
also be used to generate noncontextuality inequalities [92]. We mention this here
for the sake of completeness, but the connection between antidistinguishability and
contextuality, although intriguing, was not a topic in the original Publications. Hence
we will not develop this topic further here.

Generating antidistinguishable sets of states

In the literature, such as [90; 91], a typical method of generating sets of antidistin-
guishable states is to generate a random sample of states according to some measure,
typically the Haar measure, and then checking whether the generated set is antidistin-
guishable or not with numerical methods. While this method may work well enough
in practice (and considering what the goal is this might be exactly what is desired),
there are better ways of generating antidistinguishable sets of states if the goal in-
volves avoiding generating sets that are not antidistinguishable.

As was discussed in Publication I, a simple method of generating a set of an-
tidistinguishable states is to consider a finite group 𝐺 and its irreducible unitary
representations 𝑈 : 𝑔 ↦→ 𝑈𝑔 on a Hilbert space C𝑑. Starting from a pure state 𝑃 ,
the orbit of 𝑃 under 𝐺, i.e. {𝑃𝑔 = 𝑈𝑔𝑃𝑈

*
𝑔 : 𝑔 ∈ 𝐺} where 𝑃 is not a fixed point,

is guaranteed to be antidistinguishable by Schur’s lemma as long as 𝑃𝑔 ̸= 𝑃ℎ for
𝑔 ̸= ℎ. This follows from the fact that

∑︀
ℎ 𝑃ℎ is easily seen to commute with every

𝑈𝑔, hence
∑︀

ℎ 𝑃ℎ is proportional to 1𝑑 and therefore Proposition 3.4 applies. Even
if 𝑃𝑔 = 𝑃ℎ for some 𝑔 ̸= ℎ the above method still works as the distinct elements of
the orbit of 𝑃 can be labeled by the elements of the quotient group 𝐺/ℐ(𝑃 ), where
ℐ(𝑃 ) = {ℎ ∈ 𝐺 |𝑈ℎ𝑃𝑈

*
ℎ = 𝑃}. The antidistinguishing POVM is given by

M(𝑔) =
𝑑

#𝐺(𝑑− 1)
𝑈𝑔𝑃

⊥𝑈*
𝑔 ,

where 𝑃⊥ = 1 − 𝑃 , in the case where all of 𝑃𝑔 are different. Otherwise an extra
factor of #ℐ(𝑃 ) has to be included and the effects are then labeled by elements in
the quotient group 𝐺/ℐ(𝑃 ).

Another way to generate antidistinguishable states is to start by generating a
random POVM, provided the generated POVM does not contain full-rank effects.
The theory of random POVMs is well-developed [93]. Each effect in the random
POVM defines at least one state that it antidistinguishes. A suitable state can then be
chosen from the kernel of the effect by any desired means.
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There is a special class of POVMs that can be used to generate antidistinguish-
able sets of states. Namely, a symmetric informationally complete (SIC) POVM is
defined as a POVM M with 𝑑2 outcomes such that tr [M(𝑗)] is a constant for all 𝑗
and tr [M(𝑖)M(𝑗)] is a constant for all 𝑖 ̸= 𝑗. It turns out these constants are fixed by
the dimension 𝑑, i.e., for 𝑗 ̸= 𝑘:

tr [M(𝑗)] =
1

𝑑
, tr [M(𝑗)M(𝑘)] =

1

𝑑2(𝑑+ 1)
.

Additionally tr
[︀
M(𝑗)2

]︀
= 1

𝑑2 for all 𝑗. SIC POVMs are known to exist for up to
𝑑 = 151 [94]. A SIC POVM can always be used to define an antidistinguishable set
of states by setting

𝜚𝑖 =
1

𝑑− 1
(1− 𝑑M(𝑖)). (57)

It is then straightforward to check that tr [𝜚𝑖M(𝑖)] = 0, tr [𝜚𝑖M(𝑗)] = 1
𝑑2−1 , tr [𝜚𝑖] =

1 and 𝜚𝑖 ≥ 0.

Uniform antidistinguishability as a communication task

There is a particular class of communication matrices that rely on a stronger form of
antidistinguishability. Let us define a class of 𝑛× 𝑛 communication matrices 𝐴𝑛 of
the form

𝐴𝑛 =
1

𝑛− 1

⎡
⎢⎢⎢⎢⎢⎣

0 1 1 · · · 1

1 0 1 · · · 1

1 1 0 1
...

. . .
1 · · · · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦
. (58)

A set of 𝑛 states are called uniformly antidistinguishable if they can be used to im-
plement 𝐴𝑛. It is easy to verify that rank(𝐴𝑛) = 𝑛 so that 𝐴𝑛 ⪯ 1𝑛 as 𝐴𝑛 is a
square matrix and hence also rank+(𝐴𝑛) = 𝑛. Clearly a SIC POVM and states de-
fined as in (57) always implement 𝐴𝑛 for 𝑛 = 𝑑2, as long as a SIC POVM exists in
dimension 𝑑.

Uniform antidistinguishability was used in Publication II to solve a specific type
of communication game (which we will define in the next section). It is also inter-
esting to note that in some sense the communication matrix 𝐴𝑛 is ‘as far away’ from
1𝑛 as possible. Where one has only ones on the diagonal and zeros everywhere else,
the other has zeros on the diagonal and equal non-zero off-diagonal elements. We
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can thus present the following family of 𝑛× 𝑛 communication matrices:

𝐷𝑛,𝑝 =

⎡
⎢⎢⎢⎢⎢⎣

1− 𝑝 𝑝
𝑛−1

𝑝
𝑛−1 · · · 𝑝

𝑛−1
𝑝

𝑛−1 1− 𝑝 𝑝
𝑛−1 · · · 𝑝

𝑛−1
𝑝

𝑛−1
𝑝

𝑛−1 1− 𝑝 𝑝
𝑛−1

...
. . .

𝑝
𝑛−1 · · · · · · 𝑝

𝑛−1 1− 𝑝

⎤
⎥⎥⎥⎥⎥⎦
. (59)

Clearly 𝐷𝑛,1 = 𝐴𝑛 and 𝐷𝑛,0 = 1𝑛. The communication task defined by 𝐷𝑛,𝑝 is
related to either minimum error discrimination tasks when 0 ≤ 𝑝 ≤ 1− 1

𝑛 or to some
noisy uniform antidistinguishability task when 1 − 1

𝑛 ≤ 𝑝 ≤ 1. The limiting value
𝑝 = 1 − 1

𝑛 defines the 𝑛 × 𝑛 communication matrix with all elements equal to 1
𝑛 ,

which was established to be a minimal element in the ultraweak preorder in Chapter
2. This leads us to ponder if there exists some order within the family 𝐷𝑛,𝑝 defined
by the ultraweak matrix majorization. This is indeed the case, and in Publication III
the following was shown:

(i) The noiseless uniform antidistinguishability matrix 𝐷𝑛,1 = 𝐴𝑛 is ultraweakly
majorized only by 𝐷𝑛,0 = 1𝑛.

(ii) If 𝐷𝑛,𝑝 relates to distinguishability, i.e. 𝑝 ∈
[︀
0, 1− 1

𝑛

]︀
, then 𝐷𝑛,𝑝 ⪰ 𝐷𝑛,𝑞 if

and only if 𝑞 ∈
[︁
𝑝, 1− 𝑝

𝑛−1

]︁
.

(iii) If 𝐷𝑛,𝑝 relates to antidistinguishability, i.e. 𝑝 ∈
[︀
1− 1

𝑛 , 1
]︀
, then 𝐷𝑛,𝑝 ⪰ 𝐷𝑛,𝑞

if and only if 𝑞 ∈
[︁
1− 𝑝

𝑛−1 , 𝑝
]︁
.

Interestingly it is possible to cross the limiting value of pure noise 1− 1
𝑛 from both

sides. However, it is not possible to get back to the original communication matrix
by crossing the limit value twice. Publication III contains a graphical illustration of
the ultraweak relations within the family 𝐷𝑛,𝑝.

As a last consideration on antidistinguishability we may wonder what the PSD
rank of the matrices 𝐴𝑛 are, but currently the answer is not completely known. In
Publication II it was shown that there cannot be more than 𝑑2 uniformly antidistin-
guishable states, and it is known that rank𝑝𝑠𝑑(𝐴𝑑2) = 𝑑 when 𝑑 is odd [60]. When 𝑑
is even it is known that 𝐴𝑑2−1 = 𝑑. Whether 𝐴𝑑2 = 𝑑 for even 𝑑 is thus not known,
but is surely either 𝑑 or 𝑑+1. This can be seen in a straightforward way. Suppose that
rank𝑝𝑠𝑑(𝐴𝑛) = 𝑘. Then the quantum implementation for 𝐴𝑛 gives a PSD decom-
position for 𝐴𝑛. If we drop one state and effect from this decomposition, we obtain
a PSD decomposition for 𝐴𝑛−1 which is of the same size as the decomposition for
𝐴𝑛. Therefore, by Proposition 2.8 rank𝑝𝑠𝑑(𝐴𝑛−1) ≤ 𝑘.

Lemma 5 in [60] details a method for normalizing the states and effects of the
new PSD decomposition into an actual POVM and new states that implement 𝐴𝑛−1.
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Interestingly, this normalization cannot be achieved through the ultraweak matrix
majorization. This is because 𝜆𝑚𝑎𝑥 (𝐴𝑛) = 𝑛

𝑛−1 and so 𝜆𝑚𝑎𝑥 (𝐴𝑛) decreases as 𝑛
grows, i.e.,𝐴𝑛−1 ⪯̸ 𝐴𝑛. This means that𝐴𝑛−1 and𝐴𝑛 are ultraweakly incomparable
as the rank and 𝜆𝑚𝑎𝑥 monotones can be used to establish their inequivalence.

Remark 3.8. In [95] it was shown that 𝒞(𝒬𝑑) = 𝒞(𝒮𝑐𝑙
𝑑 ), i.e., that the convex hull

of communication matrices implementable in 𝑑-dimensional classical and quantum
systems are the same. This means that, with the additional resource of shared ran-
domness, there is no advantage to use quantum systems in favor of classical systems
in simple prepare-and-measure scenarios. It is not difficult to see that the set 𝒞(𝒬𝑑)

is not convex. Therefore shared randomness is truly an additional and powerful
resource in communication. This is exemplified in the following proposition and
examples.

Proposition 3.9. Let 𝐵 ∈ ℳrow
𝑛,𝑛 be any 𝑛×𝑛 communication matrix with only zeros

on the diagonal. Then there exists a set of 𝑛! communication matrices, each of which
is ultraweakly majorized by 𝐵, whose convex sum with equal weights equals 𝐴𝑛.

Proof. Let {𝑃𝑖}𝑛!𝑖=1 be the set of all permutation matrices of 𝑛 elements. In gen-
eral there are 𝑛! such permutation matrices. Let us define 𝐶 = 1

𝑛!

∑︀𝑛!
𝑘=1 𝑃𝑖𝐵𝑃

𝑇
𝑖 ,

where 𝑃𝑖𝐵𝑃
𝑇
𝑖 is the communication matrix whose rows and columns are relabeled

according to permutation 𝑖. Note that (𝑃𝑖𝐵𝑃
𝑇
𝑖 )𝑗𝑗 = 0 for all 𝑖 ∈ {1, 2, . . . , 𝑛!} and

𝑗 ∈ {1, 2, . . . , 𝑛}. Therefore 𝐶𝑖𝑖 = 0 for all 𝑖 ∈ {1, 2, . . . , 𝑛}.
Let us then calculate 𝐶𝑖𝑗 for 𝑖 ̸= 𝑗. Clearly there are (𝑛 − 2)! permutations that

leave 𝑖 and 𝑗 unchanged. Likewise, for each integer 𝑖′ ̸= 𝑖 and 𝑗′ ̸= 𝑗 such that
𝑖′ ̸= 𝑗′, there are (𝑛− 2)! permutations that map 𝑖 ↦→ 𝑖′ and 𝑗 ↦→ 𝑗′. Therefore

𝐶𝑖𝑗 =
1

𝑛!
(𝑛− 2)!

𝑛∑︁

𝑘,𝑙=1
𝑘 ̸=𝑙

𝐵𝑘𝑙 =
(𝑛− 2)!

𝑛!
𝑛 =

1

𝑛− 1
.

Hence 𝐶 = 𝐴𝑛.

Proposition 3.9 shows the power of shared randomness, as it becomes possible
to implement any 𝐴𝑛 with just qubits (or even the bit for that matter). Particularly
noteworthy is that rank(𝐴𝑛) = 𝑛, so with shared randomness the rank of imple-
mentable communication matrices is no longer bounded within 𝒞(𝒬2). Likewise the
dimensions 𝑑𝑞(𝒮) and 𝑑𝑐𝑙(𝒮) no longer make sense as there no longer exists a finite
upper bound for the corresponding monotones within the set 𝒞(𝒬2).

Example 3.10 (𝐴3 with the bit). The communication matrices implementable with
the bit are precisely those that are ultraweakly majorized by 12. Let

𝐵 =

⎡
⎣
0 1

0 1

1 0

⎤
⎦
[︂
1 0

0 1

]︂ [︂
1
2

1
2 0

0 0 1

]︂
=

⎡
⎣
0 0 1

0 0 1
1
2

1
2 0

⎤
⎦ ,
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so that Proposition 3.9 applies. Let us choose the following three permutation ma-

trices: 𝑃1 =

⎡
⎣
1 0 0

0 1 0

0 0 1

⎤
⎦, 𝑃2 =

⎡
⎣
1 0 0

0 0 1

0 1 0

⎤
⎦ and 𝑃3 =

⎡
⎣
0 0 1

0 1 0

1 0 0

⎤
⎦. Then it is

straightforward to confirm that

1

3
(𝑃1𝐵𝑃1 + 𝑃2𝐵𝑃2 + 𝑃3𝐵𝑃3) =

1

3

⎛
⎝
⎡
⎣
0 0 1

0 0 1
1
2

1
2 0

⎤
⎦+

⎡
⎣
0 1 0
1
2 0 1

2

0 1 0

⎤
⎦+

⎡
⎣
0 1

2
1
2

1 0 0

1 0 0

⎤
⎦
⎞
⎠

=
1

2

⎡
⎣
0 1 1

1 0 1

1 1 0

⎤
⎦ = 𝐴3.

Example 3.11 (𝐴5 with qubits). Let {�⃗�𝑖}5𝑖=1, �⃗�𝑖 =
[︀
cos
(︀
(𝑖− 1)2𝜋5

)︀
0 sin

(︀
(𝑖− 1)2𝜋5

)︀]︀

be the Bloch vectors of five pure qubit states so that 𝜚𝑖 = 1
2 (1+ �⃗�𝑖 · �⃗�). An antidis-

tinguishing measurement for {𝜚𝑖} can be constructed as 𝐴𝑖 =
1
5 (1− �⃗�𝑖 · �⃗�). Then

the states {𝜚𝑖} and the POVM {𝐴𝑗} implement the communication matrix

𝐵 =
1

20

⎡
⎢⎢⎢⎢⎣

0 5−
√
5 5 +

√
5 5 +

√
5 5−

√
5

5−
√
5 0 5−

√
5 5 +

√
5 5 +

√
5

5 +
√
5 5−

√
5 0 5−

√
5 5 +

√
5

5 +
√
5 5 +

√
5 5−

√
5 0 5−

√
5

5−
√
5 5 +

√
5 5 +

√
5 5−

√
5 0

⎤
⎥⎥⎥⎥⎦
.

Let us choose the following permutation matrix: 𝑃 =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0

0 0 0 0 1

0 1 0 0 0

0 0 0 1 0

1 0 0 0 0

⎤
⎥⎥⎥⎥⎦
. Then it is

straightforward to verify that

𝑃𝐵𝑃 𝑇 =
1

20

⎡
⎢⎢⎢⎢⎣

0 5 +
√
5 5−

√
5 5−

√
5 5 +

√
5

5 +
√
5 0 5 +

√
5 5−

√
5 5−

√
5

5−
√
5 5 +

√
5 0 5 +

√
5 5−

√
5

5−
√
5 5−

√
5 5 +

√
5 0 5 +

√
5

5 +
√
5 5−

√
5 5−

√
5 5 +

√
5 0

⎤
⎥⎥⎥⎥⎦

so that 1
2

(︀
𝐵 + 𝑃𝐵𝑃 𝑇

)︀
= 𝐴5.

Examples 3.10 and 3.11 show that the sets 𝒞(𝒮𝑐𝑙
2 ) and 𝒞(𝒬2) are not convex.

However, with the help of Proposition 3.9 it is in fact possible to see that 𝒞(𝒮𝑐𝑙
𝑑 )

and 𝒞(𝒬𝑑) are not convex for any 𝑑. The only thing that is required is to construct
the communication matrix 𝐴𝑛 for sufficiently large 𝑛 so that 𝐴𝑛 /∈ 𝒞(𝒮𝑐𝑙

𝑑 ) and 𝐴𝑛 /∈
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𝒞(𝒬𝑑). This is clearly always possible as rank+(𝐴𝑛) = 𝑛 and rank𝑝𝑠𝑑(𝐴𝑑2) ≤ 𝑑+1.
Perhaps a bit paradoxically it is thus possible to prove that 𝒞(𝒬𝑑) is not convex by
using communication matrices that are implementable with the bit.

Corollary 3.12. As a consequence of Proposition 3.9, the sets 𝒞(𝒮𝑐𝑙
𝑑 ) and 𝒞(𝒬𝑑) are

not convex for any 𝑑.

While Proposition 3.9 used 𝑛! permutation matrices to construct the matrix 𝐴𝑛,
generally speaking it is possible to construct the matrix 𝐴𝑛 with far less permuta-
tions. This can be seen from Examples 3.10 and 3.11 where 𝐴3 was constructed
with the identity and two permutations, and 𝐴5 was constructed with just a single
permutation in addition to the identity. It is not easy to say how many permutations
exactly are required and clearly it depends a lot on the situation. Fewer permutations
may suffice if there is some symmetry in the starting communication matrix.

3.2 Communication of partial ignorance
The family of matrices 𝐷𝑛,𝑝 establishes a family of communication tasks that lie in
between perfect discrimination and perfect uniform antidistinguishability. A key ob-
servation in Publication II was that there is another family of communication tasks
between discrimination and antidistinguishability that is different from the previ-
ously defined matrix family. This generalization is evident from the following char-
acterization of discrimination and antidistinguishability:

(i) Discrimination: each measurement outcome should exclude all except one
preparation.

(ii) Antidistinguishability: each measurement outcome should exclude one prepa-
ration.

Based on the previous characterization we arrive at the following family of com-
munication matrices. We define the communication matrix𝐺𝑛,𝑡 as the

(︀
𝑛
𝑡

)︀
×𝑛matrix

with 1
𝑛−𝑡

[︀
1 · · · 1 0 · · · 0

]︀
as the first row. Each row contains 𝑛− 𝑡 ones and

𝑡 zeros. The other rows of 𝐺𝑛,𝑡 are the distinct permutations of the first row, written
in lexicographical order. For instance,

𝐺4,2 =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

It is evident that 𝐺𝑛,𝑛−1 corresponds to 1𝑛 and 𝐺𝑛,1 to 𝐴𝑛, although the zeros in
𝐺𝑛,1 are located on the antidiagonal of the matrix (they are ultraweakly equivalent).
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The matrices 𝐺𝑛,𝑡 were introduced in Publication II as an optimal solution to the
following communication game. Suppose Charlie has in his possession a set of 𝑛
boxes. He decides to hide a prize inside one of the boxes and then invites Alice and
Bob to play a guessing game according to the following rules.

(i) Charlie will reveal 𝑡 empty boxes to Alice. Hence in general 1 ≤ 𝑡 < 𝑛.

(ii) Alice is allowed to communicate with Bob via preparing a single state from
a preparation device. Thus she will optimally need

(︀
𝑛
𝑡

)︀
distinct preparations

from a state space 𝒮.

(iii) Bob is not given any additional information on the location of the prize. The
only information he will receive is the state sent by Alice, which he will mea-
sure according to a fixed measurement device.

(iv) After measuring the state Bob will produce a guess on the location of the prize.
Alice and Bob win if Bob guesses correctly.

This communication game was called communication of partial ignorance in Pub-
lication II. There are some noteworthy remarks to be made about the given rules.
First of all, Charlie is not required to distribute the prize according to any fixed prob-
ability distribution. In fact, he is free to choose the location of the prize even after
he has already revealed empty boxes to Alice and Alice and Bob’s communication
has taken place. However, he is not allowed to cheat. In addition, Alice and Bob
are free to build their preparation and measurement devices before starting the game.
The only rule is that their devices are limited to preparing states from a given state
space 𝒮. They are not allowed to change their setups mid-game, hence it is possible
for Charlie to seek deficiencies in Alice and Bob’s guessing strategy. In general we
define Alice and Bob’s success probability to equal the “worst case” probability of
winning the game, as Charlie could always choose the inputs in order to minimize
the winning chance.

It is clear that the matrices 𝐺𝑛,𝑡 are exactly the communication matrices that
maximize Alice and Bob’s winning probability in a guessing game where there are 𝑛
boxes and Charlie reveals 𝑡 empty boxes to Alice. This can be seen from the example
matrix 𝐺4,2. Suppose Charlie reveals the last two boxes to be empty to Alice. Then
Alice will use the first preparation so that Bob will receive outcomes 1 and 2 with
equal probability. This maximizes their winning probability because Charlie cannot
exploit any weakness in the guessing strategy.

From now on we will identify optimal communication of partial ignorance with
the communication matrices 𝐺𝑛,𝑡. A key question is then if the optimal communi-
cation matrix can be implemented by Alice and Bob, i.e., whether 𝐺𝑛,𝑡 ∈ 𝒞(𝒮) or
not. Another key question is whether some of the 𝐺𝑛,𝑡 are easier to implement than
others according to ultraweak matrix majorization.
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In Publication II it was shown that rank(𝐺𝑛,𝑡) = 𝑛. Because 𝐺𝑛,𝑡 is a
(︀
𝑛
𝑡

)︀
× 𝑛

matrix, this also implies that rank+(𝐺𝑛,𝑡) = 𝑛 through the inequalities in (40). In
general we can say that rank𝑝𝑠𝑑(𝐺𝑛,𝑡) ≤ 𝑛with the help of the last inequality in (42).
In Publication II it was shown that rank𝑝𝑠𝑑(𝐺4,2) = 3. Clearly rank𝑝𝑠𝑑(𝐺𝑛,𝑛−1) =

𝑛 while rank𝑝𝑠𝑑(𝐺𝑑2,1) is either 𝑑 or 𝑑 + 1 according to Section 3.1. In general the
PSD rank of 𝐺𝑛,𝑡 is not known when 1 < 𝑡 < 𝑛− 1.

Regarding the question of whether some of the 𝐺𝑛,𝑡 are easier to implement than
others, the following was shown in Publication II.

Proposition 3.13. 𝐺𝑛,𝑡−1 ⪯ 𝐺𝑛,𝑡 ⪯ 𝐺𝑛+1,𝑡+1.

The proof of Proposition 3.13 basically relies first on the fact 𝐺𝑛+1,𝑡+1 contains
𝐺𝑛,𝑡 as a submatrix. Secondly it is straightforward to see that the rows of 𝐺𝑛,𝑡−1 are
contained in the convex hull of the rows of 𝐺𝑛,𝑡. The majorizing matrices 𝐿 and 𝑅
are then straightforward to construct explicitly.

While Proposition 3.13 does a good job in characterizing the ultraweak relations
of the matrices𝐺𝑛,𝑡, we are not yet done completely determining these relations. The
matrix rank can be used to clearly see that 𝐺𝑛+1,𝑡 ⪯̸ 𝐺𝑛,𝑡′ for any 𝑛, 𝑡 and 𝑡′ because
the rank cannot increase in ultraweak majorization, hence there are two “obvious”
ultraweak majorization relations that were left open in Publication II. Namely, we
do not know yet if 𝐺𝑛,𝑡 ⪯ 𝐺𝑛,𝑡−1 and we do not know if 𝐺𝑛−1,𝑡 ⪯ 𝐺𝑛,𝑡 for all
𝑡. We have already seen that 𝐺𝑛−1,1 ⪯̸ 𝐺𝑛,1 in Section 3.1, and with the help of
the ultraweak monotone function 𝜆𝑚𝑎𝑥 we can now present additional ultraweak
majorization relations between the communication matrices 𝐺𝑛,𝑡.

Proposition 3.14. 𝐺𝑛−𝑞,𝑡+𝑠 ⪯̸ 𝐺𝑛,𝑡 for any 𝑞 > 0, 𝑠 ≥ 0 and 𝐺𝑛,𝑡 ⪯̸ 𝐺𝑛,𝑡−𝑠 for any
𝑠 > 0.

Proof. From the definition of 𝐺𝑛,𝑡 we have

𝜆𝑚𝑎𝑥 (𝐺𝑛,𝑡) =
𝑛

𝑛− 𝑡
.

Let us first consider 𝐺𝑛−𝑞,𝑡+𝑠 and 𝐺𝑛,𝑡.
Firstly, notice that in general 𝑡+𝑠 ≤ 𝑛−𝑞−1, which means 0 < 𝑞 ≤ 𝑛−𝑡−𝑠−1.

This also bounds 𝑠 by 0 ≤ 𝑠 ≤ 𝑛− 𝑞 − 𝑡− 1. Simple calculation then yields

𝜆𝑚𝑎𝑥 (𝐺𝑛,𝑡)− 𝜆𝑚𝑎𝑥 (𝐺𝑛−𝑞,𝑡+𝑠) =
𝑛

𝑛− 𝑡
− 𝑛− 𝑞

𝑛− 𝑞 − 𝑡− 𝑠

=
𝑛(𝑛− 𝑞 − 𝑡− 𝑠)

(𝑛− 𝑡)(𝑛− 𝑞 − 𝑡− 𝑠)
− (𝑛− 𝑞)(𝑛− 𝑡)

(𝑛− 𝑡)(𝑛− 𝑞 − 𝑡− 𝑠)

=
−𝑛𝑠− 𝑞𝑡

(𝑛− 𝑡)(𝑛− 𝑞 − 𝑡− 𝑠)
,
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Figure 6. The optimal communication matrices 𝐺𝑛,𝑡 for different communication of partial
ignorance tasks, presented in a chart by the parameters 𝑛 and 𝑡. The green arrows indicate the
directions in which it is possible to move adjacently within the family 𝐺𝑛,𝑡 with the ultraweak matrix
majorization. The red arrows indicate directions in which ultraweak majorization is impossible.

which is clearly always negative as 𝑛 − 𝑡 > 0 and 𝑛 − 𝑞 − 𝑡 − 𝑠 ≥ 1. Therefore
𝐺𝑛−𝑞,𝑡+𝑠 ⪯̸ 𝐺𝑛,𝑡 for any 𝑞 > 0, 𝑠 ≥ 0 for which 𝐺𝑛−𝑞,𝑡+𝑠 is a valid communication
matrix.

Let us then consider 𝐺𝑛,𝑡 and 𝐺𝑛,𝑡−𝑠. Clearly 𝜆𝑚𝑎𝑥 (𝐺𝑛,𝑡) =
𝑛

𝑛−𝑡 >
𝑛

𝑛−𝑡+𝑠 =

𝜆𝑚𝑎𝑥 (𝐺𝑛,𝑡−𝑠). Therefore 𝐺𝑛,𝑡 ⪯̸ 𝐺𝑛,𝑡−𝑠 for any 0 < 𝑠 ≤ 𝑡− 1.

Propositions 3.13 and 3.14 now completely determine the ultraweak preordering
of adjacent 𝐺𝑛,𝑡 matrices, i.e., those matrices in the family 𝐺𝑛,𝑡 which differ only
by one in 𝑛 or 𝑡. This is illustrated in Figure 6. Additionally, we have the following
corollary.

Corollary 3.15. If 𝑚 = 𝑛, then 𝐺𝑚,𝑠 ⪯ 𝐺𝑛,𝑡 if and only if 𝑠 ≤ 𝑡. Otherwise a
necessary condition for 𝐺𝑚,𝑠 ⪯ 𝐺𝑛,𝑡 is that 𝑚 < 𝑛 and 𝑠 < 𝑡.

Corollary 3.15 is a direct consequence of Propositions 3.13 and 3.14.
The only remaining case left to determine is exactly when 𝐺𝑚,𝑠 ⪯ 𝐺𝑛,𝑡 in the

case where 𝑚 < 𝑛 and 𝑠 < 𝑡. In Publication II we proved the following proposition.

Proposition 3.16. A sufficient condition for 𝐺𝑚,𝑚−1 ⪯ 𝐺𝑛,𝑡 is ⌊ 𝑛
𝑛−𝑡⌋ ≥ 𝑚.
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Initial Final

𝑋𝐶
1
𝑛 [1 1 · · · 1] 1

𝑛−𝑡 [1 1 · · · 1 0 · · · 0]

𝐻(𝑋𝐶) − log2
1
𝑛 − log2(

1
𝑛−𝑡)

Table 1. Entropy of complete communication of partial ignorance. Note that there are 𝑡 zeros and
𝑛− 𝑡 ones in the final probability distribution. Hence the entropy is −(𝑛− 𝑡) 1

𝑛−𝑡
log2(

1
𝑛−𝑡

), or
log2(𝑛− 𝑡). Each row of 𝐺𝑛,𝑡 is a permutation of the first row, so the entropy is the same for all
rows.

As an example, we can consider the following:

[︂
1 0 0 0 0 0

0 0 0 0 0 1

]︂
1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

1 0

1 0

0 1

0 1

⎤
⎥⎥⎦ =

[︂
1 0

0 1

]︂
= 𝐺2,1,

which shows that 𝐺2,1 ⪯ 𝐺4,2. Proposition 3.16 relies on finding orthogonal rows
in the larger matrix so that a smaller identity can be constructed. This gives an
example of one situation where 𝐺𝑚,𝑠 ⪯ 𝐺𝑛,𝑡 with 𝑚 < 𝑛 and 𝑠 < 𝑡 is possible.
By Proposition 3.13 we also have that 𝐺𝑛−1,𝑡−1 ⪯ 𝐺𝑛,𝑡 always holds. To prove
precisely when 𝐺𝑚,𝑠 ⪯ 𝐺𝑛,𝑡 seems to be a difficult combinatorial problem as a
complete set of ultraweak monotones is not known. It is left as an open problem
here.

Shannon entropy in communication of partial ignorance

As a final consideration on communication of partial ignorance we can consider the
Shannon entropy of optimal communication. First of all, it is clear that if Alice
knows the location of the prize, then she will have to communicate log2 𝑛 bits of
information to Bob. This can be seen as Bob’s initial probability distribution on
the location of the prize being totally uniform, and after communication Bob will
know the location of the prize. In general, if Alice communicates everything she
knows to Bob in the communication task 𝐺𝑛,𝑡, the entropy in the communication is
transformed according to Table 1. Thus we can see that, in general, the transmission
of log2 𝑛− log2(𝑛− 𝑡) = log2(

𝑛
𝑛−𝑡) bits of information is required for Alice to tell

everything she knows to Bob.
In communication of partial ignorance Bob will produce a guess after he has

measured the state sent by Alice. Alice and Bob win if Bob’s guess is correct. Oth-
erwise they lose. Because the rules were defined in this way, it is not necessary for
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Initial Final

𝑋𝑄
1
𝑛 [1 1 · · · 1]

[︂
1

𝑛−𝑡

1− 1
𝑛−𝑡

𝑛−1 · · · 1− 1
𝑛−𝑡

𝑛−1

]︂

𝐻(𝑋𝑄) − log2
1
𝑛 − 1

𝑛−𝑡 log2(
1

𝑛−𝑡)−
(︁
1− 1

𝑛−𝑡

)︁
log2

(︂
1− 1

𝑛−𝑡

𝑛−1

)︂

Table 2. Entropy of Bob’s probability distributions before and after a measurement when Alice and
Bob’s quantum devices implement 𝐺𝑛,𝑡.

𝐺4,1 𝐺4,2 𝐺4,3

𝐻(𝑋𝑈 )−𝐻(𝑋𝑓
𝑄) 0.0250625 0.207519 2

𝐻(𝑋𝑈 )−𝐻(𝑋𝑓
𝐶) 0.415037 1 2

Table 3. The amount of information transmitted in the communication tasks 𝐺4,1, 𝐺4,2 and 𝐺4,3 in
the quantum implementation (𝐻(𝑋𝑄)) and in the case where Alice communicates everything she
knows to Bob (𝐻(𝑋𝐶)). 𝑋𝑈 denotes the uniform probability distribution.

Alice to communicate everything she knows about the empty boxes to Bob in order to
reach the maximal probability of winning. In fact, suppose that Alice and Bob have
quantum devices that implement 𝐺𝑛,𝑡. Alice and Bob have agreed upon a strategy
that, upon obtaining outcome 𝑚, Bob will guess that the prize was in box 𝑚. Alice
should hence prepare the state from the row with zeros in the corresponding indices
that Charlie has revealed to be empty. Suppose Charlie reveals the last 𝑡 boxes to
be empty to Alice. Then Bob’s probability distribution will be updated according to
Table 2 upon obtaining outcome 1.

Let us denote with 𝑋𝑓
𝐶 the final probability distribution in Table 1 and with 𝑋𝑓

𝑄

the corresponding probability distribution in Table 2. We can see that the difference
of the final Shannon entropies can be written as:

𝐻(𝑋𝑓
𝑄)−𝐻(𝑋𝑓

𝐶) =

(︂
1− 1

𝑛− 𝑡

)︂(︃
log2

(︂
1

𝑛− 𝑡

)︂
− log2

(︃
1− 1

𝑛−𝑡

𝑛− 1

)︃)︃
,

which is generally speaking a positive function. The difference is zero only when
𝑡 = 𝑛− 1, i.e., when the implemented communication matrix is 1𝑛. Thus the actual
information that is transmitted in the quantum implementation of 𝐺𝑛,𝑡 is less than
or equal to what would be transmitted if Alice told Bob everything she knows. The
amount is only equal if the task is 𝐺𝑛,𝑛−1.

As an example, let us consider the communication tasks 𝐺4,1, 𝐺4,2 and 𝐺4,3.
Table 3 lists the classical and quantum entropies for these tasks.

From Table 3 we can see that, generally speaking, the amount of information
transmitted in the quantum implementation is much less than perfect communication
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whenever 𝑡 < 𝑛 − 1. However, both of these methods of communication achieve
the same probability of winning in a communication game of partial ignorance. This
is not really paradoxical, however. It just means that Alice has communicated with
Bob in a way that maximizes the winning probability in the first guess Bob produces.
If additional guesses were granted upon an erroneous guess by Bob, the complete
transmitted information would allow Bob to guess with better chances of finding
the prize compared to the quantum implementation. If Bob’s guess is wrong after
measuring a quantum state, he will have no additional information on the location of
the prize and he has to update his probability distribution to the uniform distribution
again, as there are 𝑛 − 1 remaining possibilities of where the prize could be. In
contrast, upon guessing wrong and having the complete information available, Bob’s
probability of guessing correctly would be greater as he would know some of the
boxes to be empty, leaving 𝑛− 𝑡− 1 choices.

The analysis of the Shannon entropies shows that the communication game de-
fined by communication of partial ignorance would be significantly changed if ad-
ditional guesses were granted after an erroneous guess. The probability of guessing
wrong and then updating Bob’s probability distribution according to available infor-
mation would have to be taken into account. It is unclear what the best possible
𝑑-dimensional classical and quantum strategies would be in this case.

3.3 Partial-ignorance communication tasks
Publication IV introduced a generalized version of communication of partial igno-
rance. In the generalized version there also exists an input for Bob who is operating
the measurement device. This means that in general Bob will have multiple mea-
surements to choose from based on his input. As a consequence the use of behaviors
is now required.

Formally we define a partial-ignorance communication task of type 𝑇𝑛,𝑚 to be a
communication task with the following rules.

Definition 3.17 (Partial-ignorance communication task 𝑇𝑛,𝑚). Charlie, who acts as
a game master, chooses an 𝑛-bit string 𝑠 with exactly one 1. He reveals the indices of
𝑚 zeros to Alice by sending her an 𝑛-bit string 𝑎 with 𝑚 1’s. Each index of a 1 in 𝑎
will reveal that the corresponding bit in 𝑠 was zero. Charlie will reveal the remaining
zeros to Bob as an 𝑛-bit string input 𝑏. Therefore the combined knowledge of Alice
and Bob will determine the location of the 1 in 𝑠 completely. Alice and Bob are not
allowed to communicate freely: Alice is allowed to send Bob a single state from a
state space 𝒮. Bob can perform any measurement on the state Alice sends to him,
after which he will have to guess the index of the 1 in 𝑠. Alice and Bob win if Bob’s
guess is correct.

Just like in communication of partial ignorance, there is no extra guesses granted
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in a partial-ignorance communication task after an erroneous guess. While in com-
munication of partial ignorance even Alice did not necessarily know the location of
the prize, a communication task of partial-ignorance is now a communication task
with complete knowledge in the sense that Alice and Bob would know the location of
the prize, or the index of the 1 in the bit string 𝑠, if they combined their knowledge.
Going forward a partial-ignorance communication task of type 𝑇𝑛,𝑚 will be simply
referred to as the communication task 𝑇𝑛,𝑚.

While it would be possible to consider the communication tasks 𝑇𝑛,𝑚 in the
general framework introduced in Chapter 2, i.e. with state spaces other than quantum
or classical, it turns out the analysis of these tasks is pretty complicated. So far only
the tasks 𝑇3,1, 𝑇4,1 and 𝑇4,2 have been analyzed in Publication IV for the bit (𝒮𝑐𝑙

2 ) and
up to 4-dimensional quantum systems. It is pretty straightforward to see that in 𝒬4

and 𝒮𝑐𝑙
4 the optimal success probabilities are already saturated for these tasks, while

the bit has been used as a comparison for the qubit. The correct classical analogue for
the qutrit would be a three-level classical system, or the trit, but this analysis has not
been done. The analysis for the trit will be presented here in order to get the correct
comparison for the qutrit. Let us first recall some mathematical tools that were used
in Publication IV to obtain lower and upper bounds on success probabilities in the
communication tasks 𝑇𝑛,𝑚.

Semidefinite programming

We have already seen how the question of whether a set of quantum states is antidis-
tinguishable is an SDP. The optimal quantum implementation of a partial-ignorance
communication task can be formulated as an optimization problem of the following
form:

max
∑︁

𝑖,𝑗,𝑘

𝑝𝑖𝑗𝑘tr [𝜚𝑖M𝑗(𝑘)]

s.t. 𝜚𝑖 ≥ 0 ∀𝑖,
tr [𝜚𝑖] = 1 ∀𝑖
1 ≥ M𝑗(𝑘) ≥ 0 ∀𝑗, 𝑘
∑︁

𝑘

M𝑗(𝑘) = 1∀𝑗,

(60)

where the weights 𝑝𝑖𝑗𝑘 define the success metric of the problem. Additionally, op-
erational constraints of the form

∑︀
𝑖 𝛼

𝑟
𝑖 𝜚𝑖 =

∑︀
𝑗 𝛽

𝑟
𝑗 𝜚𝑗 can be added to the prepara-

tions, where the variable 𝑟 indexes these constraints and 𝛼𝑟
𝑖 , 𝛽𝑟𝑗 define a set of convex

weights. Operational constraints for measurements can be added in a similar fashion.
While Equations (60) clearly do not define an SDP (the success metric is not

a linear function), the used formulation can still be optimized with methods from
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semidefinite programming. This is done by first fixing a dimension for the Hilbert
space of the states and then generating random rank-1 states. After the states are
fixed as constants the problem of (60) can be optimized as an SDP over the effects.
The optimal effects can then be fixed as constants and the problem can be optimized
as an SDP over the states. This procedure can be continued until additional steps no
longer produce an improved result. An algorithm like this is usually called a see-
saw method in the literature [96; 97; 98; 99; 100]. While there are no performance
guarantees, in practice the see-saw algorithm works very well. In Publication IV the
see-saw method was able to produce optimal lower bounds on all considered success
metrics.

The see-saw method can be always used to generate a dimension-dependent
lower bound on success metrics of the form (60). However, this is just a lower
bound. Optimality has to be proven in most cases, if the goal is to determine the
optimal success probability of some communication task. Generally speaking there
are many possible methods to produce upper bounds on success metrics. A typi-
cal method is to produce a converging hierarchy of SDPs where each level of the
hierarchy produces an upper bound on the success metric and the hierarchy can be
guaranteed to converge on the optimal quantum value. See e.g. [84; 85; 86; 101; 102;
103; 104; 105; 106] for more information on the theoretical framework of SDPs. In
Publication IV the unitary SDP hierarchy from [87] was used to produce the upper
bounds.

Noncontextuality as a principle bounding correlations

A partial-ignorance communication task involves an input for both Alice and Bob.
Thus it is possible to analyze the effects of contextuality in these tasks. A brief
introduction to contextuality was given in Publication IV. Additional resources on
the topic of hidden variables in quantum mechanics can be found e.g. from [14; 15;
43; 46; 47; 50; 79; 87; 107; 108; 109; 110; 111; 112]. We will recall some of the
basic concepts here in general terms.

In all simplicity noncontextuality is the physical principle that operationally in-
distinguishable things should also be indistinguishable on the ontological level. For
instance, whenever two quantum states are represented by the same density matrix
those two quantum states should be described by the same underlying ontological
state as they cannot be discriminated by any conceivable quantum measurement. It
is also immediately obvious that contextuality is a purely nonclassical feature. A
classical state space 𝒮𝑐𝑙

𝑑 is uniquely defined as the convex hull of 𝑑 distinguishable
pure states, or a 𝑑 − 1-simplex. Each state has a unique convex decomposition into
pure states. Therefore the principle of noncontextuality applies on all states and there
can be no contextual effects in communication.

A key question regarding the principle of noncontextuality is then the following:
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given a behavior 𝑝(𝑘|𝜚𝑖,M𝑗(𝑘)) and a set of operational equivalences between the
states and effects, does the behavior admit a noncontextual ontological model? It
turns out the problem of querying for a noncontextual model constitutes a linear
program (LP) [47]. However, there is some technicality involved as the polytope of
noncontextual correlations has to be characterized first by constructing the so-called
noncontextual measurement-assignment polytope.

Whenever the observed behavior is contextual, i.e. the behavior does not admit a
noncontextual ontological model, it must be true by Farkas’ lemma [113] that a cer-
tificate of primal feasibility is negative. By formulating the Farkas dual of the primal
LP it is then possible to find the noncontextuality inequality that is most violated by
the observed behavior. This is especially useful as characterizing the noncontextual
polytope by the vertices and checking all the different noncontextuality inequalities
can be a very laborious task.

Grassmannian frames

Frame theory offers an alternative way to derive some upper bounds on success met-
rics in the case where operational equivalences are not defined between states or ef-
fects. A partial-ignorance communication task 𝑇𝑛,𝑚 typically involves

(︀
𝑛
𝑚

)︀
distinct

preparations for Alice. However, Bob can exclude some of these based on his own
input. Therefore Bob only has to attempt to discriminate between some subset of
states that Alice can prepare. In the spirit of communication of partial ignorance an
optimal strategy should be as uniform as possible with respect to erroneous guesses
so that there would not be any weakness in the guessing strategy that Charlie could
exploit. With the help of frame theory it is possible to limit the maximal overlap
between Alice’s states.

Recall that a sequence {𝑓𝑖}𝑛𝑖=1 of vectors in an inner product space 𝑉 is called a
frame if there exists frame bounds 𝐴 and 𝐵 such that

𝐴 ‖𝑣‖2 ≤
𝑛∑︁

𝑖=1

|⟨ 𝑓𝑖 | 𝑣 ⟩|2 ≤ 𝐵 ‖𝑣‖2 (61)

for all 𝑣 ∈ 𝑉 . There are some important special cases for frames. A frame is tight
whenever it is possible to choose 𝐴 = 𝐵. If ‖𝑓𝑖‖ = 1 for all 𝑖, then the frame
is uniform. A frame is equiangular if |⟨ 𝑓𝑖 | 𝑓𝑗 ⟩| = 𝑐 for all 𝑖 ̸= 𝑗 and 𝑐 ≥ 0

is a constant. A frame that has the same number of elements as the dimension of
the inner product space 𝑉 is also a basis. In many cases an overcomplete frame is
preferable [114; 115; 116].

Definition 3.18. The maximal frame correlation of a uniform frame {𝑓𝑖}𝑛𝑖=1 is de-
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fined as

ℳ ({𝑓𝑖}𝑛𝑖=1) = max
𝑗,𝑘
𝑗 ̸=𝑘

|⟨ 𝑓𝑗 | 𝑓𝑘 ⟩|

A uniform frame is called a Grassmannian frame if it minimizes the maximal
frame correlation [117; 118].

Grassmannian frames seem very promising to our current investigation. This is
because we can always identify pure states with vectors of length one in the corre-
sponding Hilbert space. Any bounds that can be derived on Grassmannian frames
then also automatically apply to pure states. The following was shown in [119].

Proposition 3.19. If {𝑓𝑖}𝑛𝑖=1 is a uniform frame in R𝑑 or C𝑑, then

ℳ ({𝑓𝑖}𝑛𝑖=1) ≥
√︃

𝑛− 𝑑

𝑑(𝑛− 1)
. (62)

Additionally, only an equiangular frame can achieve equality in (62). Equality can
only be achieved if 𝑛 ≤ 𝑑(𝑑+1)

2 for R𝑑 or 𝑛 ≤ 𝑑2 for C𝑑.

Sometimes it is important to consider sets of vectors that do not span the entire
inner product space 𝑉 . In these situations the previous bound can still be used, as a
collection of unit vectors is always a frame for their span in 𝑉 [120]. The dimension
𝑑 just has to be adjusted according to dim(span({𝑓𝑖}𝑛𝑖=1)).

The way in which we can utilize the bound (62) is through the Helstrom bound
[121; 122]. In the case of two pure quantum states prepared with equal probability
the Helstrom bound gives the optimal minimum-error discrimination probability:

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 =
1

2

(︂
1 +

√︁
1− |⟨𝜙1 |𝜙2 ⟩|2

)︂
. (63)

If we replace the inner product with the bound from (62) we obtain

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ≤
1

2

(︃
1 +

√︃
1− 𝑛− 𝑑

𝑑(𝑛− 1)

)︃
, (64)

which should be interpreted as the worst ambiguous pair-wise discrimination proba-
bility among a set of 𝑛 pure states in a 𝑑-dimensional Hilbert space. Clearly it would
be desirable to have a similar formula for more than two pure states and for mixed
states as well. However, the problem of discriminating an arbitrary set of quantum
states with minimal error is a complicated topic [123; 124; 125; 126; 127; 128]. As
far as we know there does not exist an equation like (63) in this case. Instead some
bounds that limit success probability are known.
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Average success probabilities in partial-ignorance communica-
tion tasks

The simplest partial-ignorance communication task is 𝑇3,1. In that task Charlie
chooses one string from 100, 010 and 001. He reveals the index of one zero to Alice
and the other zero is revealed to Bob. Therefore in each run of the communication
task Bob is trying to distinguish two distinct preparations of Alice. For instance, if
Bob receives input 100, then he knows that Alice will prepare a state corresponding
to either input 010 or 001. We can thus use Equation (64) to bound Bob’s success
chance to discriminate any two out of the three states that Alice can prepare. The
success metric in this task can be written as:

tr [𝜚3M1(1)] + tr [𝜚2M1(2)] + tr [𝜚3M2(1)]+

tr [𝜚1M2(2)] + tr [𝜚2M3(1)] + tr [𝜚1M3(2)]

=tr [𝜚3M1(1)] + tr [𝜚2(1−M1(1))] + tr [𝜚3M2(1)] + tr [𝜚1(1−M2(1))]

tr [𝜚2M3(1)] + tr [𝜚1(1−M3(1))]

≤3(𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 − 𝑃𝑓𝑎𝑖𝑙) + 3 = 3(𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 − (1− 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠)) + 3 = 6𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠,

where 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 is the optimal pair-wise discrimination probability between three

quantum states. From (64) we get that𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ≤ 1
2

(︁
1 +

√︁
1− 1

4

)︁
= 1

2

(︁
1 +

√
3
2

)︁
≈

0.933913 for the average success probability. This value matches exactly the value
presented in Publication IV, where the value was obtained with heuristic methods.
Since the average is obtained here from an equiangular frame for C2 it can be argued
that the average success probability is equal to the worst case success probability
where it is assumed that Charlie is malicious and tries to find a weakness in Bob’s
guessing strategy. In comparison to the qubit, in Publication IV it was showed that
the average success probability for the bit is 5

6 in 𝑇3,1. Thus the qubit achieves a
much higher average success probability. Additionally, the worst case success prob-
ability for the bit is 0 as there is always at least one combination of inputs that lead
to Bob’s guess being wrong.

Let us now collect the known optimal success probabilities for 𝑇4,1 and 𝑇4,2 in
Table 4. The classical bounds were obtained by first listing a general deterministic
guessing strategy in table form. A maximal average success probability was then
derived from the general table by noticing that some of Alice’s messages should not
be equal. The maximal success probability was then achieved by a concrete strategy
formed by filling the general table. We will replicate this process for the trit to
complete Table 4.

The lower bounds for qubits and qutrits were obtained by using the see-saw
method. This lower bound was proved to be optimal in 𝑇4,1 by considering the
optimal ambiguous guessing probability given by (64). For 𝑇4,2 the lower bound
was proved to be optimal by using the ultraweak monotone 𝜆𝑚𝑎𝑥 on individual com-
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𝑇4,1 𝑇4,2

𝒮𝑐𝑙
2

5
6

2
3

𝒬2
1
2

(︁
1 +

√︁
2
3

)︁
≈ 0.908248 2

3

𝒬3
1
2

(︁
1 + 2

√
2

3

)︁
≈ 0.971405 1

Table 4. Optimal average success probabilities for the communication tasks 𝑇4,1 and 𝑇4,2.

munication matrices (there is one communication matrix for each of Bob’s mea-
surements). There was no need to consider 4-dimensional quantum systems as it is
straightforward to see that four distinguishable states is enough to achieve maximum
success probability in 𝑇4,1. Notably the worst case success probability in 𝑇4,2 for the
qubit was left as an open problem in Publication IV.

The communication tasks 𝑇4,1 and 𝑇4,2 were not considered for the trit in Pub-
lication IV. We now perform this analysis to provide an illustrative example and in
order to get the correct analogue for the qutrit.

Example 3.20 (𝑇4,1 with the trit). Recall from Publication IV that a general classical
strategy for 𝑇4,1 can be written according to Table 5.

The variables 𝑖, 𝑗, 𝑘 and 𝑙 determine which state Alice should send to Bob given
each of her inputs. Likewise, each of the variables 𝑥𝑖, 𝑦𝑖 and 𝑧𝑖 determines what Bob
will guess given that he received input 𝑏 and the message 𝑟(𝑎). By looking at the
rows of the lower table where values of 𝑏 are identical we can deduce that Alice’s
states should comply with the following constraints:

𝑘 ̸= 𝑙, 𝑗 ̸= 𝑙, 𝑗 ̸= 𝑘, 𝑖 ̸= 𝑙, 𝑖 ̸= 𝑘, 𝑖 ̸= 𝑗.

Each constraint was derived from rows with a different value of 𝑠, so each violation
of the constraints leads to at least one mistake in the strategy. Clearly the above
constraints mean that each of Alice’s states should be different. For the trit this is
impossible, so at least one mistake is bound to happen. An optimal strategy is pre-
sented in Table 6. The average success probability for the trit in the communication
task 𝑇4,1 is therefore 11

12 ≈ 0.916667. The worst case success probability is still zero
for the trit in all deterministic strategies.

Example 3.21 (𝑇4,2 with the trit). We will follow a similar strategy as with 𝑇4,1. Let
us first write down the general form of the strategy in Table 7.

Again looking at the rows of the lower table we can deduce that Alice’s states
should comply with the following constraints:

𝑖 ̸= 𝑗 ̸= 𝑙, 𝑖 ̸= 𝑘 ̸= 𝑚, 𝑗 ̸= 𝑘 ̸= 𝑛, 𝑙 ̸= 𝑚 ̸= 𝑛.
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𝑎 𝑟(𝑎) 𝑏 𝑔(𝑏, 0) 𝑔(𝑏, 1) 𝑔(𝑏, 2)

1000 𝑖 1100 𝑥1 𝑦1 𝑧1
0100 𝑗 1010 𝑥2 𝑦2 𝑧2
0010 𝑘 1001 𝑥3 𝑦3 𝑧3
0001 𝑙 0110 𝑥4 𝑦4 𝑧4

0101 𝑥5 𝑦5 𝑧5
0011 𝑥6 𝑦6 𝑧6

𝑠 𝑎 𝑏 𝑟(𝑎) 𝑔[𝑏, 𝑟(𝑎)]

1000 0100 0011 𝑗 𝑔(0011, 𝑗)
1000 0010 0101 𝑘 𝑔(0101, 𝑘)
1000 0001 0110 𝑙 𝑔(0110, 𝑙)
0100 1000 0011 𝑖 𝑔(0011, 𝑖)
0100 0010 1001 𝑘 𝑔(1001, 𝑘)
0100 0001 1010 𝑙 𝑔(1010, 𝑙)
0010 1000 0101 𝑖 𝑔(0101, 𝑖)
0010 0100 1001 𝑗 𝑔(1001, 𝑗)
0010 0001 1100 𝑙 𝑔(1100, 𝑙)
0001 1000 0110 𝑖 𝑔(0110, 𝑖)
0001 0100 1010 𝑗 𝑔(1010, 𝑗)
0001 0010 1100 𝑘 𝑔(1100, 𝑘)

Table 5. A general classical strategy for the trit in the communication task 𝑇4,1.
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𝑎 𝑟(𝑎) 𝑏 𝑔(𝑏, 0) 𝑔(𝑏, 1) 𝑔(𝑏, 2)

1000 0 1100 − − 3
0100 1 1010 − 4 2
0010 2 1001 − 3 2
0001 2 0110 4 − 1

0101 3 − 1
0011 2 1 −

𝑠 𝑎 𝑏 𝑟(𝑎) 𝑔[𝑏, 𝑟(𝑎)]

1000 0100 0011 1 1
1000 0010 0101 2 1
1000 0001 0110 2 1
0100 1000 0011 0 2
0100 0010 1001 2 2
0100 0001 1010 2 2
0010 1000 0101 0 3
0010 0100 1001 1 3
0010 0001 1100 2 3
0001 1000 0110 0 4
0001 0100 1010 1 4
0001 0010 1100 2 3

Table 6. An optimal classical strategy for the trit in the communication task 𝑇4,1. The erroneous
guess by Bob is highlighted in bold.
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𝑎 𝑟(𝑎) 𝑏 𝑔(𝑏, 0) 𝑔(𝑏, 1) 𝑔(𝑏, 2)

1100 𝑖 1000 𝑥1 𝑦1 𝑧1
1010 𝑗 0100 𝑥2 𝑦2 𝑧2
1001 𝑘 0010 𝑥3 𝑦3 𝑧3
0110 𝑙 0001 𝑥4 𝑦4 𝑧4
0101 𝑚
0011 𝑛

𝑠 𝑎 𝑏 𝑟(𝑎) 𝑔[𝑏, 𝑟(𝑎)]

1000 0110 0001 𝑙 𝑔(0001, 𝑙)
1000 0101 0010 𝑚 𝑔(0010,𝑚)
1000 0011 0100 𝑛 𝑔(0100, 𝑛)
0100 1010 0001 𝑗 𝑔(0001, 𝑗)
0100 1001 0010 𝑘 𝑔(0010, 𝑘)
0100 0011 1000 𝑛 𝑔(1000, 𝑛)
0010 1100 0001 𝑖 𝑔(0001, 𝑖)
0010 1001 0100 𝑘 𝑔(0100, 𝑘)
0010 0101 1000 𝑚 𝑔(1000,𝑚)
0001 1100 0010 𝑖 𝑔(0010, 𝑖)
0001 1010 0100 𝑗 𝑔(0100, 𝑗)
0001 0110 1000 𝑙 𝑔(1000, 𝑙)

Table 7. A general classical strategy for the trit in the communication task 𝑇4,2.
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𝑎 𝑟(𝑎) 𝑏 𝑔(𝑏, 0) 𝑔(𝑏, 1) 𝑔(𝑏, 2)

1100 0 1000 2 3 4
1010 1 0100 1 4 3
1001 2 0010 4 1 2
0110 2 0001 3 2 1
0101 1
0011 0

𝑠 𝑎 𝑏 𝑟(𝑎) 𝑔[𝑏, 𝑟(𝑎)]

1000 0110 0001 2 1
1000 0101 0010 0 1
1000 0011 0100 0 1
0100 1010 0001 1 2
0100 1001 0010 2 2
0100 0011 1000 0 2
0010 1100 0001 0 3
0010 1001 0100 2 3
0010 0101 1000 1 3
0001 1100 0010 0 4
0001 1010 0100 1 4
0001 0110 1000 2 4

Table 8. An optimal classical strategy for the trit in the communication task 𝑇4,2.

It turns out that with the trit it is possible to not break any of these constraints.
Hence the success probability with the trit should equal one. An optimal strategy is
presented in Table 8.

After the examples with the trit we can now write down the complete table of
average success probabilities for the partial-ignorance communication tasks 𝑇4,1 and
𝑇4,2 in Table 9. Note that the trit outperforms the qubit by quite a large margin. In
Publication IV it was shown that the qubit is capable of violating a noncontextual
bound in the partial-ignorance communication task 𝑇4,1. The corresponding optimal
values for noncontextual models and the violation found by SDP methods for qubits
with an operational constraint between preparations are also included in the table.

65



Oskari Kerppo

𝑇4,1 𝑇4,2

𝒮𝑐𝑙
2

5
6

2
3

𝒮𝑐𝑙
3

11
12 ≈ 0.916667 1

𝒬2
1
2

(︁
1 +

√︁
2
3

)︁
≈ 0.908248 2

3

𝒬3
1
2

(︁
1 + 2

√
2

3

)︁
≈ 0.971405 1

Noncontextual models 5
6

2
3

𝑄2 with operational equivalence 0.902369 2
3

Table 9. Optimal average success probabilities for the communication tasks 𝑇4,1 and 𝑇4,2 with
probabilities listed for the trit and noncontextual models. The qubit can violate the noncontextual
bound for 𝑇4,1.
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4 Conclusions

In this thesis I have studied various communication tasks in a quantum mechanical
and classical setting. This ultimately led to the study of the operational hierarchy
of such tasks in the framework of operational theories. The key questions related
to the operational hierarchy were if some communication tasks are easier to imple-
ment than others and whether a given communication task can be implemented by
parties preparing and measuring states with given resources. By comparing which
communication tasks can be implemented in specific operational theories it becomes
possible to compare different theories in a robust way. As quantum theory exhibits
nonclassical and even bizarre features, the comparison between quantum theory and
the analogous classical theory is especially intriguing.

The motivation behind the research throughout this thesis has been to understand
the peculiarities behind quantum mechanics. Nature has ultimately decided to ar-
range herself in such a way as to hide the true ontology of physical systems behind
probabilities and statistics. Various puzzling phenomena then arise from said statis-
tics, such as entanglement and contextuality. It is no wonder that there does not exist
a universally accepted interpretation of quantum mechanics; even the question of
whether quantum mechanics needs an interpretation is contested. While the topic of
interpretation, and its disputed necessity in the current theoretical framework, has so
far resulted in little more than enormous confusion and headaches amongst physi-
cists and philosophers alike, the study of communication tasks is at least capable of
offering some conceptual concreteness in the analysis.

Chapter 1 was largely intended to give an introduction to the framework of op-
erational theories without delving too much into technicalities. A short description
of select topics in quantum mechanics was also included. The distinguishability of
states was a natural choice as it is also perhaps the most fundamental communication
task and appears frequently throughout the other Chapters. Tomography and entan-
glement were also discussed briefly as at the time of writing the introduction the
thesis was going to include the publication [129] as well. However, the decision was
made later to not include this paper into the main thesis, instead listing it in the other
published material section. Chapter 1 works nonetheless as a general introduction to
the topics that are relevant in the main articles.

Chapter 2 was devoted to introducing the operational hierarchy of communica-
tion tasks that was introduced in Publications II and III. As stated, the main mo-
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tivations were to characterize which communication tasks are easier to implement
than others and to understand what resources are necessary to implement a given
communication task. The preorder of ultraweak matrix majorization was introduced
to answer these questions. Importantly, the set of communication matrices imple-
mentable within a given theory is closed with respect to the operations defined by
ultraweak matrix majorization. This ensures that the mathematical framework is
built on a legitimate basis.

To characterize the operational hierarchy defined by the ultraweak preorder I in-
troduced and studied various monotone functions. It was shown that each monotone
can be used to define a dimension that characterizes different operational theories.
The main studied examples were 𝑑-dimensional classical and quantum theory, for
which we saw that the linear, classical and quantum dimensions, induced by the
rank, rank+ and rank𝑝𝑠𝑑 monotones respectively, were very different. In Publica-
tion III it was shown that the classical dimension of a quantum state space is at least
the operational quantum dimension squared; our conjecture is that it is exactly equal
to this value.

Apart from the dimensions induced by ultraweak monotone functions, a key
problem in the operational hierarchy of communication tasks is which communi-
cation tasks are the maximal elements of the ultraweak preorder. In the case of a
classical state space this is clear, as there is a unique maximal equivalence class of
communication tasks defined by the identity matrix. For quantum state spaces and
other general state spaces it remains an open problem to characterize all of the dif-
ferent maximal elements.

Finally, in Chapter 3 the knowledge on the operational hierarchy of communi-
cation tasks was applied to concrete communication tasks. The first communication
task was antidistinguishability, which has important applications in the foundations
of quantum mechanics. Most notably antidistinguishability is used in the proof of the
Pusey–Barrett–Rudolph theorem. This connection was the main motivation behind
Publication I where I wanted to understand if antidistinguishability can be charac-
terized with algebraic conditions. A new algebraic condition was presented for a set
of pure quantum states to be antidistinguishable which also generalizes previously
known results. I also studied so called uniform antidistinguishability and used it to
show that the set of communication matrices implementable with classical or quan-
tum states is not convex in any dimension.

The second communication task I studied was communication of partial igno-
rance, which was introduced in Publication II. A key observation of Publication II
was that there exists a family of communication tasks that lie between distinguisha-
bility and antidistinguishability. However, at the time of writing Publication II I did
not have a good understanding on the ultraweak preorder, as the concept had just
been introduced. In Publication III the knowledge on the ultraweak preorder was
improved greatly, but the communication tasks of partial ignorance were not really
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considered in that publication. With the help of the ultraweak monotone function
𝜆𝑚𝑎𝑥 it was possible to improve the results of Publication II slightly with regards to
the operational hierarchy of the communication tasks of partial ignorance.

As a final observation on communication of partial ignorance I performed basic
analysis of the Shannon entropies in these tasks. It was concluded that the quantum
implementations of these communication tasks transmit relatively small amounts of
information, whilst nevertheless obtaining an equal success probability as if complete
information was transmitted.

The last communication task that was studied was partial-ignorance communi-
cation tasks. Introduced in Publication IV, a partial-ignorance communication task
differentiates from communication of partial ignorance in the feature that a partial-
ignorance communication task also includes an input for the person operating mea-
surement devices. Thus a partial-ignorance communication task is very different
from communication of partial ignorance. Generally speaking the partial-ignorance
communication tasks have to be analyzed with entirely different mathematical tools.
A brief description of these tools was included in the final Chapter of this thesis.
While the exact results of Publication IV were not replicated in the final Chapter, two
novel examples with the trit were presented as the correct analogue for the qutrit.
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[53] A. A. Klyachko, M. A. Can, S. Binicioğlu, and A. S. Shumovsky. Simple test for hidden variables
in spin-1 systems. Phys. Rev. Lett., 101:020403, Jul 2008.

[54] S. Yu and C. H. Oh. State-independent proof of kochen-specker theorem with 13 rays. Phys.
Rev. Lett., 108:030402, 2012.

[55] J. E. Cohen, J. H. B. Kempreman, and Gh. Zbăganu. Comparisons of stochastic matrices, with
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